-
Notifications
You must be signed in to change notification settings - Fork 1.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
309 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -30,4 +30,5 @@ cutlass_test_unit_add_executable( | |
cutlass_test_unit_util | ||
tensor_reduce.cu | ||
cutlass_test_levels.cu | ||
rms_norm.cu | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,123 @@ | ||
/*************************************************************************************************** | ||
* Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | ||
* SPDX-License-Identifier: BSD-3-Clause | ||
* | ||
* Redistribution and use in source and binary forms, with or without | ||
* modification, are permitted provided that the following conditions are met: | ||
* | ||
* 1. Redistributions of source code must retain the above copyright notice, this | ||
* list of conditions and the following disclaimer. | ||
* | ||
* 2. Redistributions in binary form must reproduce the above copyright notice, | ||
* this list of conditions and the following disclaimer in the documentation | ||
* and/or other materials provided with the distribution. | ||
* | ||
* 3. Neither the name of the copyright holder nor the names of its | ||
* contributors may be used to endorse or promote products derived from | ||
* this software without specific prior written permission. | ||
* | ||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | ||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | ||
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE | ||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR | ||
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER | ||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, | ||
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | ||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
* | ||
**************************************************************************************************/ | ||
#include "../common/cutlass_unit_test.h" | ||
|
||
#include "cutlass/util/device_rmsnorm.h" | ||
#include "cutlass/util/host_tensor.h" | ||
#include "cutlass/constants.h" | ||
#include "cutlass/util/reference/host/tensor_copy.h" | ||
#include "cutlass/util/reference/host/tensor_fill.h" | ||
#include "cutlass/util/reference/host/tensor_compare.h" | ||
|
||
using ElementType = cutlass::half_t; | ||
using Layout = cutlass::layout::RowMajor; | ||
|
||
void rmsnorm_host(cutlass::MatrixCoord tensor_size, | ||
cutlass::TensorRef<ElementType, Layout> output, | ||
cutlass::TensorRef<ElementType, Layout> input, | ||
cutlass::TensorRef<ElementType, Layout> weight) { | ||
const int M = tensor_size.row(); | ||
const int N = tensor_size.column(); | ||
|
||
for (int m = 0; m < M; ++m) { | ||
float square_sum{0}; | ||
|
||
for (int n = 0; n < N; ++n) { | ||
float inp = static_cast<float>(input.at({m, n})); | ||
square_sum += inp * inp; | ||
} | ||
|
||
float sq_mean = square_sum / (float)N; | ||
float sqrt_var = cutlass::fast_sqrt(sq_mean + (float)1e-6); | ||
|
||
for (int n = 0; n < N; ++n) { | ||
float inp = static_cast<float>(input.at({m, n})); | ||
float g = static_cast<float>(weight.at({0, n})); | ||
float res_fp32 = inp / sqrt_var * g; | ||
output.at({m, n}) = ElementType(res_fp32); | ||
} | ||
} | ||
} | ||
|
||
void run_test(int M, int N) { | ||
cutlass::HostTensor<ElementType, Layout> input, output_ref, output, weight; | ||
input.reset({M, N}); | ||
output.reset({M, N}); | ||
output_ref.reset({M, N}); | ||
weight.reset({1, N}); | ||
|
||
const unsigned seed = 2022; | ||
|
||
cutlass::reference::host::TensorFillRandomUniform(input.host_view(), | ||
seed, | ||
ElementType(5), | ||
ElementType(-5), | ||
0); | ||
|
||
cutlass::reference::host::TensorFillRandomUniform(weight.host_view(), | ||
seed, | ||
ElementType(5), | ||
ElementType(-5), | ||
0); | ||
|
||
input.sync_device(); | ||
weight.sync_device(); | ||
|
||
