Skip to content

Commit

Permalink
docs: standardize bedrock page (langchain-ai#23738)
Browse files Browse the repository at this point in the history
  • Loading branch information
baskaryan authored Jul 2, 2024
1 parent a77a263 commit 79c07a8
Showing 1 changed file with 179 additions and 108 deletions.
287 changes: 179 additions & 108 deletions docs/docs/integrations/chat/bedrock.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -2,125 +2,156 @@
"cells": [
{
"cell_type": "raw",
"id": "fbc66410",
"metadata": {
"vscode": {
"languageId": "raw"
}
},
"id": "afaf8039",
"metadata": {},
"source": [
"---\n",
"sidebar_label: Bedrock\n",
"sidebar_label: AWS Bedrock\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "bf733a38-db84-4363-89e2-de6735c37230",
"id": "e49f1e0d",
"metadata": {},
"source": [
"# ChatBedrock\n",
"\n",
">[Amazon Bedrock](https://aws.amazon.com/bedrock/) is a fully managed service that offers a choice of \n",
"> high-performing foundation models (FMs) from leading AI companies like `AI21 Labs`, `Anthropic`, `Cohere`, \n",
"> `Meta`, `Stability AI`, and `Amazon` via a single API, along with a broad set of capabilities you need to \n",
"> build generative AI applications with security, privacy, and responsible AI. Using `Amazon Bedrock`, \n",
"> you can easily experiment with and evaluate top FMs for your use case, privately customize them with \n",
"> your data using techniques such as fine-tuning and `Retrieval Augmented Generation` (`RAG`), and build \n",
"> agents that execute tasks using your enterprise systems and data sources. Since `Amazon Bedrock` is \n",
"> serverless, you don't have to manage any infrastructure, and you can securely integrate and deploy \n",
"> generative AI capabilities into your applications using the AWS services you are already familiar with."
"This doc will help you get started with AWS Bedrock [chat models](/docs/concepts/#chat-models). Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models (FMs) from leading AI companies like AI21 Labs, Anthropic, Cohere, Meta, Stability AI, and Amazon via a single API, along with a broad set of capabilities you need to build generative AI applications with security, privacy, and responsible AI. Using Amazon Bedrock, you can easily experiment with and evaluate top FMs for your use case, privately customize them with your data using techniques such as fine-tuning and Retrieval Augmented Generation (RAG), and build agents that execute tasks using your enterprise systems and data sources. Since Amazon Bedrock is serverless, you don't have to manage any infrastructure, and you can securely integrate and deploy generative AI capabilities into your applications using the AWS services you are already familiar with.\n",
"\n",
"For more information on which models are accessible via Bedrock, head to the [AWS docs](https://docs.aws.amazon.com/bedrock/latest/userguide/models-features.html).\n",
"\n",
"For detailed documentation of all ChatBedrock features and configurations head to the [API reference](https://api.python.langchain.com/en/latest/chat_models/langchain_aws.chat_models.bedrock.ChatBedrock.html).\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/chat/bedrock) | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
"| [ChatBedrock](https://api.python.langchain.com/en/latest/chat_models/langchain_aws.chat_models.bedrock.ChatBedrock.html) | [langchain-aws](https://api.python.langchain.com/en/latest/aws_api_reference.html) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-aws?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-aws?style=flat-square&label=%20) |\n",
"\n",
"### Model features\n",
"| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
"| ✅ | ✅ | ❌ | ✅ | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | \n",
"\n",
"## Setup\n",
"\n",
"To access Bedrock models you'll need to create an AWS account, set up the Bedrock API service, get an access key ID and secret key, and install the `langchain-aws` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"Head to the [AWS docs](https://docs.aws.amazon.com/bedrock/latest/userguide/setting-up.html) to sign up to AWS and setup your credentials. You'll also need to turn on model access for your account, which you can do by following [these instructions](https://docs.aws.amazon.com/bedrock/latest/userguide/model-access.html)."
