-
Notifications
You must be signed in to change notification settings - Fork 31
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #71 from victorKariuki/main
Pakeji Hisabati Documentation update
- Loading branch information
Showing
1 changed file
with
184 additions
and
97 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,158 +1,245 @@ | ||
# Math Package | ||
|
||
|
||
|
||
## Explanation | ||
This math package provides a collection of mathematical functions and constants implemented in the Nuru programming language. These functions cover a wide range of mathematical operations, including trigonometric functions, logarithmic functions, and other common mathematical operations. Below is a detailed list of all methods along with their descriptions and examples: | ||
# Pakeji Hisabati (Math Package) | ||
|
||
Pakeji Hisabati is a math package written in pure Nuru by [VictorKariuki](https://github.com/VictorKariuki). | ||
|
||
This package provides various mathematical functions and constants implemented in nuru programming language. It includes methods for `trigonometric functions`, `logarithmic functions`, `array operations`, and `utility functions`. | ||
|
||
|
||
## Usage | ||
To use the `pakeji hisabati` package follow the steps below: | ||
|
||
1. Copy the `hisabati.nr` file and any required third-party package files into the same directory as your project. | ||
|
||
2. Ensure that the package file names end with the `.nr` extension and match the package names. For example, if the package name is `hisabati`, the corresponding file name should be `hisabati.nr`. | ||
|
||
3. You can directly import the `hisabati.nr` package and any required third-party packages in your Nuru code using the `tumia` keyword. For example: | ||
|
||
```nuru | ||
tumia "hisabati" | ||
``` | ||
Example of calling the package methods: | ||
```nuru | ||
andika(hisabati.e()) | ||
## What is in | ||
This package covers a wide range of mathematical operations, including `basic arithmetic`, `trigonometry`, `exponential and logarithmic functions`, `rounding and comparison operations`, as well as some `utility and array operations`. | ||
The methods provided in the `hisabati` package can be classified into different categories based on their functionalities. Here is a classification of the methods: | ||
1. Trigonometric Functions: | ||
- `cos(x)` | ||
- `sin(x)` | ||
- `tan(x)` | ||
- `acos(x)` | ||
- `asin(x)` | ||
- `atan(x)` | ||
2. Hyperbolic Functions: | ||
- `cosh(x)` | ||
- `sinh(x)` | ||
- `tanh(x)` | ||
- `acosh(x)` | ||
- `asinh(x)` | ||
- `atanh(x)` | ||
3. Exponential and Logarithmic Functions: | ||
- `exp(x)` | ||
- `expm1(x)` | ||
- `log(x)` | ||
- `log10(x)` | ||
- `log1p(x)` | ||
4. Other Mathematical Functions: | ||
- `abs(namba)` | ||
- `ceil(x)` | ||
- `floor(x)` | ||
- `sqrt(x)` | ||
- `cbrt(x)` | ||
- `root(x, n)` | ||
- `hypot(values)` | ||
- `factorial(n)` | ||
5. Rounding and Comparison Functions: | ||
- `round(x, method)` | ||
- `max(numbers)` | ||
- `min(numbers)` | ||
6. Utility Functions: | ||
- `sign(x)` | ||
- `isNegative(num)` | ||
- `isInteger(num)` | ||
- `getIntegerPart(num)` | ||
7. Array and List Operations: | ||
- `list(first, last, interval)` | ||
- `reduce(iterator, callback, initialValue)` | ||
### 1. Constants: | ||
- **PI**: Represents the mathematical constant `π`. | ||
- **e**: Represents `Euler's Number`. | ||
- **phi**: Represents the `Golden Ratio`. | ||
- **ln10**: Represents the `natural logarithm of 10`. | ||
- **ln2**: Represents the `natural logarithm of 2`. | ||
- **log10e**: Represents the `base 10 logarithms` of Euler's number `(e)`. | ||
- **log2e**: Represents the `base 2 logarithm` of Euler's number` (e)`. | ||
- **sqrt1_2**: Represents the `square root` of `1/2`. | ||
