The goal of dataSciencePack is to provide a collection of helper functions in Data Science
This package is not yet available on CRAN.
And the development version from GitHub with:
# install.packages("devtools")
devtools::install_github("NanisTe/dataSciencePack")
This is a basic example which shows you how to solve a common problem:
library(dataSciencePack)
#> Loading required package: lubridate
#>
#> Attaching package: 'lubridate'
#> The following object is masked from 'package:base':
#>
#> date
#> Loading required package: xts
#> Loading required package: zoo
#>
#> Attaching package: 'zoo'
#> The following objects are masked from 'package:base':
#>
#> as.Date, as.Date.numeric
#> Registered S3 method overwritten by 'xts':
#> method from
#> as.zoo.xts zoo
#> Loading required package: dplyr
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:xts':
#>
#> first, last
#> The following objects are masked from 'package:lubridate':
#>
#> intersect, setdiff, union
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
## basic example code
What is special about using README.Rmd
instead of just README.md
?
You can include R chunks like so:
summary(cars)
#> speed dist
#> Min. : 4.0 Min. : 2.00
#> 1st Qu.:12.0 1st Qu.: 26.00
#> Median :15.0 Median : 36.00
#> Mean :15.4 Mean : 42.98
#> 3rd Qu.:19.0 3rd Qu.: 56.00
#> Max. :25.0 Max. :120.00
You’ll still need to render README.Rmd
regularly, to keep README.md
up-to-date.
You can also embed plots, for example:
In that case, don’t forget to commit and push the resulting figure files, so they display on GitHub!