Skip to content

Commit

Permalink
refactor arithmetic power
Browse files Browse the repository at this point in the history
  • Loading branch information
mmatera committed Jul 21, 2023
1 parent ada4a4a commit 51a5821
Show file tree
Hide file tree
Showing 4 changed files with 235 additions and 84 deletions.
83 changes: 61 additions & 22 deletions mathics/builtin/arithfns/basic.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,8 @@
"""

import sympy

from mathics.builtin.arithmetic import _MPMathFunction, create_infix
from mathics.builtin.base import BinaryOperator, Builtin, PrefixOperator, SympyFunction
from mathics.core.atoms import (
Expand Down Expand Up @@ -38,7 +40,6 @@
Symbol,
SymbolDivide,
SymbolHoldForm,
SymbolNull,
SymbolPower,
SymbolTimes,
)
Expand All @@ -49,10 +50,17 @@
SymbolInfix,
SymbolLeft,
SymbolMinus,
SymbolOverflow,
SymbolPattern,
SymbolSequence,
)
from mathics.eval.arithmetic import eval_Plus, eval_Times
from mathics.eval.arithmetic import (
associate_powers,
eval_Exponential,
eval_Plus,
eval_Power_inexact,
eval_Power_number,
eval_Times,
)
from mathics.eval.nevaluator import eval_N
from mathics.eval.numerify import numerify

Expand Down Expand Up @@ -520,6 +528,8 @@ class Power(BinaryOperator, _MPMathFunction):
rules = {
"Power[]": "1",
"Power[x_]": "x",
"Power[I,-1]": "-I",
"Power[-1, 1/2]": "I",
}

summary_text = "exponentiate"
Expand All @@ -528,15 +538,15 @@ class Power(BinaryOperator, _MPMathFunction):
# Remember to up sympy doc link when this is corrected
sympy_name = "Pow"

def eval_exp(self, x, evaluation):
"Power[E, x]"
return eval_Exponential(x)

def eval_check(self, x, y, evaluation):
"Power[x_, y_]"

# Power uses _MPMathFunction but does some error checking first
if isinstance(x, Number) and x.is_zero:
if isinstance(y, Number):
y_err = y
else:
y_err = eval_N(y, evaluation)
# if x is zero
if x.is_zero:
y_err = y if isinstance(y, Number) else eval_N(y, evaluation)
if isinstance(y_err, Number):
py_y = y_err.round_to_float(permit_complex=True).real
if py_y > 0:
Expand All @@ -550,17 +560,47 @@ def eval_check(self, x, y, evaluation):
evaluation.message(
"Power", "infy", Expression(SymbolPower, x, y_err)
)
return SymbolComplexInfinity
if isinstance(x, Complex) and x.real.is_zero:
yhalf = Expression(SymbolTimes, y, RationalOneHalf)
factor = self.eval(Expression(SymbolSequence, x.imag, y), evaluation)
return Expression(
SymbolTimes, factor, Expression(SymbolPower, IntegerM1, yhalf)
)

result = self.eval(Expression(SymbolSequence, x, y), evaluation)
if result is None or result != SymbolNull:
return result
return SymbolComplexInfinity

# If x and y are inexact numbers, use the numerical function

if x.is_inexact() and y.is_inexact():
try:
return eval_Power_inexact(x, y)
except OverflowError:
evaluation.message("General", "ovfl")
return Expression(SymbolOverflow)

# Tries to associate powers a^b^c-> a^(b*c)
assoc = associate_powers(x, y)
if not assoc.has_form("Power", 2):
return assoc

assoc = numerify(assoc, evaluation)
x, y = assoc.elements
# If x and y are numbers
if isinstance(x, Number) and isinstance(y, Number):
try:
return eval_Power_number(x, y)
except OverflowError:
evaluation.message("General", "ovfl")
return Expression(SymbolOverflow)

