Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Squash of adding initial autotuning to the stage skew analyzer #2

Merged
merged 1 commit into from
May 9, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion src/main/scala/com/qubole/sparklens/QuboleJobListener.scala
Original file line number Diff line number Diff line change
Expand Up @@ -223,8 +223,9 @@ class QuboleJobListener(sparkConf: SparkConf) extends SparkListener {

override def onStageSubmitted(stageSubmitted: SparkListenerStageSubmitted): Unit = {
if (!stageMap.get(stageSubmitted.stageInfo.stageId).isDefined) {
val isSql = stageSubmitted.stageInfo.details.contains("org.apache.spark.sql")
val stageTimeSpan = new StageTimeSpan(stageSubmitted.stageInfo.stageId,
stageSubmitted.stageInfo.numTasks)
stageSubmitted.stageInfo.numTasks, isSql)
stageTimeSpan.setParentStageIDs(stageSubmitted.stageInfo.parentIds)
if (stageSubmitted.stageInfo.submissionTime.isDefined) {
stageTimeSpan.setStartTime(stageSubmitted.stageInfo.submissionTime.get)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -81,7 +81,6 @@ class QuboleNotebookListener(sparkConf: SparkConf) extends QuboleJobListener(spa
* @param applicationEnd
*/
override def onApplicationEnd(applicationEnd: SparkListenerApplicationEnd): Unit = {
stageMap.map(x => x._2).foreach(x => x.tempTaskTimes.clear())
appInfo.endTime = applicationEnd.time
}

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,17 @@ class StageSkewAnalyzer extends AppAnalyzer {
out.toString()
}

override def analyzeAndSuggest(appContext: AppContext, startTime: Long, endTime: Long):
(String, Map[String, String]) = {
// Only make suggestions on a "full" window
if (appContext.appInfo.startTime == startTime &&
appContext.appInfo.endTime == endTime) {
(analyze(appContext, startTime, endTime), computeSuggestions(appContext))
} else {
(analyze(appContext, startTime, endTime), Map.empty[String, String])
}
}


def bytesToString(size: Long): String = {
val TB = 1L << 40
Expand All @@ -55,7 +66,70 @@ class StageSkewAnalyzer extends AppAnalyzer {
"%.1f %s".formatLocal(Locale.US, value, unit)
}

def computeSuggestions(ac: AppContext): Map[String, String] = {
val conf = ac.initialSparkProperties.getOrElse {
Map.empty[String, String]
}
var suggested = new mutable.HashMap[String, String]
val shufflePartitions = conf.getOrElse("spark.sql.shuffle.partitions", "200").toInt
val aqeCoalesce = conf.getOrElse("spark.sql.adaptive.coalescePartitions.enabled", "true")
// In theory if the compute time for stages is generally "large" & skew is low
// we can suggest increasing the parallelism especially if it's bellow max execs*
// For now we want to filter for stages which are
// SQL shuffle reads (where the shuffle.partitions config is the one we change)
val newScaleFactor = ac.stageMap.values.map (
v => {
val numTasks = v.taskExecutionTimes.length
val minTime = v.taskExecutionTimes.min
val maxTime = v.taskExecutionTimes.max
// If this is less than 10% diff between min and max (e.g. limited skew) & it's "slow"
// consider increasing the number of partitions.
// We also check that numTasks is ~= shuffle partitions
// otherwise it's probably being configured through AQE target size / coalesce.
if (minTime - maxTime < 0.1 * maxTime &&
v.sqlTask &&
Math.abs(numTasks - shufflePartitions) < 10) {
// Try and figure out how many tasks to add to reach ~10 minutes
Math.max(Math.min((minTime / 60000), 4.0), 1.0)
} else {
1.0
}
}
).max
if (newScaleFactor > 1.0) {
suggested += (("spark.sql.shuffle.partitions",
(newScaleFactor * shufflePartitions).toInt.toString))
}

// Future: We might want to suggest increasing both max execs & parallelism if they're equal.

// We also may want to suggest turning of coalesce in AQE if we see "slow" stages
// with small data.
// TODO: Verify the AQE ran on that particular stage, right now we assume if we've got
// a shuffle read and num tasks is less than the default shuffle partitions then
// it's AQEs doing.
val problamaticCoalesces = ac.stageMap.values.find (
v => {
val minTaskLength = v.taskExecutionTimes.min
val numTasks = v.taskExecutionTimes.length
if (v.sqlTask && v.shuffleRead && numTasks < shufflePartitions &&
minTaskLength > 60000) {
true
} else {
false
}
}
)
if (! problamaticCoalesces.isEmpty) {
suggested += (("spark.sql.adaptive.coalescePartitions.enabled", "false"))
}
suggested.toMap
}

def computePerStageEfficiencyStatistics(ac: AppContext, out: mutable.StringBuilder): Unit = {
val conf = ac.initialSparkProperties.getOrElse {
out.println("WARNING: No config found using empty config.")
}