- **sqrt2**: Represents the `square root` of `2`. | ||
- **sqrt3**: Represents the `square root` of `3`. | ||
- **sqrt5**: Represents the `square root` of `5`. | ||
- **EPSILON**: Represents a small value (2.220446049250313e-16). | ||
### 2. Methods: | ||
1. **abs(namba)** | ||
- Description: Calculates the absolute value of a number. | ||
- Example: `Hisabati.abs(-42)` returns `42`. | ||
- Example: `hisabati.abs(-42)` returns `42`. | ||
2. **acos(x)** | ||
- Description: Calculates the arccosine (inverse cosine) of a number in radians. | ||
- Example: `Hisabati.acos(0.5)` returns the arccosine of 0.5. | ||
- Description: Calculates the arccosine of a number. | ||
- Example: `hisabati.acos(0.5)` returns `1.0471975511965979`. | ||
3. **acosh(x)** | ||
- Description: Calculates the inverse hyperbolic cosine of a number. | ||
- Example: `Hisabati.acosh(2)` returns the inverse hyperbolic cosine of 2. | ||
- Example: `hisabati.acosh(2)` returns `1.3169578969248166`. | ||
4. **arcsin(x)** | ||
- Description: Calculates the arcsine (inverse sine) of a number using a Taylor series. | ||
- Example: `Hisabati.arcsin(0.5)` returns the arcsine of 0.5. | ||
- Description: Calculates the arcsine of a number using the Taylor series. | ||
- Example: `hisabati.arcsin(0.5)` returns `0.5235987755982988`. | ||
5. **arsinh(x)** | ||
- Description: Calculates the inverse hyperbolic sine of a number. | ||
- Example: `Hisabati.arsinh(1)` returns the inverse hyperbolic sine of 1. | ||
- Example: `hisabati.arsinh(2)` returns `1.4436354751788103`. | ||
6. **atan(x)** | ||
- Description: Calculates the arctangent (inverse tangent) of a number in radians using a Taylor series. | ||
- Example: `Hisabati.atan(1)` returns the arctangent of 1. | ||
- Description: Calculates the arctangent of a number using the Taylor series. | ||
- Example: `hisabati.atan(1)` returns `0.7853981633974483`. | ||
7. **atan2(y, x)** | ||
- Description: Calculates the angle in radians between the positive x-axis and the point (x, y). | ||
- Example: `Hisabati.atan2(1, 1)` returns the angle for the point (1, 1). | ||
- Description: Calculates the arctangent of the quotient of its arguments. | ||
- Example: `hisabati.atan2(1, 1)` returns `0.7853981633974483`. | ||
8. **atanh(x)** | ||
- Description: Calculates the inverse hyperbolic tangent of a number. | ||
- Example: `Hisabati.atanh(0.5)` returns the inverse hyperbolic tangent of 0.5. | ||
- Example: `hisabati.atanh(0.5)` returns `0.5493061443340549`. | ||
9. **cbrt(x)** | ||
- Description: Calculates the cube root of a number. | ||
- Example: `Hisabati.cbrt(8)` returns the cube root of 8. | ||
- Example: `hisabati.cbrt(8)` returns `2`. | ||
10. **ceil(x)** | ||
10. **root(x, n)** | ||
- Description: Calculates the nth root of a number using the Newton-Raphson method. | ||
- Example: `hisabati.root(27, 3)` returns `3`. | ||
11. **ceil(x)** | ||
- Description: Rounds up to the smallest integer greater than or equal to a given number. | ||
- Example: `Hisabati.ceil(4.2)` returns `5`. | ||
- Example: `hisabati.ceil(4.3)` returns `5`. | ||
11. **cos(x, terms)** | ||
- Description: Calculates the cosine of a number in radians using a Taylor series. | ||
- Example: `Hisabati.cos(1)` returns the cosine of 1. | ||
12. **cos(x)** | ||
- Description: Calculates the cosine of an angle in radians using the Taylor series. | ||
- Example: `hisabati.cos(0)` returns `1`. | ||
12. **cosh(x)** | ||
13. **cosh(x)** | ||
- Description: Calculates the hyperbolic cosine of a number. | ||
- Example: `Hisabati.cosh(2)` returns the hyperbolic cosine of 2. | ||
- Example: `hisabati.cosh(0)` returns `1`. | ||
13. **exp(x, precision)** | ||
- Description: Calculates the value of the mathematical constant e raised to the power of x using a Taylor series. | ||