# if x or y are inexact, leave the expression
# as it is:
if x.is_inexact() or y.is_inexact():
return assoc

# Finally, try to convert to sympy
base_sp, exp_sp = x.to_sympy(), y.to_sympy()
if base_sp is None or exp_sp is None:
# If base or exp can not be converted to sympy,
# returns the result of applying the associative
# rule.
return assoc

result = from_sympy(sympy.Pow(base_sp, exp_sp))
return result.evaluate_elements(evaluation)


class Sqrt(SympyFunction):
Expand Down Expand Up @@ -788,7 +828,6 @@ def inverse(item):
and isinstance(item.elements[1], (Integer, Rational, Real))
and item.elements[1].to_sympy() < 0
): # nopep8

negative.append(inverse(item))
elif isinstance(item, Rational):
numerator = item.numerator()
Expand Down
181 changes: 137 additions & 44 deletions mathics/eval/arithmetic.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,9 @@
# -*- coding: utf-8 -*-

"""
arithmetic-related evaluation functions.
helper functions for arithmetic evaluation, which do not
depends on the evaluation context. Conversions to Sympy are
used just as a last resource.
Many of these do do depend on the evaluation context. Conversions to Sympy are
used just as a last resource.
Expand Down Expand Up @@ -319,48 +321,27 @@ def eval_complex_sign(n: BaseElement) -> Optional[BaseElement]:
sign = eval_RealSign(expr)
return sign or eval_complex_sign(expr)

if expr.has_form("Power", 2):
base, exp = expr.elements
if exp.is_zero:
return Integer1
if isinstance(exp, (Integer, Real, Rational)):
sign = eval_Sign(base) or Expression(SymbolSign, base)
return Expression(SymbolPower, sign, exp)
if isinstance(exp, Complex):
sign = eval_Sign(base) or Expression(SymbolSign, base)
return Expression(SymbolPower, sign, exp.real)
if test_arithmetic_expr(exp):
sign = eval_Sign(base) or Expression(SymbolSign, base)
return Expression(SymbolPower, sign, exp)
return None
if expr.get_head() is SymbolTimes:
abs_value = eval_Abs(eval_multiply_numbers(*expr.elements))
if abs_value is Integer1:
return expr
if abs_value is None:
return None
criteria = eval_add_numbers(abs_value, IntegerM1)
if test_zero_arithmetic_expr(criteria, numeric=True):
return expr
return None
if expr.get_head() is SymbolPlus:
abs_value = eval_Abs(eval_add_numbers(*expr.elements))
if abs_value is Integer1:
return expr
if abs_value is None:
return None
criteria = eval_add_numbers(abs_value, IntegerM1)
if test_zero_arithmetic_expr(criteria, numeric=True):
return expr
return None

if test_arithmetic_expr(expr):
if test_zero_arithmetic_expr(expr):
return Integer0
if test_positive_arithmetic_expr(expr):
return Integer1
if test_negative_arithmetic_expr(expr):
return IntegerM1
def eval_Sign_number(n: Number) -> Number:
"""
Evals the absolute value of a number.
"""
if n.is_zero:
return Integer0
if isinstance(n, (Integer, Rational, Real)):
return Integer1 if n.value > 0 else IntegerM1
if isinstance(n, Complex):
abs_sq = eval_add_numbers(
*(eval_multiply_numbers(x, x) for x in (n.real, n.imag))
)
criteria = eval_add_numbers(abs_sq, IntegerM1)
if test_zero_arithmetic_expr(criteria):
return n
if n.is_inexact():
return eval_multiply_numbers(n, eval_Power_number(abs_sq, RealM0p5))
if test_zero_arithmetic_expr(criteria, numeric=True):
return n
return eval_multiply_numbers(n, eval_Power_number(abs_sq, RationalMOneHalf))


def eval_mpmath_function(
Expand Down Expand Up @@ -390,6 +371,31 @@ def eval_mpmath_function(
return call_mpmath(mpmath_function, tuple(mpmath_args), prec)


def eval_Exponential(exp: BaseElement) -> BaseElement:
"""
Eval E^exp
"""
# If both base and exponent are exact quantities,
# use sympy.