rmsnorm_host({M, N}, output_ref.host_ref(), input.host_ref(), weight.host_ref()); | ||
cutlass::rmsnorm({M, N}, output.device_ref(), | ||
input.device_ref(), weight.device_ref(), NULL); | ||
|
||
output.sync_host(); | ||
|
||
float max_abs_diff = -1; | ||
float mean_abs_diff = 0; | ||
for (int m = 0; m < M; ++m) { | ||
for (int n = 0; n < N; ++n) { | ||
auto diff = abs(static_cast<float>(output_ref.at({m, n}) - output.at({m, n}))); | ||
mean_abs_diff += diff; | ||
max_abs_diff = max(max_abs_diff, diff); | ||
} | ||
} | ||
|
||
mean_abs_diff /= float(M * N); | ||
|
||
EXPECT_TRUE(max_abs_diff < 0.001f && mean_abs_diff < 0.001f) | ||
<< "Max absolute difference : " << max_abs_diff << "\n" | ||
<< "Mean absolute difference: " << mean_abs_diff; | ||
} | ||
|
||
TEST(RMSNorm, 16x1024) { | ||
run_test(16, 1024); | ||
} | ||
|
||
TEST(RMSNorm, 1x127) { | ||
run_test(1, 127); | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,185 @@ | ||
/****************************************************************************** | ||
* Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | ||
* SPDX-License-Identifier: BSD-3-Clause | ||
* | ||
* Redistribution and use in source and binary forms, with or without | ||
* modification, are permitted provided that the following conditions are met: | ||
* | ||
* 1. Redistributions of source code must retain the above copyright notice, this | ||
* list of conditions and the following disclaimer. | ||
* | ||
* 2. Redistributions in binary form must reproduce the above copyright notice, | ||
* this list of conditions and the following disclaimer in the documentation | ||
* and/or other materials provided with the distribution. | ||
* | ||
* 3. Neither the name of the copyright holder nor the names of its | ||
* contributors may be used to endorse or promote products derived from | ||
* this software without specific prior written permission. | ||
* | ||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | ||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | ||
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE | ||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR | ||
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER | ||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, | ||
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | ||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
* | ||
******************************************************************************/ | ||
|
||
#pragma once | ||
|
||
#include "cutlass/cutlass.h" | ||
#include "cutlass/layout/tensor.h" | ||
#include "cutlass/numeric_types.h" | ||
#include "cutlass/tensor_coord.h" | ||
#include "cutlass/tensor_ref.h" | ||
#include "cutlass/util/device_utils.h" | ||
#include <float.h> | ||
|
||
namespace cutlass { | ||
|
||
__global__ void rmsnorm_twoPassAlgo_e8(float4 *output, const float4 *input, | ||
const float4 *weight, | ||
const int m, const int n) { | ||
const int m_idx = blockIdx.x; | ||
const int tid = threadIdx.x; | ||
const int bdimx = blockDim.x; | ||
__shared__ float s_mean; | ||
float local_sums[1] = {0.0f}; | ||
const int n_8 = n / 8; | ||
int offset = m_idx * n_8; | ||
input += offset; | ||
output += offset; | ||
|
||
for (int index = tid; index < n_8; index += bdimx) { | ||
const float4 local_val = input[index]; | ||
const half2 *h1 = (half2 *)&local_val.x; | ||
const half2 *h2 = (half2 *)&local_val.y; | ||
const half2 *h3 = (half2 *)&local_val.z; | ||
const half2 *h4 = (half2 *)&local_val.w; | ||
local_sums[0] += static_cast<float>(h1->x) * static_cast<float>(h1->x) + | ||
static_cast<float>(h1->y) * static_cast<float>(h1->y) + | ||
static_cast<float>(h2->x) * static_cast<float>(h2->x) + | ||
static_cast<float>(h2->y) * static_cast<float>(h2->y) + | ||
static_cast<float>(h3->x) * static_cast<float>(h3->x) + | ||
static_cast<float>(h3->y) * static_cast<float>(h3->y) + | ||
static_cast<float>(h4->x) * static_cast<float>(h4->x) + | ||