]
},
{
"cell_type": "markdown",
"id": "72ee0c4b-9764-423a-9dbf-95129e185210",
"metadata": {},
"source": [
"If you want to get automated tracing of your model calls you can also set your [LangSmith](https://docs.smith.langchain.com/) API key by uncommenting below:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "d51edc81",
"execution_count": null,
"id": "a15d341e-3e26-4ca3-830b-5aab30ed66de",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")\n",
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\""
]
},
{
"cell_type": "markdown",
"id": "0730d6a1-c893-4840-9817-5e5251676d5d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"%pip install --upgrade --quiet langchain-aws"
"### Installation\n",
"\n",
"The LangChain Bedrock integration lives in the `langchain-aws` package:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "d4a7c55d-b235-4ca4-a579-c90cc9570da9",
"metadata": {
"tags": []
},
"execution_count": null,
"id": "652d6238-1f87-422a-b135-f5abbb8652fc",
"metadata": {},
"outputs": [],
"source": [
"from langchain_aws import ChatBedrock\n",
"from langchain_core.messages import HumanMessage"
"%pip install -qU langchain-aws"
]
},
{
"cell_type": "markdown",
"id": "a38cde65-254d-4219-a441-068766c0d4b5",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "70cf04e8-423a-4ff6-8b09-f11fb711c817",
"metadata": {
"tags": []
},
"execution_count": 4,
"id": "cb09c344-1836-4e0c-acf8-11d13ac1dbae",
"metadata": {},
"outputs": [],
"source": [
"chat = ChatBedrock(\n",
"from langchain_aws import ChatBedrock\n",
"\n",
"llm = ChatBedrock(\n",
" model_id=\"anthropic.claude-3-sonnet-20240229-v1:0\",\n",
" model_kwargs={\"temperature\": 0.1},\n",
" model_kwargs=dict(temperature=0),\n",
" # other params...\n",
")"
]
},
{
"cell_type": "markdown",
"id": "2b4f3e15",
"metadata": {},
"source": [
"## Invocation"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "8199ef8f-eb8b-4253-9ea0-6c24a013ca4c",
"execution_count": 5,
"id": "62e0dbc3",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"Voici la traduction en français :\\n\\nJ'aime la programmation.\", additional_kwargs={'usage': {'prompt_tokens': 20, 'completion_tokens': 21, 'total_tokens': 41}}, response_metadata={'model_id': 'anthropic.claude-3-sonnet-20240229-v1:0', 'usage': {'prompt_tokens': 20, 'completion_tokens': 21, 'total_tokens': 41}}, id='run-994f0362-0e50-4524-afad-3c4f5bb11328-0')"
"AIMessage(content=\"Voici la traduction en français :\\n\\nJ'aime la programmation.\", additional_kwargs={'usage': {'prompt_tokens': 29, 'completion_tokens': 21, 'total_tokens': 50}, 'stop_reason': 'end_turn', 'model_id': 'anthropic.claude-3-sonnet-20240229-v1:0'}, response_metadata={'usage': {'prompt_tokens': 29, 'completion_tokens': 21, 'total_tokens': 50}, 'stop_reason': 'end_turn', 'model_id': 'anthropic.claude-3-sonnet-20240229-v1:0'}, id='run-fdb07dc3-ff72-430d-b22b-e7824b15c766-0', usage_metadata={'input_tokens': 29, 'output_tokens': 21, 'total_tokens': 50})"
]
},
"execution_count": 12,
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"messages = [\n",
" HumanMessage(\n",
" content=\"Translate this sentence from English to French. I love programming.\"\n",
" )\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates English to French. Translate the user sentence.\",\n",
" ),\n",
" (\"human\", \"I love programming.\"),\n",
"]\n",
"chat.invoke(messages)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "a4a4f4d4",
"metadata": {},
"source": [
"### Streaming\n",
"\n",
"To stream responses, you can use the runnable `.stream()` method."
"ai_msg = llm.invoke(messages)\n",
"ai_msg"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "d9e52838",
"execution_count": 6,
"id": "d86145b3-bfef-46e8-b227-4dda5c9c2705",
"metadata": {},
"outputs": [
{
Expand All @@ -129,84 +160,124 @@
"text": [
"Voici la traduction en français :\n",
"\n",
"J'aime la programmation."
