Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

create dataset folder only when needed #459

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
224 changes: 1 addition & 223 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,223 +1 @@
[![GitHub version](https://badge.fury.io/gh/nicolashug%2FSurprise.svg)](https://badge.fury.io/gh/nicolashug%2FSurprise)
[![Documentation Status](https://readthedocs.org/projects/surprise/badge/?version=stable)](https://surprise.readthedocs.io/en/stable/?badge=stable)
[![python versions](https://img.shields.io/badge/python-3.8+-blue.svg)](https://surpriselib.com)
[![License](https://img.shields.io/badge/License-BSD%203--Clause-blue.svg)](https://opensource.org/licenses/BSD-3-Clause)
[![DOI](https://joss.theoj.org/papers/10.21105/joss.02174/status.svg)](https://doi.org/10.21105/joss.02174)

[![logo](./logo_black.svg)](https://surpriselib.com)

Overview
--------

[Surprise](https://surpriselib.com) is a Python
[scikit](https://projects.scipy.org/scikits.html) for building and analyzing
recommender systems that deal with explicit rating data.

[Surprise](https://surpriselib.com) **was designed with the
following purposes in mind**:

- Give users perfect control over their experiments. To this end, a strong
emphasis is laid on
[documentation](https://surprise.readthedocs.io/en/stable/index.html), which we
have tried to make as clear and precise as possible by pointing out every
detail of the algorithms.
- Alleviate the pain of [Dataset
handling](https://surprise.readthedocs.io/en/stable/getting_started.html#load-a-custom-dataset).
Users can use both *built-in* datasets
([Movielens](https://grouplens.org/datasets/movielens/),
[Jester](https://eigentaste.berkeley.edu/dataset/)), and their own *custom*
datasets.
- Provide various ready-to-use [prediction
algorithms](https://surprise.readthedocs.io/en/stable/prediction_algorithms_package.html)
such as [baseline
algorithms](https://surprise.readthedocs.io/en/stable/basic_algorithms.html),
[neighborhood
methods](https://surprise.readthedocs.io/en/stable/knn_inspired.html), matrix
factorization-based (
[SVD](https://surprise.readthedocs.io/en/stable/matrix_factorization.html#surprise.prediction_algorithms.matrix_factorization.SVD),
[PMF](https://surprise.readthedocs.io/en/stable/matrix_factorization.html#unbiased-note),
[SVD++](https://surprise.readthedocs.io/en/stable/matrix_factorization.html#surprise.prediction_algorithms.matrix_factorization.SVDpp),
[NMF](https://surprise.readthedocs.io/en/stable/matrix_factorization.html#surprise.prediction_algorithms.matrix_factorization.NMF)),
and [many
others](https://surprise.readthedocs.io/en/stable/prediction_algorithms_package.html).
Also, various [similarity
measures](https://surprise.readthedocs.io/en/stable/similarities.html)
(cosine, MSD, pearson...) are built-in.
- Make it easy to implement [new algorithm
ideas](https://surprise.readthedocs.io/en/stable/building_custom_algo.html).
- Provide tools to [evaluate](https://surprise.readthedocs.io/en/stable/model_selection.html),
[analyse](https://nbviewer.jupyter.org/github/NicolasHug/Surprise/tree/master/examples/notebooks/KNNBasic_analysis.ipynb/)
and
[compare](https://nbviewer.jupyter.org/github/NicolasHug/Surprise/blob/master/examples/notebooks/Compare.ipynb)
the algorithms' performance. Cross-validation procedures can be run very
easily using powerful CV iterators (inspired by
[scikit-learn](https://scikit-learn.org/) excellent tools), as well as
[exhaustive search over a set of
parameters](https://surprise.readthedocs.io/en/stable/getting_started.html#tune-algorithm-parameters-with-gridsearchcv).


The name *SurPRISE* (roughly :) ) stands for *Simple Python RecommendatIon
System Engine*.

Please note that surprise does not support implicit ratings or content-based
information.


Getting started, example
------------------------

Here is a simple example showing how you can (down)load a dataset, split it for
5-fold cross-validation, and compute the MAE and RMSE of the
[SVD](https://surprise.readthedocs.io/en/stable/matrix_factorization.html#surprise.prediction_algorithms.matrix_factorization.SVD)
algorithm.


```python
from surprise import SVD
from surprise import Dataset
from surprise.model_selection import cross_validate

# Load the movielens-100k dataset (download it if needed).
data = Dataset.load_builtin('ml-100k')

# Use the famous SVD algorithm.
algo = SVD()

# Run 5-fold cross-validation and print results.
cross_validate(algo, data, measures=['RMSE', 'MAE'], cv=5, verbose=True)
```

**Output**:

```
Evaluating RMSE, MAE of algorithm SVD on 5 split(s).

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std
RMSE (testset) 0.9367 0.9355 0.9378 0.9377 0.9300 0.9355 0.0029
MAE (testset) 0.7387 0.7371 0.7393 0.7397 0.7325 0.7375 0.0026
Fit time 0.62 0.63 0.63 0.65 0.63 0.63 0.01
Test time 0.11 0.11 0.14 0.14 0.14 0.13 0.02
```

[Surprise](https://surpriselib.com) can do **much** more (e.g,
[GridSearchCV](https://surprise.readthedocs.io/en/stable/getting_started.html#tune-algorithm-parameters-with-gridsearchcv))!
You'll find [more usage
examples](https://surprise.readthedocs.io/en/stable/getting_started.html) in the
[documentation ](https://surprise.readthedocs.io/en/stable/index.html).


