Skip to content

Comprehensive AWS AI project for Great AI Hackathon Malaysia 2025. Features SageMaker endpoint deployment, Amazon Bedrock model integration, and multi-model comparison tools for educational purposes.

Notifications You must be signed in to change notification settings

MyGovHub-Goodbye-World/deploy-sagemaker-endpoints

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🚀 AWS Academy - Goodbye World Final Project

Deploy SageMaker Endpoints & Bedrock Runtime Exploration

A comprehensive project for the Great AI Hackathon Malaysia 2025, demonstrating AWS SageMaker endpoint deployment and Amazon Bedrock model integration.

© 2025 Goodbye World team, for Great AI Hackathon Malaysia 2025 usage.


📁 Project Structure

🤖 sagemaker/

SageMaker Model Deployment & Notebooks

  • Jupyter notebooks for deploying and working with Hugging Face models
  • genai-llm.ipynb - Generative AI Large Language Model experiments
  • qna-llm.ipynb - Question & Answer system using LLM models
  • Demonstrates deployment of models like meta.llama3-8b-instruct-v1:0 and distilbert-base-uncased-distilled-squad for text generation and embeddings

🧠 bedrock/

Amazon Bedrock Foundation Models

  • Core Bedrock service integration and setup utilities
  • bedrock_wrapper.py - Wrapper class for Bedrock operations
  • bedrock_studio_bootstrapper.py - Automated setup for Bedrock Studio environments
  • hello_bedrock.py - Basic Bedrock API introduction
  • Foundation model management and configuration tools

bedrock-runtime/

Bedrock Runtime API Examples & Model Comparison

  • Extensive collection of model-specific runtime examples
  • Supported Models:
    • 🔥 Amazon Nova (Text, Canvas, Reel)
    • 🏛️ Amazon Titan (Text, Image, Embeddings)
    • 🧬 Anthropic Claude (Various versions)
    • 🎯 Cohere Command (R & Standard)
    • 🦙 Meta LLaMA (3.1 variants)
    • 🌪️ Mistral AI
    • 🎨 Stability AI (Image generation)

Special Features:

  • 📊 comparison/ - Model comparison tools for testing different AI models with the same prompts
  • 🔄 cross-model-scenarios/ - Advanced scenarios like tool use demonstrations
  • 🧪 test/ - Comprehensive test suite for all model integrations

🛠️ Key Features

🎯 Model Comparison System

Located in bedrock-runtime/comparison/, this system allows you to:

  • Compare responses from multiple AI models using identical prompts
  • Measure performance and response times
  • Export results in various formats
  • Interactive and command-line interfaces available

📚 Comprehensive Examples

  • Hello World programs for each AI service
  • Streaming responses for real-time applications
  • Document understanding capabilities
  • Image generation workflows
  • Cross-model tool usage scenarios

🧪 Testing Infrastructure

  • Automated integration tests for all models
  • pytest-based testing framework
  • Performance benchmarking tools
  • Error handling and validation

🚀 Quick Start

Prerequisites

# Install Python dependencies
pip install -r bedrock/requirements.txt
pip install -r bedrock-runtime/requirements.txt

# Configure AWS credentials
aws configure

Basic Usage

1. Explore Bedrock Models:

cd bedrock-runtime
python hello/hello_bedrock_runtime_converse.py

2. Compare AI Models:

cd bedrock-runtime/comparison
python quick_compare.py

3. SageMaker Experiments:

cd sagemaker
# Open genai-llm.ipynb in Jupyter
jupyter lab genai-llm.ipynb

📖 Documentation

Each folder contains detailed README files with specific instructions:

  • bedrock-runtime/comparison/README.md - Model comparison tools
  • bedrock-runtime/cross-model-scenarios/tool_use_demo/README.md - Advanced scenarios
  • Individual model folders contain usage examples and API documentation

About

Comprehensive AWS AI project for Great AI Hackathon Malaysia 2025. Features SageMaker endpoint deployment, Amazon Bedrock model integration, and multi-model comparison tools for educational purposes.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published