val totalTasks = ac.stageMap.map(x => x._2.taskExecutionTimes.length).sum
Expand Down
76 changes: 18 additions & 58 deletions src/main/scala/com/qubole/sparklens/timespan/StageTimeSpan.scala
Original file line number Diff line number Diff line change
Expand Up @@ -29,9 +29,12 @@ import scala.collection.mutable
This keeps track of data per stage
*/

class StageTimeSpan(val stageID: Int, numberOfTasks: Long) extends TimeSpan {
class StageTimeSpan(val stageID: Int, numberOfTasks: Long, val sqlTask: Boolean) extends TimeSpan {
var stageMetrics = new AggregateMetrics()
var tempTaskTimes = new mutable.ListBuffer[( Long, Long, Long)]
// We actually want to keep the start times so we can suggest increasing
// max execs if we see very different start times since that can
// indicate a stall.
var taskTimes = new mutable.ListBuffer[( Long, Long, Long)]
var minTaskLaunchTime = Long.MaxValue
var maxTaskFinishTime = 0L
var parentStageIDs:Seq[Int] = null
Expand All @@ -40,6 +43,9 @@ class StageTimeSpan(val stageID: Int, numberOfTasks: Long) extends TimeSpan {
var taskExecutionTimes = Array.emptyIntArray
var taskPeakMemoryUsage = Array.emptyLongArray

// Is there any shuffle read happening
var shuffleRead = false

def updateAggregateTaskMetrics (taskMetrics: TaskMetrics, taskInfo: TaskInfo): Unit = {
stageMetrics.update(taskMetrics, taskInfo)
}
Expand All @@ -49,14 +55,18 @@ class StageTimeSpan(val stageID: Int, numberOfTasks: Long) extends TimeSpan {
}

def updateTasks(taskInfo: TaskInfo, taskMetrics: TaskMetrics): Unit = {
if (taskInfo != null && taskMetrics != null) {
tempTaskTimes += ((taskInfo.taskId, taskMetrics.executorRunTime, taskMetrics.peakExecutionMemory))
// Ignore speculative tasks
if (taskInfo != null && taskMetrics != null && !taskInfo.speculative) {
taskTimes += ((taskInfo.taskId, taskMetrics.executorRunTime, taskMetrics.peakExecutionMemory))
if (taskInfo.launchTime < minTaskLaunchTime) {
minTaskLaunchTime = taskInfo.launchTime
}
if (taskInfo.finishTime > maxTaskFinishTime) {
maxTaskFinishTime = taskInfo.finishTime
}
if (taskMetrics.shuffleReadMetrics != null) {
shuffleRead = true
}
}
}

Expand All @@ -65,33 +75,18 @@ class StageTimeSpan(val stageID: Int, numberOfTasks: Long) extends TimeSpan {
setStartTime(minTaskLaunchTime)
setEndTime(maxTaskFinishTime)

taskExecutionTimes = new Array[Int](tempTaskTimes.size)
taskExecutionTimes = new Array[Int](taskTimes.size)

var currentIndex = 0
tempTaskTimes.sortWith(( left, right) => left._1 < right._1)
taskTimes.sortWith(( left, right) => left._1 < right._1)
.foreach( x => {
taskExecutionTimes( currentIndex) = x._2.toInt
currentIndex += 1
})

val countPeakMemoryUsage = {
if (tempTaskTimes.size > 64) {
64
}else {
tempTaskTimes.size
}
}

taskPeakMemoryUsage = tempTaskTimes
taskPeakMemoryUsage = taskTimes
.map( x => x._3)
.sortWith( (a, b) => a > b)
.take(countPeakMemoryUsage).toArray

/*
Clean the tempTaskTimes. We don't want to keep all this objects hanging around for
long time
*/
tempTaskTimes.clear()
.sortWith( (a, b) => a > b).toArray
}

override def getMap(): Map[String, _ <: Any] = {
Expand All @@ -109,38 +104,3 @@ class StageTimeSpan(val stageID: Int, numberOfTasks: Long) extends TimeSpan {
) ++ super.getStartEndTime()
}
}

object StageTimeSpan {

def getTimeSpan(json: Map[String, JValue]): mutable.HashMap[Int, StageTimeSpan] = {
implicit val formats = DefaultFormats

val map = new mutable.HashMap[Int, StageTimeSpan]

json.keys.map(key => {
val value = json.get(key).get
val timeSpan = new StageTimeSpan(
(value \ "stageID").extract[Int],
(value \ "numberOfTasks").extract[Long]
)
timeSpan.stageMetrics = AggregateMetrics.getAggregateMetrics((value \ "stageMetrics")
.extract[JValue])
timeSpan.minTaskLaunchTime = (value \ "minTaskLaunchTime").extract[Long]
timeSpan.maxTaskFinishTime = (value \ "maxTaskFinishTime").extract[Long]


