-
Notifications
You must be signed in to change notification settings - Fork 0
/
README.txt
24 lines (22 loc) · 1.24 KB
/
README.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
###########################################################################
## Files included in Term Project -Drug-Disease Prediction and its Feature Selection:
## Mayank Murali (mqm6516)
##
## 1) references -> Reference pdfs used for the project.
## 2) screenshots -> Screenshots obtained and used in report.
## 3) combine_disease-drug_testdata.xlsx -> Dataset break (80:20 split)
## 4) rand_combine_disease-drug_trainData1000.xlsx -> Original dataset.
## 5) mqm6516_Final_Report.pdf -> Final report.
## 6)Drug-Disease Prediction and its Feature Selection.ipynb -> Python notebook.
##
###########################################################################
## Procedure:
##
## 1) Run the Drug-Disease Prediction and its Feature Selection.ipynb using Anaconda or
## any other source on the browser.
## 2) Make sure the datasets (combine_disease-drug_testdata.xlsx and rand_combine_disease-drug_trainData1000.xlsx)
## 3) Uncomment in the code for training and testing for 70:30 and 80:20 data split.
## 4) All the results are saved as .png and .xlsx in the same directory.
##
##
## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##