if not exp.is_inexact():
exp_sp = exp.to_sympy()
if exp_sp is None:
return None
return from_sympy(sympy.Exp(exp_sp))

prec = exp.get_precision()
if prec is not None:
if exp.is_machine_precision():
number = mpmath.exp(exp.to_mpmath())
result = from_mpmath(number)
return result
else:
with mpmath.workprec(prec):
number = mpmath.exp(exp.to_mpmath())
return from_mpmath(number, prec)


def eval_Plus(*items: BaseElement) -> BaseElement:
"evaluate Plus for general elements"
numbers, items_tuple = segregate_numbers_from_sorted_list(*items)
Expand Down Expand Up @@ -457,6 +463,13 @@ def append_last():
elements_properties=ElementsProperties(False, False, True),
)

elements.sort()
return Expression(
SymbolPlus,
*elements,
elements_properties=ElementsProperties(False, False, True),
)


def eval_Power_number(base: Number, exp: Number) -> Optional[Number]:
"""
Expand Down Expand Up @@ -688,8 +701,88 @@ def eval_Times(*items: BaseElement) -> BaseElement:
)


# Here I used the convention of calling eval_* to functions that can produce a new expression, or None
# if the result can not be evaluated, or is trivial. For example, if we call eval_Power_number(Integer2, RationalOneHalf)
# it returns ``None`` instead of ``Expression(SymbolPower, Integer2, RationalOneHalf)``.
# The reason is that these functions are written to be part of replacement rules, to be applied during the evaluation process.
# In that process, a rule is considered applied if produces an expression that is different from the original one, or
# if the replacement function returns (Python's) ``None``.
#
# For example, when the expression ``Power[4, 1/2]`` is evaluated, a (Builtin) rule ``Power[base_, exp_]->eval_repl_rule(base, expr)``
# is applied. If the rule matches, `repl_rule` is called with arguments ``(4, 1/2)`` and produces `2`. As `Integer2.sameQ(Power[4, 1/2])`
# is False, then no new rules for `Power` are checked, and a new round of evaluation is atempted.
#
# On the other hand, if ``Power[3, 1/2]``, ``repl_rule`` can do two possible things: one is return ``Power[3, 1/2]``. If it does,
# the rule is considered applied. Then, the evaluation method checks if `Power[3, 1/2].sameQ(Power[3, 1/2])`. In this case it is true,
# and then the expression is kept as it is.
# The other possibility is to return (Python's) `None`. In that case, the evaluator considers that the rule failed to be applied,
# and look for another rule associated to ``Power``. To return ``None`` produces then a faster evaluation, since no ``sameQ`` call is needed,
# and do not prevent that other rules are attempted.
#
# The bad part of using ``None`` as a return is that I would expect that ``eval`` produces always a valid Expression, so if at some point of
# the code I call ``eval_Power_number(Integer3, RationalOneHalf)`` I get ``Expression(SymbolPower, Integer3, RationalOneHalf)``.
#
# From my point of view, it would make more sense to use the following convention:
# * if the method has signature ``eval_method(...)->BaseElement:`` then use the prefix ``eval_``
# * if the method has the siguature ``apply_method(...)->Optional[BaseElement]`` use the prefix ``apply_`` or maybe ``repl_``.
#
# In any case, let's keep the current convention.
#
#


def associate_powers(expr: BaseElement, power: BaseElement = Integer1) -> BaseElement:
"""
base^a^b^c^...^power -> base^(a*b*c*...power)
provided one of the following cases
* `a`, `b`, ... `power` are all integer numbers
* `a`, `b`,... are Rational/Real number with absolute value <=1,
and the other powers are not integer numbers.
* `a` is not a Rational/Real number, and b, c, ... power are all
integer numbers.
"""
powers = []
base = expr
if power is not Integer1:
powers.append(power)

