Here's all the code and examples from the second edition of my book Data Science from Scratch. They require at least Python 3.6.
(If you're looking for the code and examples from the first edition, that's in the first-edition
folder.)
If you want to use the code, you should be able to clone the repo and just do things like
In [1]: from scratch.linear_algebra import dot
In [2]: dot([1, 2, 3], [4, 5, 6])
Out[2]: 32
and so on and so forth.
- Introduction
- A Crash Course in Python
- Visualizing Data
- Linear Algebra
- Statistics
- Probability
- Hypothesis and Inference
- Gradient Descent
- Getting Data
- Working With Data
- Machine Learning
- k-Nearest Neighbors
- Naive Bayes
- Simple Linear Regression
- Multiple Regression
- Logistic Regression
- Decision Trees
- Neural Networks
- [Deep Learning]
- Clustering
- Natural Language Processing
- Network Analysis
- Recommender Systems
- Databases and SQL
- MapReduce
- Data Ethics
- Go Forth And Do Data Science