Benchmarks
----------

Here are the average RMSE, MAE and total execution time of various algorithms
(with their default parameters) on a 5-fold cross-validation procedure. The
datasets are the [Movielens](https://grouplens.org/datasets/movielens/) 100k and
1M datasets. The folds are the same for all the algorithms. All experiments are
run on a laptop with an intel i5 11th Gen 2.60GHz. The code
for generating these tables can be found in the [benchmark
example](https://github.com/NicolasHug/Surprise/tree/master/examples/benchmark.py).

| [Movielens 100k](http://grouplens.org/datasets/movielens/100k) | RMSE | MAE | Time |
|:---------------------------------------------------------------------------------------------------------------------------------------|-------:|------:|:--------|
| [SVD](http://surprise.readthedocs.io/en/stable/matrix_factorization.html#surprise.prediction_algorithms.matrix_factorization.SVD) | 0.934 | 0.737 | 0:00:06 |
| [SVD++ (cache_ratings=False)](http://surprise.readthedocs.io/en/stable/matrix_factorization.html#surprise.prediction_algorithms.matrix_factorization.SVDpp) | 0.919 | 0.721 | 0:01:39 |
| [SVD++ (cache_ratings=True)](http://surprise.readthedocs.io/en/stable/matrix_factorization.html#surprise.prediction_algorithms.matrix_factorization.SVDpp) | 0.919 | 0.721 | 0:01:22 |
| [NMF](http://surprise.readthedocs.io/en/stable/matrix_factorization.html#surprise.prediction_algorithms.matrix_factorization.NMF) | 0.963 | 0.758 | 0:00:06 |
| [Slope One](http://surprise.readthedocs.io/en/stable/slope_one.html#surprise.prediction_algorithms.slope_one.SlopeOne) | 0.946 | 0.743 | 0:00:09 |
| [k-NN](http://surprise.readthedocs.io/en/stable/knn_inspired.html#surprise.prediction_algorithms.knns.KNNBasic) | 0.98 | 0.774 | 0:00:08 |
| [Centered k-NN](http://surprise.readthedocs.io/en/stable/knn_inspired.html#surprise.prediction_algorithms.knns.KNNWithMeans) | 0.951 | 0.749 | 0:00:09 |
| [k-NN Baseline](http://surprise.readthedocs.io/en/stable/knn_inspired.html#surprise.prediction_algorithms.knns.KNNBaseline) | 0.931 | 0.733 | 0:00:13 |
| [Co-Clustering](http://surprise.readthedocs.io/en/stable/co_clustering.html#surprise.prediction_algorithms.co_clustering.CoClustering) | 0.963 | 0.753 | 0:00:06 |
| [Baseline](http://surprise.readthedocs.io/en/stable/basic_algorithms.html#surprise.prediction_algorithms.baseline_only.BaselineOnly) | 0.944 | 0.748 | 0:00:02 |
| [Random](http://surprise.readthedocs.io/en/stable/basic_algorithms.html#surprise.prediction_algorithms.random_pred.NormalPredictor) | 1.518 | 1.219 | 0:00:01 |


| [Movielens 1M](https://grouplens.org/datasets/movielens/1m) | RMSE | MAE | Time |
|:----------------------------------------------------------------------------------------------------------------------------------------|-------:|------:|:--------|
| [SVD](https://surprise.readthedocs.io/en/stable/matrix_factorization.html#surprise.prediction_algorithms.matrix_factorization.SVD) | 0.873 | 0.686 | 0:01:07 |
| [SVD++ (cache_ratings=False)](https://surprise.readthedocs.io/en/stable/matrix_factorization.html#surprise.prediction_algorithms.matrix_factorization.SVDpp) | 0.862 | 0.672 | 0:41:06 |
| [SVD++ (cache_ratings=True)](https://surprise.readthedocs.io/en/stable/matrix_factorization.html#surprise.prediction_algorithms.matrix_factorization.SVDpp) | 0.862 | 0.672 | 0:34:55 |
| [NMF](https://surprise.readthedocs.io/en/stable/matrix_factorization.html#surprise.prediction_algorithms.matrix_factorization.NMF) | 0.916 | 0.723 | 0:01:39 |
| [Slope One](http://surprise.readthedocs.io/en/stable/slope_one.html#surprise.prediction_algorithms.slope_one.SlopeOne) | 0.907 | 0.715 | 0:02:31 |
| [k-NN](http://surprise.readthedocs.io/en/stable/knn_inspired.html#surprise.prediction_algorithms.knns.KNNBasic) | 0.923 | 0.727 | 0:05:27 |
| [Centered k-NN](http://surprise.readthedocs.io/en/stable/knn_inspired.html#surprise.prediction_algorithms.knns.KNNWithMeans) | 0.929 | 0.738 | 0:05:43 |
| [k-NN Baseline](http://surprise.readthedocs.io/en/stable/knn_inspired.html#surprise.prediction_algorithms.knns.KNNBaseline) | 0.895 | 0.706 | 0:05:55 |
| [Co-Clustering](http://surprise.readthedocs.io/en/stable/co_clustering.html#surprise.prediction_algorithms.co_clustering.CoClustering) | 0.915 | 0.717 | 0:00:31 |
| [Baseline](http://surprise.readthedocs.io/en/stable/basic_algorithms.html#surprise.prediction_algorithms.baseline_only.BaselineOnly) | 0.909 | 0.719 | 0:00:19 |
| [Random](http://surprise.readthedocs.io/en/stable/basic_algorithms.html#surprise.prediction_algorithms.random_pred.NormalPredictor) | 1.504 | 1.206 | 0:00:19 |

