Collection of curated R functions for MTED economists. Functions are createad by MTED economists or modified from other packages.
You can install the development version of R.mted like so:
devtools::install_github("Noe-J-Nava/R.mted")
Note: request the data and shapefiles from me.
rm(list = ls())
devtools::install_github("Noe-J-Nava/R.mted") # Rmted collection of tools
library(rgdal)
library(R.mted) # our package
library(tidyverse)
# Options --
dayStart <- "2017/08/12" #must be in format %Y/%m/%d.
dayEnd <- "2017/08/19" #must be in format %Y/%m/%d.
data_dir <- "data/example1/" #relative path
names <- seq(as.Date(dayStart), as.Date(dayEnd), by = "days")
# Openning US county polygons shape file
USmap_county <- readOGR(dsn = 'assets/3109_county',
layer = 'USmap_county')
fips <- as.numeric(USmap_county@data$ANSI_ST_CO)
fips <- as.character(fips) # List of US cnty fips
# Collect means
tmin <- average.polygonsPRISM(varName = 'tmin',
dayStart = dayStart,
dayEnd = dayEnd,
data_dir = data_dir,
shpFile = USmap_county)
names(tmin) <- names
tmin <- cbind(fips, tmin)
tmin <- gather(tmin, date, tmin, 2:length(tmin))
tmax <- average.polygonsPRISM(varName = 'tmax',
dayStart = dayStart,
dayEnd = dayEnd,
data_dir = data_dir,
shpFile = USmap_county)
names(tmax) <- names
tmax <- cbind(fips, tmax)
tmax <- gather(tmax, date, tmax, 2:length(tmax))
# Calculating gdd
gdd <- left_join(tmin, tmax, by = c("fips", "date"))
gdd$gdd <- gdd.calculation(tmin = gdd$tmin,
tmax = gdd$tmax,
tbase = 10)