Skip to content

MohammadKhalid/Yolact_Yolov5_DeepSort_Pytorch

Repository files navigation

Yolov5 + Deep Sort with PyTorch


CI CPU testing
Open In Colab

Introduction

This repository contains a two-stage-tracker. The detections generated by YOLOv5, a family of object detection architectures and models pretrained on the COCO dataset, are passed to a Deep Sort algorithm which tracks the objects. It can track any object that your Yolov5 model was trained to detect.

Tutorials

Before you run the tracker

  1. Clone the repository recursively:

git clone --recurse-submodules https://pc-4501.kl.dfki.de/mkhalid/yolact_yolov5_deepsort_pytorch.git

If you already cloned and forgot to use --recurse-submodules you can run git submodule update --init

  1. Please run:

pip install -r requirements.txt

  1. Go to /yolact_vizta and run:

pip install -r requirements.txt

Tracking sources

Tracking can be run on most video formats

$ python track.py --source 0  # webcam
                           img.jpg  # image
                           vid.mp4  # video
                           path/  # directory
                           path/*.jpg  # glob
                           'https://youtu.be/Zgi9g1ksQHc'  # YouTube
                           'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream

Select a Yolov5 family model

There is a clear trade-off between model inference speed and accuracy. In order to make it possible to fulfill your inference speed/accuracy needs you can select a Yolov5 family model for automatic download

$ python track.py --source 0 --yolo_weights yolov5n.pt --img 640
                                            yolov5s.pt
                                            yolov5m.pt
                                            yolov5l.pt 
                                            yolov5x.pt --img 1280

Filter tracked classes

By default the tracker tracks all MS COCO classes.

If you only want to track persons I recommend you to get these weights for increased performance

python3 track.py --source 0 --yolo_weights yolov5/weights/crowdhuman_yolov5m.pt --classes 0  # tracks persons, only

If you want to track a subset of the MS COCO classes, add their corresponding index after the classes flag

python3 track.py --source 0 --yolo_weights yolov5s.pt --classes 16 17  # tracks cats and dogs, only

Here is a list of all the possible objects that a Yolov5 model trained on MS COCO can detect. Notice that the indexing for the classes in this repo starts at zero.

MOT compliant results

Can be saved to inference/output by

python3 track.py --source ... --save-txt

Train Yolov5

  1. Watch tutorial Yolov5 training on Custom Data (link to external repository) 

  2. Add .yaml file in /yolov5/data (check existing files for reference)

  3. /yolov5/restructure_data.py can be used to convert dataset from COCO format to YOLO format.

  4. This command can be used for training: python train.py --img 512 --batch 16 --epochs 20 --data ir_data_2021_11_04.yaml --weights weights/crowdhuman_yolov5m.pt

Perform evaluation

  1. Watch tutorial Yolov5 deep_sort pytorch evaluation 

  2. Install motmetrics: pip install motmetrics

  3. Convert data into the following format: dataset/seq01, dataset/seq02 ...

  4. Use helper_functions.py to create ground truth txt files in the following format: groundtruth/seq01/gt/gt.txt, groundtruth/seq02/gt/gt.txt ...

  5. Run tracker on each sequence and generate txt files for each sequence.

python3 track.py --source ... --save-txt
  1. Evaluate results by using the following command:
python3 -m motmetrics.apps.eval_motchallenge /path/to/gtfolder /path/to/tracking/results

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published