Skip to content

NiuKeke/GPU_SGM

 
 

Repository files navigation

GPU_SGM


A CUDA implementation performing Semi-Global Matching.

Features


As it uses CUDA, we try to compute the disparity map at high speed.

Requirements

GPU_SGM needs CUDA (compute capabilities >= 3.0) to be installed.
Moreover, to build the sample, we need the following libraries:

  • OpenCV
  • OpenGL
  • GLFW3
  • GLEW

Build Instructions

$ cd libSGM
$ mkdir build
$ cd build
$ cmake ../
$ make

Sample Execution

$ pwd
.../GPU_SGM
$ cd build
$ cd sample/movie/
$ ./stereo_movie <left image path format> <right image path format> <disparity> <frame count>
left image path format: the format used for the file paths to the left input images
right image path format: the format used for the file paths to the right input images
disparity: the maximum number of disparities (optional)
frame count: the total number of images (optional)

"disparity" and "frame count" are optional. By default, they are 64 and 100, respectively.

Next, we explain the meaning of the "left image path format" and "right image path format".
When provided with the following set of files, we should pass the "path formats" given below.

left_image_0000.pgm
left_image_0001.pgm
left_image_0002.pgm
left_image_0003.pgm
...

right_image_0000.pgm
right_image_0001.pgm
right_image_0002.pgm
right_image_0003.pgm
$ ./stereo_movie left_image_%04d.pgm right_image_%04d.pgm

The sample movie images available at http://www.6d-vision.com/scene-labeling under "Daimler Urban Scene Segmentation Benchmark Dataset" are used to test the software.

Authors

The "GPU_SGM Team": Zhang Handuo, Hasith

License

Apache License 2.0

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Cuda 74.1%
  • C++ 23.9%
  • CMake 2.0%