- Example: `Hisabati.exp(2)` returns `e^2`. | ||
14. **exp(x)** | ||
- Description: Calculates the value of Euler's number raised to the power of a given number. | ||
- Example: `hisabati.exp(2)` returns `7.38905609893065`. | ||
14. **expm1(x)** | ||
- Description: Calculates the value of e^x - 1 using a Taylor series. | ||
- Example: `Hisabati.expm1(1)` returns `e - 1`. | ||
15. **expm1(x)** | ||
- Description: Calculates Euler's number raised to the power of a number minus 1. | ||
- Example: `hisabati.expm1(1)` returns `1.718281828459045`. | ||
15. **floor(x)** | ||
16. **floor(x)** | ||
- Description: Rounds down to the largest integer less than or equal to a given number. | ||
- Example: `Hisabati.floor(4.9)` returns `4`. | ||
|
||
16. **hypot(values)** | ||
- Description: Calculates the Euclidean norm (square root of the sum of squares) of a list of values. | ||
- Example: `Hisabati.hypot([3, 4])` returns `5`, which is the hypotenuse of a right triangle. | ||
|
||
17. **log(x)** | ||
- Description: Calculates the natural logarithm of a number using a Taylor series. | ||
- Example: `Hisabati.log(2)` returns the natural logarithm of 2. | ||
- Example: `hisabati.floor(4.7)` returns `4`. | ||
18. **log10(x)** | ||
- Description: Calculates the base 10 logarithm of a number using the natural logarithm. | ||
- Example: `Hisabati.log10(100)` returns `2`. | ||
17. **hypot(values)** | ||
- Description: Calculates the square root of the sum of squares of the given values. | ||
- Example: `hisabati.hypot([3, 4])` returns `5`. | ||
19. **log1p(x)** | ||
- Description: Calculates the natural logarithm of 1 + x using a Taylor series. | ||
- Example: `Hisabati.log1p(0.5)` returns the natural logarithm of 1.5. | ||
18. **log(x)** | ||
- Description: Calculates the natural logarithm of a number. | ||
- Example: `hisabati.log(1)` returns `0`. | ||
20. **log2(x)** | ||
19. **log10(x)** | ||
- Description: Calculates the base 10 logarithm of a number. | ||
- Example: `hisabati.log10(100)` returns `2`. | ||
20. **log1p(x)** | ||
- Description: Calculates the natural logarithm of 1 plus the given number. | ||
- Example: `hisabati.log1p(1)` returns `0.6931471805599453`. | ||
21. **log2(x)** | ||
- Description: Calculates the base 2 logarithm of a number. | ||
- Example: `Hisabati.log2(8)` returns `3`. | ||
- Example: `hisabati.log2(8)` returns `3`. | ||
21. **max(numbers)** | ||
- Description: Returns the largest number from a list of numbers. | ||
- Example: `Hisabati.max([3, 7, 2, 9])` returns `9`. | ||
22. **max(numbers)** | ||
- Description: Finds the maximum value in a list of numbers. | ||
- Example: `hisabati.max([4, 2, 9, 5])` returns `9`. | ||
22. **min(numbers)** | ||
- Description: Returns the smallest number from a list of numbers. | ||
- Example: `Hisabati.min([3, 7, 2, 9])` returns `2`. | ||
23. **min(numbers)** | ||
- Description: Finds the minimum value in a list of numbers. | ||
- Example: `hisabati.min([4, 2, 9, 5])` returns `2`. | ||
23. **round(x, method)** | ||
- Description: Rounds a number to the nearest integer using different rounding methods. | ||
- Example: `Hisabati.round(3.6, "rpi")` rounds to the nearest integer (`4`) using "round half up." | ||
24. **round(x, method)** | ||
- Description: Rounds a number to the nearest integer using the specified method. | ||
- Example: `hisabati.round(4.6, "rpi")` returns `5`. | ||
24. **sign(x)** | ||
- Description: Returns the sign of a number: `1` for positive, `-1` for negative, and `0` for zero. | ||
- Example: `Hisabati.sign(-7)` returns `-1`. | ||
25. **sign(x)** | ||
- Description: Determines the sign of a number. | ||
- Example: `hisabati.sign(-5)` returns `-1`. | ||
25. **sin(x, terms)** | ||
