Skip to content

Commit

Permalink
Correcting c riterion setting in ITGc and IG
Browse files Browse the repository at this point in the history
  • Loading branch information
ManuelRausch committed Apr 23, 2024
1 parent 74f1f19 commit aba2543
Show file tree
Hide file tree
Showing 8 changed files with 11 additions and 9 deletions.
2 changes: 1 addition & 1 deletion DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
Package: statConfR
Type: Package
Title: Models of Decision Confidence and Metacognition
Version: 0.1.2
Version: 0.1.1
Date: 2024-04-18
Authors@R: c(
person("Manuel", "Rausch", email="[email protected]", role = c("aut", "cre"),
Expand Down
2 changes: 1 addition & 1 deletion R/fitConf.R
Original file line number Diff line number Diff line change
Expand Up @@ -182,7 +182,7 @@
#' @references Rausch, M., & Zehetleitner, M. (2017). Should metacognition be measured by logistic regression? Consciousness and Cognition, 49, 291–312. doi: 10.1016/j.concog.2017.02.007
#' @references Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464. doi: 10.1214/aos/1176344136
#' @references Shekhar, M., & Rahnev, D. (2021). The Nature of Metacognitive Inefficiency in Perceptual Decision Making. Psychological Review, 128(1), 45–70. doi: 10.1037/rev0000249
#' @references Shekhar, M., & Rahnev, D. (2023). How Do Humans Give Confidence? A Comprehensive Comparison of Process Models of Perceptual Metacognition. Journal of Experimental Psychology: General. doi:10.1037/xge0001524
#' @references Shekhar, M., & Rahnev, D. (2023). How Do Humans Give Confidence? A Comprehensive Comparison of Process Models of Perceptual Metacognition. Journal of Experimental Psychology: General. doi:10.1037/xge0001524


#' @examples
Expand Down
2 changes: 1 addition & 1 deletion R/fitConfModels.R
Original file line number Diff line number Diff line change
Expand Up @@ -196,7 +196,7 @@
#' @references Rausch, M., & Zehetleitner, M. (2017). Should metacognition be measured by logistic regression? Consciousness and Cognition, 49, 291–312. doi: 10.1016/j.concog.2017.02.007
#' @references Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464. doi: 10.1214/aos/1176344136
#' @references Shekhar, M., & Rahnev, D. (2021). The Nature of Metacognitive Inefficiency in Perceptual Decision Making. Psychological Review, 128(1), 45–70. doi: 10.1037/rev0000249
#' @references Shekhar, M., & Rahnev, D. (2023). How Do Humans Give Confidence? A Comprehensive Comparison of Process Models of Perceptual Metacognition. Journal of Experimental Psychology: General. doi:10.1037/xge0001524
#' @references Shekhar, M., & Rahnev, D. (2023). How Do Humans Give Confidence? A Comprehensive Comparison of Process Models of Perceptual Metacognition. Journal of Experimental Psychology: General. doi:10.1037/xge0001524

#'
#' @examples
Expand Down
2 changes: 1 addition & 1 deletion R/fitMetaDprime.R
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,7 @@
#' @references Fleming, S. M. (2017). HMeta-d: Hierarchical Bayesian estimation of metacognitive efficiency from confidence ratings. Neuroscience of Consciousness, 1, 1–14. doi: 10.1093/nc/nix007
#' @references Maniscalco, B., & Lau, H. (2012). A signal detection theoretic method for estimating metacognitive sensitivity from confidence ratings. Consciousness and Cognition, 21(1), 422–430.
#' @references Maniscalco, B., & Lau, H. C. (2014). Signal Detection Theory Analysis of Type 1 and Type 2 Data: Meta-d’, Response- Specific Meta-d’, and the Unequal Variance SDT Model. In S. M. Fleming & C. D. Frith (Eds.), The Cognitive Neuroscience of Metacognition (pp. 25–66). Springer. doi: 10.1007/978-3-642-45190-4_3
#' @references Rausch, M., Hellmann, S., & Zehetleitner, M. (2023). Measures of metacognitive efficiency across cognitive models of decision confidence (Preprint). PsyArXiv. doi: 10.31234/osf.io/kdz34
#' @references Rausch, M., Hellmann, S., & Zehetleitner, M. (2023). Measures of metacognitive efficiency across cognitive models of decision confidence. Psychological Methods. doi: 10.31234/osf.io/kdz34
#'
#' @examples
#' # 1. Select two subject from the masked orientation discrimination experiment
Expand Down
6 changes: 4 additions & 2 deletions R/int_fitITG.R
Original file line number Diff line number Diff line change
Expand Up @@ -190,12 +190,14 @@ fitITGc <-
res$c <- as.vector(fit$par[nCond+nRatings])
res[,paste("theta_minus.",(nRatings-1):1, sep="")] <-
# c(as.vector(fit$par[nCond+nRatings-1] - rev(cumsum(c(exp(fit$par[(nCond+1):(nCond+nRatings-2)]))))), as.vector(fit$par[nCond+nRatings-1]))
exp(fit$par[nCond + nRatings*2]) * as.vector(fit$par[nCond+nRatings]) -
#exp(fit$par[nCond + nRatings*2]) *
as.vector(fit$par[nCond+nRatings]) -
rev( cumsum(c(exp(fit$par[(nCond+1):(nCond+nRatings-1)]))))

res[,paste("theta_plus.",1:(nRatings-1), sep="")] <-
# c(as.vector(fit$par[nCond+nRatings+1]), as.vector(fit$par[nCond+nRatings+1]) + as.vector(cumsum(c(exp(fit$par[(nCond+nRatings+2):(nCond + nRatings*2-1)])))))
exp(fit$par[nCond + nRatings*2]) * as.vector(fit$par[nCond+nRatings]) +
#exp(fit$par[nCond + nRatings*2]) *
as.vector(fit$par[nCond+nRatings]) +
cumsum(c(exp(fit$par[(nCond+nRatings+1):(nCond + nRatings*2-1)])))

res$m <- exp(fit$par[nCond + nRatings*2])
Expand Down
2 changes: 1 addition & 1 deletion man/fitConf.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

2 changes: 1 addition & 1 deletion man/fitConfModels.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

2 changes: 1 addition & 1 deletion man/fitMetaDprime.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

0 comments on commit aba2543

Please sign in to comment.