while base.has_form("Power", 2):
previous_base, outer_power = base, power
base, power = base.elements
if len(powers) == 0:
if power is not Integer1:
powers.append(power)
continue
if power is IntegerM1:
powers.append(power)
continue
if isinstance(power, (Rational, Real)):
if abs(power.value) < 1:
powers.append(power)
continue
# power is not rational/real and outer_power is integer,
elif isinstance(outer_power, Integer):
if power is not Integer1:
powers.append(power)
if isinstance(power, Integer):
continue
else:
break
# in any other case, use the previous base and
# exit the loop
base = previous_base
break

if len(powers) == 0:
return base
elif len(powers) == 1:
return Expression(SymbolPower, base, powers[0])
result = Expression(SymbolPower, base, Expression(SymbolTimes, *powers))
return result


def eval_add_numbers(
*numbers: Number,
*numbers: List[Number],
) -> BaseElement:
"""
Add the elements in ``numbers``.
Expand Down Expand Up @@ -736,7 +829,7 @@ def eval_inverse_number(n: Number) -> Number:
return eval_Power_number(n, IntegerM1)


def eval_multiply_numbers(*numbers: Number) -> Number:
def eval_multiply_numbers(*numbers: Number) -> BaseElement:
"""
Multiply the elements in ``numbers``.
"""
Expand Down
12 changes: 6 additions & 6 deletions test/builtin/arithmetic/test_basic.py
Original file line number Diff line number Diff line change
Expand Up @@ -153,8 +153,8 @@ def test_multiply(str_expr, str_expected, msg):
("a b DirectedInfinity[q]", "a b (q Infinity)", ""),
# Failing tests
# Problem with formatting. Parenthezise are missing...
# ("a b DirectedInfinity[-I]", "a b (-I Infinity)", ""),
# ("a b DirectedInfinity[-3]", "a b (-Infinity)", ""),
("a b DirectedInfinity[-I]", "a b (-I Infinity)", ""),
("a b DirectedInfinity[-3]", "a b (-Infinity)", ""),
],
)
def test_directed_infinity_precedence(str_expr, str_expected, msg):
Expand Down Expand Up @@ -197,7 +197,7 @@ def test_directed_infinity_precedence(str_expr, str_expected, msg):
("I^(2/3)", "(-1) ^ (1 / 3)", None),
# In WMA, the next test would return ``-(-I)^(2/3)``
# which is less compact and elegant...
# ("(-I)^(2/3)", "(-1) ^ (-1 / 3)", None),
("(-I)^(2/3)", "(-1) ^ (-1 / 3)", None),
("(2+3I)^3", "-46 + 9 I", None),
("(1.+3. I)^.6", "1.46069 + 1.35921 I", None),
("3^(1+2 I)", "3 ^ (1 + 2 I)", None),
Expand All @@ -208,15 +208,15 @@ def test_directed_infinity_precedence(str_expr, str_expected, msg):
# sympy, which produces the result
("(3/Pi)^(-I)", "(3 / Pi) ^ (-I)", None),
# Association rules
# ('(a^"w")^2', 'a^(2 "w")', "Integer power of a power with string exponent"),
('(a^"w")^2', 'a^(2 "w")', "Integer power of a power with string exponent"),
('(a^2)^"w"', '(a ^ 2) ^ "w"', None),
('(a^2)^"w"', '(a ^ 2) ^ "w"', None),
("(a^2)^(1/2)", "Sqrt[a ^ 2]", None),
("(a^(1/2))^2", "a", None),
("(a^(1/2))^2", "a", None),
("(a^(3/2))^3.", "(a ^ (3 / 2)) ^ 3.", None),
# ("(a^(1/2))^3.", "a ^ 1.5", "Power associativity rational, real"),
# ("(a^(.3))^3.", "a ^ 0.9", "Power associativity for real powers"),
("(a^(1/2))^3.", "a ^ 1.5", "Power associativity rational, real"),
("(a^(.3))^3.", "a ^ 0.9", "Power associativity for real powers"),
("(a^(1.3))^3.", "(a ^ 1.3) ^ 3.", None),
# Exponentials involving expressions
("(a^(p-2 q))^3", "a ^ (3 p - 6 q)", None),
Expand Down
Loading

0 comments on commit 51a5821

Please sign in to comment.