- Description: Calculates the sine of a number in radians using a Taylor series. | ||
- Example: `Hisabati.sin(0.5)` returns the sine of 0.5. | ||
26. **sin(x)** | ||
- Description: Calculates the sine of an angle in radians using the Taylor series. | ||
- Example: `hisabati.sin(0)` returns `0`. | ||
26. **sinh(x)** | ||
27. **sinh(x)** | ||
- Description: Calculates the hyperbolic sine of a number. | ||
- Example: `Hisabati.sinh(1)` returns the hyperbolic sine of 1. | ||
- Example: `hisabati.sinh(0)` returns `0`. | ||
27. **sqrt(x)** | ||
- Description: Calculates the square root of a number using the Newton-Raphson method. | ||
- Example: `Hisabati.sqrt(16)` returns `4`. | ||
28. **sqrt(x)** | ||
- Description: Calculates the square root of a number. | ||
- Example: `hisabati.sqrt(4)` returns `2`. | ||
28. **tangent(x)** | ||
- Description: Calculates the tangent of a number in radians. | ||
- Example: `Hisabati.tangent(1)` returns the tangent of 1. | ||
29. **tan(x)** | ||
- Description: Calculates the tangent of an angle in radians. | ||
- Example: `hisabati.tan(0)` returns `0`. | ||
29. **tanh(x)** | ||
30. **tanh(x)** | ||
- Description: Calculates the hyperbolic tangent of a number. | ||
- Example: `Hisabati.tanh(0.5)` returns the hyperbolic tangent of 0.5. | ||
|
||
30. **isNegativeZero(num)** | ||
- Description: Checks if a number is negative zero (0 with a negative sign). | ||
- Example: `Hisabati.isNegativeZero(-0)` returns `true`. | ||
- Example: `hisabati.tanh(0)` returns `0`. | ||
31. **factorial(n)** | ||
- Description: Calculates the factorial of a number. | ||
- Example: `Hisabati.factorial(5)` returns `120`. | ||
|
||
32. **pow(base, exponent)** | ||
- Description: Calculates the power of a number. | ||
- Example: `Hisabati.pow(2, 3)` returns `8`. | ||
- Example: `hisabati.factorial(5)` returns `120`. | ||
33. **isNegative(num)** | ||
32. **isNegative(num)** | ||
- Description: Checks if a number is negative. | ||
- Example: `Hisabati.isNegative(-5)` returns `true`. | ||
- Example: `hisabati.isNegative(-5)` returns `true`. | ||
34. **isInteger(num)** | ||
33. **isInteger(num)** | ||
- Description: Checks if a number is an integer. | ||
- Example: `Hisabati.isInteger(42)` returns `true`. | ||
- Example: `hisabati.isInteger(4.5)` returns `false`. | ||
35. **getIntegerPart(num)** | ||
34. **getIntegerPart(num)** | ||
- Description: Gets the integer part of a number. | ||
- Example: `Hisabati.getIntegerPart(5.8)` returns `5`. | ||
- Example: `hisabati.getIntegerPart(4.5)` returns `4`. | ||
35. **list(first, last, interval)** | ||
- Description: Creates a list of numbers with the specified interval between them. | ||
- Example: `hisabati.list(1, 5, 1)` returns `[1, 2, 3, 4]`. | ||
36. **reduce(iterator, callback, initialValue)** | ||
- Description: Reduces the elements of an array to a single value using a specified callback function. | ||
- Example: `hisabati.reduce([1, 2, 3, 4], (accumulator, currentValue) => accumulator + currentValue, 0)` returns `10`. | ||
### Contributing | ||
36. **list(first, last, interval)** | ||
- Description: Creates a list of numbers within a specified range with a given interval. | ||
- Example: `Hisabati.list(0, 10, 2)` returns `[0, 2, 4, 6, 8]`. | ||
Contributions to the `pakeji hisabati` package are welcome. If you have any improvements or bug fixes, feel free to create a pull request. | ||
37. **square(n, i, j)** | ||
- Description: Finds the square root of a number using a method that iteratively narrows down the root. | ||
- Example: `Hisabati.square(16)` returns `4`. | ||
### License | ||
Feel free to use this package for your mathematical calculations and applications. | ||
This package is available under the MIT License. See the [LICENSE](LICENSE) file for more information. |