forked from oToToT/kiseki
-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
5500165
commit 3a3dfb3
Showing
1 changed file
with
45 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,45 @@ | ||
template <typename U, typename V> struct min25 { | ||
lld n; int sq; | ||
vector<U> Ss, Sl, Spre; vector<V> Rs, Rl; | ||
Sieve sv; vector<lld> quo; | ||
U &S(lld d) { return d < sq ? Ss[d] : Sl[n / d]; } | ||
V &R(lld d) { return d < sq ? Rs[d] : Rl[n / d]; } | ||
min25(lld n_) : n(n_), sq((int)sqrt(n) + 1), | ||
Ss(sq), Sl(sq), Spre(sq), Rs(sq), Rl(sq), sv(sq) { | ||
for (lld i = 1, Q; i <= n; i = n / Q + 1) | ||
quo.push_back(Q = n / i); | ||
} | ||
U F_prime(auto &&f, auto &&F) { | ||
for (lld p : sv.primes) Spre[p] = f(p); | ||
for (int i = 1; i < sq; i++) Spre[i] += Spre[i - 1]; | ||
for (lld i : quo) S(i) = F(i) - F(1); | ||
for (lld p : sv.primes) | ||
for (lld i : quo) { | ||
if (p * p > i) break; | ||
S(i) -= f(p) * (S(i / p) - Spre[p - 1]); | ||
} | ||
return S(n); | ||
} // F_prime: \sum _ {p is prime, p <= n} f(p) | ||
V F_comp(auto &&g) { | ||
for (lld i : quo) R(i) = V(S(i)); | ||
for (lld p : sv.primes | views::reverse) | ||
for (lld i : quo) { | ||
if (p * p > i) break; | ||
lld prod = p; | ||
for (int c = 1; prod * p <= i; ++c, prod *= p) { | ||
R(i) += g(p, c) * (R(i / prod) - V(Spre[p])); | ||
R(i) += g(p, c + 1); | ||
} | ||
} | ||
return R(n); | ||
} // F_comp: \sum _ {2 <= i <= n} g(i) | ||
}; | ||
/* U, V 都是環,記 h: U -> V 代表 U 轉型成 V 的函數。 | ||
要求 h(x + y) = h(x) + h(y);f: lld -> U 是完全積性; | ||
g 是積性函數且 h(f(p)) = g(p) 對於質數 p。 | ||
呼叫 F_comp 前需要先呼叫 F_prime 得到 S(i)。 | ||
S(i), R(i) 是 F_prime 和 F_comp 在 n/k 點的值。 | ||
F(i) = \sum _ {j <= i} f(j) 和 f(i) 需要快速求值。 | ||
g(p, c) := g(pow(p, c)) 需要快速求值。 | ||
例如若 g(p) 是度數 d 的多項式則可以構造 f(p) 是維護 | ||
pow(p, c) 的 (d+1)-tuple */ |