-
Code Workflow :
─ Code
── lstm_attention.py _ About_news_dataset.py(EDA) _ generating_news.py - llama_news_generation.py - Llama_streamlit_news_generation_app.py - news_dataset_cleaning.py
-
LSTM + attention Implementation and Llama + aws bedrock:
-
Lstm_Attention.py: Code to handle data loading and initial preprocessing, Robust error handling for CSV readingCleans and filters text. Training and evaluation the LSTM model with Attention.
-
generating_loading_lstm_news_model.py: Code to load the model.pt file and the generate news.
-
About_news_dataset.py: code to load , check description and dataset information
-
llama_news_generation.py : code for generating news article using llama + aws bedrock + prompt engineering
-
Llama_streamlit_news_generation_app.py : streamlit code for news generating article
-
news_dataset_cleaning.py : this code is used for cleaning, preprocessing, handling error and filtering text , the output dataset is use as input for Llama Implementataion
-
-
Setup and Implementation Guide for News Generation System Using Llma and AWS Bedrock
- connect to ec2 instance - setup aws config file - Add AWS credentials to config.ini - create a .env and activate the .env file - install requirement.txt file Package on .env - Run the first Code- # Run the code - python llama_news_generation.py
. Streamlit Implementation (Local Machine)
- Environment Setup: - Create virtual environment locally- python -m venv myenv : source myenv/bin/activate - download requirements.txt - Install requirements pip install -r requirements.txt - # Add: streamlit==1.24.0 pandas boto3 python-dotenv configparser - Configuration Setup: make sure you Create config directory : aws .cong file - Run the app; streamlit run Llama_streamlit_news_generation_app.py
-
Notifications
You must be signed in to change notification settings - Fork 0
Modupeolawuraola/News_Article_Generation_Using_LSTM-Attention-Llama-AWS-Bedrock
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
About
Natural Language Processing Individual Project Contributions
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published