timeSpan.parentStageIDs = Json4sWrapper.parse((value \ "parentStageIDs").extract[String]).extract[List[Int]]
timeSpan.taskExecutionTimes = Json4sWrapper.parse((value \ "taskExecutionTimes").extract[String])
.extract[List[Int]].toArray

timeSpan.taskPeakMemoryUsage = Json4sWrapper.parse((value \ "taskPeakMemoryUsage").extract[String])
.extract[List[Long]].toArray

timeSpan.addStartEnd(value)

map.put(key.toInt, timeSpan)
})
map
}

}
Original file line number Diff line number Diff line change
@@ -0,0 +1,107 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package com.qubole.sparklens.analyzer

import com.qubole.sparklens.common.{AggregateMetrics, AppContext, ApplicationInfo}
import com.qubole.sparklens.timespan.{ExecutorTimeSpan, HostTimeSpan, JobTimeSpan, StageTimeSpan}
import com.qubole.sparklens.helper.JobOverlapHelper

import org.scalatest.funsuite.AnyFunSuite

import org.apache.spark.SparkConf

import scala.collection.mutable

class StageSkewAnalyzerSuite extends AnyFunSuite {

val startTime = 0
val endTime = 60000000000L
// Make a non-SQL task
val stage1 = new StageTimeSpan(1, 1, false)
// SQL tasks
// stage 2 should impact the target number of partitions
val stage2 = new StageTimeSpan(2, 2, true)
// stage 3 should have us turn off AQE if present
val stage3 = new StageTimeSpan(3, 1, true)
stage1.shuffleRead = true
stage1.taskExecutionTimes = Array[Int](6000000)
stage2.shuffleRead = true
stage2.taskExecutionTimes = 0.to(200).map(x => 60000 * 2).toArray
stage3.shuffleRead = true
// One really long task
stage3.taskExecutionTimes = Array[Int](60000000)

def createDummyAppContext(stageTimeSpans: mutable.HashMap[Int, StageTimeSpan]): AppContext = {

val jobMap = new mutable.HashMap[Long, JobTimeSpan]

val jobSQLExecIDMap = new mutable.HashMap[Long, Long]

val execStartTimes = new mutable.HashMap[String, ExecutorTimeSpan]()

val appInfo = new ApplicationInfo()
appInfo.startTime = startTime
appInfo.endTime = endTime


val conf = new SparkConf()

new AppContext(appInfo,
new AggregateMetrics(),
mutable.HashMap[String, HostTimeSpan](),
mutable.HashMap[String, ExecutorTimeSpan](),
jobMap,
jobSQLExecIDMap,
stageTimeSpans,
mutable.HashMap[Int, Long](),
Some(conf.getAll.toMap))
}

test("Change number of partitions when not skewed but long") {
val stageTimeSpans = new mutable.HashMap[Int, StageTimeSpan]
stageTimeSpans(1) = stage1
stageTimeSpans(2) = stage2
val ac = createDummyAppContext(stageTimeSpans)
val sska = new StageSkewAnalyzer()
val suggestions = sska.computeSuggestions(ac)
assert(suggestions.get("spark.sql.adaptive.coalescePartitions.enabled") == None,
"Leave AQE on if we 'just' have long partitions")
assert(suggestions.get("spark.sql.shuffle.partitions") == Some("400"),
"We aim for lots of partitions")
}

test("Turn off AQE if stage 3 is present") {
val stageTimeSpans = new mutable.HashMap[Int, StageTimeSpan]
stageTimeSpans(1) = stage1
stageTimeSpans(3) = stage3
val ac = createDummyAppContext(stageTimeSpans)
val sska = new StageSkewAnalyzer()
val suggestions = sska.computeSuggestions(ac)
assert(suggestions.get("spark.sql.adaptive.coalescePartitions.enabled") == Some("false"),
"Turn of AQE when bad coalesce occurs")
}

test("stage 1 should do nothing") {
val stageTimeSpans = new mutable.HashMap[Int, StageTimeSpan]
stageTimeSpans(1) = stage1
val ac = createDummyAppContext(stageTimeSpans)
val sska = new StageSkewAnalyzer()
val suggestions = sska.computeSuggestions(ac)
assert(suggestions == Map.empty[String, String], "Don't suggest on non-SQL stages")
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@ class PQParallelStageSchedulerSuite extends AnyFunSuite {


def createStageTimeSpan(stageID: Int, taskCount: Int, minTaskLaunchTime: Long, maxTaskFinishTime: Long, parentStages: Seq[Int]): StageTimeSpan = {
val stageTimeSpan = new StageTimeSpan(stageID, taskCount)
val stageTimeSpan = new StageTimeSpan(stageID, taskCount, false)
stageTimeSpan.minTaskLaunchTime = minTaskLaunchTime
stageTimeSpan.maxTaskFinishTime = maxTaskFinishTime

Expand Down
Loading