Installation
------------

With pip (you'll need [numpy](https://www.numpy.org/), and a C compiler. Windows
users might prefer using conda):

$ pip install numpy
$ pip install scikit-surprise

With conda:

$ conda install -c conda-forge scikit-surprise

For the latest version, you can also clone the repo and build the source
(you'll first need [Cython](https://cython.org/) and
[numpy](https://www.numpy.org/)):

$ pip install numpy cython
$ git clone https://github.com/NicolasHug/surprise.git
$ cd surprise
$ python setup.py install

License and reference
---------------------

This project is licensed under the [BSD
3-Clause](https://opensource.org/licenses/BSD-3-Clause) license, so it can be
used for pretty much everything, including commercial applications.

I'd love to know how Surprise is useful to you. Please don't hesitate to open
an issue and describe how you use it!

Please make sure to cite the
[paper](https://joss.theoj.org/papers/10.21105/joss.02174) if you use
Surprise for your research:

@article{Hug2020,
doi = {10.21105/joss.02174},
url = {https://doi.org/10.21105/joss.02174},
year = {2020},
publisher = {The Open Journal},
volume = {5},
number = {52},
pages = {2174},
author = {Nicolas Hug},
title = {Surprise: A Python library for recommender systems},
journal = {Journal of Open Source Software}
}

Contributors
------------

The following persons have contributed to [Surprise](https://surpriselib.com):

ashtou, bobbyinfj, caoyi, Олег Демиденко, Charles-Emmanuel Dias, dmamylin,
Lauriane Ducasse, Marc Feger, franckjay, Lukas Galke, Tim Gates, Pierre-François
Gimenez, Zachary Glassman, Jeff Hale, Nicolas Hug, Janniks, jyesawtellrickson,
Doruk Kilitcioglu, Ravi Raju Krishna, lapidshay, Hengji Liu, Ravi Makhija, Maher
Malaeb, Manoj K, James McNeilis, Naturale0, nju-luke, Pierre-Louis Pécheux, Jay
Qi, Lucas Rebscher, Skywhat, Hercules Smith, David Stevens, Vesna Tanko,
TrWestdoor, Victor Wang, Mike Lee Williams, Jay Wong, Chenchen Xu, YaoZh1918.

Thanks a lot :) !

Development Status
------------------

Starting from version 1.1.0 (September 2019), I will only maintain the package,
provide bugfixes, and perhaps sometimes perf improvements. I have less time to
dedicate to it now, so I'm unabe to consider new features.

For bugs, issues or questions about [Surprise](https://surpriselib.com), please
avoid sending me emails; I will most likely not be able to answer). Please use
the GitHub [project page](https://github.com/NicolasHug/Surprise) instead, so
that others can also benefit from it.
This is a fork of the [Surprise](https://github.com/NicolasHug/Surprise) repository. I created this fork to fix an issue that I encountered while using the library. I have described the issue and the fix in [this pull request](https://github.com/NicolasHug/Surprise/pull/459).
14 changes: 7 additions & 7 deletions surprise/builtin_datasets.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,13 +19,6 @@ def get_dataset_dir():
folder = os.environ.get(
"SURPRISE_DATA_FOLDER", os.path.expanduser("~") + "/.surprise_data/"
)
try:
os.makedirs(folder)
except OSError as e:
if e.errno != errno.EEXIST:
# reraise exception if folder does not exist and creation failed.
raise

return folder


Expand Down Expand Up @@ -59,6 +52,13 @@ def get_dataset_dir():


def download_builtin_dataset(name):
folder = get_dataset_dir()
try:
os.makedirs(folder)
except OSError as e:
if e.errno != errno.EEXIST:
# reraise exception if folder does not exist and creation failed.
raise

dataset = BUILTIN_DATASETS[name]

Expand Down