static_cast<float>(h4->y) * static_cast<float>(h4->y); | ||
} | ||
|
||
if (blockDim.x <= 32) { | ||
warpReduceSum<float, 1>(local_sums); | ||
} else { | ||
blockReduceSum<float, 1>(local_sums); | ||
} | ||
if (threadIdx.x == 0) { | ||
s_mean = rsqrtf(local_sums[0] / n + 1e-6); | ||
} | ||
__syncthreads(); | ||
|
||
for (int index = tid; index < n_8; index += bdimx) { | ||
const float4 local_val = input[index]; | ||
const float4 weight_val = weight[index]; | ||
|
||
const half2 *l1 = (half2 *)&local_val.x; | ||
const half2 *l2 = (half2 *)&local_val.y; | ||
const half2 *l3 = (half2 *)&local_val.z; | ||
const half2 *l4 = (half2 *)&local_val.w; | ||
|
||
const half2 *g1 = (half2 *)&weight_val.x; | ||
const half2 *g2 = (half2 *)&weight_val.y; | ||
const half2 *g3 = (half2 *)&weight_val.z; | ||
const half2 *g4 = (half2 *)&weight_val.w; | ||
|
||
float4 tmp; | ||
half2 *h1 = (half2 *)&tmp.x; | ||
half2 *h2 = (half2 *)&tmp.y; | ||
half2 *h3 = (half2 *)&tmp.z; | ||
half4 *h4 = (half4 *)&tmp.w; | ||
|
||
h1->x = half(static_cast<float>(l1->x) * s_mean * static_cast<float>(g1->x)); | ||
h1->y = half(static_cast<float>(l1->y) * s_mean * static_cast<float>(g1->y)); | ||
h2->x = half(static_cast<float>(l2->x) * s_mean * static_cast<float>(g2->x)); | ||
h2->y = half(static_cast<float>(l2->y) * s_mean * static_cast<float>(g2->y)); | ||
h3->x = half(static_cast<float>(l3->x) * s_mean * static_cast<float>(g3->x)); | ||
h3->y = half(static_cast<float>(l3->y) * s_mean * static_cast<float>(g3->y)); | ||
h4->x = half(static_cast<float>(l4->x) * s_mean * static_cast<float>(g4->x)); | ||
h4->y = half(static_cast<float>(l4->y) * s_mean * static_cast<float>(g4->y)); | ||
|
||
output[index] = tmp; | ||
} | ||
} | ||
|
||
template<typename T> | ||
__global__ void rmsnorm_twoPassAlgo_e1(T* output, | ||
const T* input, | ||
const T* weight, | ||
const int m, const int n) | ||
{ | ||
const int m_idx = blockIdx.x; | ||
const int tid = threadIdx.x; | ||
const int bdimx = blockDim.x; | ||
__shared__ float s_mean; | ||
float local_sums[1] = {0.0f}; | ||
int offset = m_idx * n; | ||
input += offset; | ||
output += offset; | ||
|
||
for (int index = tid ; index < n ; index += bdimx){ | ||
float local_val = static_cast<float>(input[index]); | ||
local_sums[0] += local_val * local_val; | ||
} | ||
if (blockDim.x <= 32) { | ||
warpReduceSum<float, 1>(local_sums); | ||
} | ||
else { | ||
blockReduceSum<float, 1>(local_sums); | ||
} | ||
if (threadIdx.x == 0) { | ||
s_mean = rsqrtf(local_sums[0] / n + 1e-6); | ||
} | ||
__syncthreads(); | ||
|
||
for (int index = tid ; index < n ; index += bdimx){ | ||
const T weight_val = weight[index]; | ||
const T local_val = input[index]; | ||
output[index] = T(static_cast<float>(local_val) * s_mean * static_cast<float>(weight_val)); | ||
} | ||
} | ||
|
||
template <typename T> | ||
void rmsnorm(cutlass::MatrixCoord tensor_size, | ||
TensorRef<T, layout::RowMajor> ref_output, | ||
TensorRef<T, layout::RowMajor> ref_input, | ||
TensorRef<T, layout::RowMajor> ref_weight, | ||
cudaStream_t stream){ | ||
const int m = tensor_size.row(); | ||
const int n = tensor_size.column(); | ||
T* output = ref_output.data(); | ||
const T* input = ref_input.data(); | ||
const T* weight = ref_weight.data(); | ||
dim3 grid(m); | ||
|
||
if (n % 8 == 0 && std::is_same<T, cutlass::half_t>::value) { | ||
dim3 block(min(1024, (n / 8 + 31) / 32 * 32)); | ||
|
||
rmsnorm_twoPassAlgo_e8<<<grid, block, 0, stream>>>( | ||
(float4 *)output, (const float4 *)input, (const float4 *)weight, m, n); | ||
} else { | ||
dim3 block(min(1024, ((n + 31)/32 + 31)/32*32)); | ||
|
||
rmsnorm_twoPassAlgo_e1<<<grid, block, 0, stream>>>( | ||
output, input, weight, m, n); | ||
} | ||
|
||
auto result = cudaGetLastError(); | ||
if (result != cudaSuccess) { | ||
std::cerr << "CUDA error: " << cudaGetErrorString(result) << std::endl; | ||
abort(); | ||
} | ||
} | ||
|
||
} // namespace cutlass |