"J'aime la programmation.\n"
]
}
],
"source": [
"for chunk in chat.stream(messages):\n",
" print(chunk.content, end=\"\", flush=True)"
"print(ai_msg.content)"
]
},
{
"cell_type": "markdown",
"id": "c36575b3",
"id": "18e2bfc0-7e78-4528-a73f-499ac150dca8",
"metadata": {},
"source": [
"### LLM Caching with OpenSearch Semantic Cache\n",
"## Chaining\n",
"\n",
"Use OpenSearch as a semantic cache to cache prompts and responses and evaluate hits based on semantic similarity.\n",
"\n"
"We can [chain](/docs/how_to/sequence/) our model with a prompt template like so:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "375d4e56",
"execution_count": 7,
"id": "e197d1d7-a070-4c96-9f8a-a0e86d046e0b",
"metadata": {},
"outputs": [],
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Ich liebe Programmieren.', additional_kwargs={'usage': {'prompt_tokens': 23, 'completion_tokens': 11, 'total_tokens': 34}, 'stop_reason': 'end_turn', 'model_id': 'anthropic.claude-3-sonnet-20240229-v1:0'}, response_metadata={'usage': {'prompt_tokens': 23, 'completion_tokens': 11, 'total_tokens': 34}, 'stop_reason': 'end_turn', 'model_id': 'anthropic.claude-3-sonnet-20240229-v1:0'}, id='run-5ad005ce-9f31-4670-baa0-9373d418698a-0', usage_metadata={'input_tokens': 23, 'output_tokens': 11, 'total_tokens': 34})"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.globals import set_llm_cache\n",
"from langchain_aws import BedrockEmbeddings, ChatBedrock\n",
"from langchain_community.cache import OpenSearchSemanticCache\n",
"from langchain_core.messages import HumanMessage\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"bedrock_embeddings = BedrockEmbeddings(\n",
" model_id=\"amazon.titan-embed-text-v1\", region_name=\"us-east-1\"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates {input_language} to {output_language}.\",\n",
" ),\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
"\n",
"chat = ChatBedrock(\n",
" model_id=\"anthropic.claude-3-haiku-20240307-v1:0\", model_kwargs={\"temperature\": 0.5}\n",
")\n",
"\n",
"# Enable LLM cache. Make sure OpenSearch is set up and running. Update URL accordingly.\n",
"set_llm_cache(\n",
" OpenSearchSemanticCache(\n",
" opensearch_url=\"http://localhost:9200\", embedding=bedrock_embeddings\n",
" )\n",
"chain = prompt | llm\n",
"chain.invoke(\n",
" {\n",
" \"input_language\": \"English\",\n",
" \"output_language\": \"German\",\n",
" \"input\": \"I love programming.\",\n",
" }\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bb5d25bb",
"cell_type": "markdown",
"id": "d1ee55bc-ffc8-4cfa-801c-993953a08cfd",
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"# The first time, it is not yet in cache, so it should take longer\n",
"messages = [HumanMessage(content=\"tell me about Amazon Bedrock\")]\n",
"response_text = chat.invoke(messages)\n",
"## ***Beta***: Bedrock Converse API\n",
"\n",
"print(response_text)"
"AWS has recently recently the Bedrock Converse API which provides a unified conversational interface for Bedrock models. This API does not yet support custom models. You can see a list of all [models that are supported here](https://docs.aws.amazon.com/bedrock/latest/userguide/conversation-inference.html). To improve reliability the ChatBedrock integration will switch to using the Bedrock Converse API as soon as it has feature parity with the existing Bedrock API. Until then a separate [ChatBedrockConverse](https://api.python.langchain.com/en/latest/chat_models/langchain_aws.chat_models.bedrock_converse.ChatBedrockConverse.html#langchain_aws.chat_models.bedrock_converse.ChatBedrockConverse) integration has been released in beta for users who do not need to use custom models.\n",
"\n",
"You can use it like so:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6cfb3086",
"execution_count": 8,
"id": "ae728e59-94d4-40cf-9d24-25ad8723fc59",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/bagatur/langchain/libs/core/langchain_core/_api/beta_decorator.py:87: LangChainBetaWarning: The class `ChatBedrockConverse` is in beta. It is actively being worked on, so the API may change.\n",
" warn_beta(\n"
]
},
{
"data": {
"text/plain": [
"AIMessage(content=\"Voici la traduction en français :\\n\\nJ'aime la programmation.\", response_metadata={'ResponseMetadata': {'RequestId': '122fb1c8-c3c5-4b06-941e-c95d210bfbc7', 'HTTPStatusCode': 200, 'HTTPHeaders': {'date': 'Mon, 01 Jul 2024 21:48:25 GMT', 'content-type': 'application/json', 'content-length': '243', 'connection': 'keep-alive', 'x-amzn-requestid': '122fb1c8-c3c5-4b06-941e-c95d210bfbc7'}, 'RetryAttempts': 0}, 'stopReason': 'end_turn', 'metrics': {'latencyMs': 830}}, id='run-0e3df22f-fcd8-4fbb-a4fb-565227e7e430-0', usage_metadata={'input_tokens': 29, 'output_tokens': 21, 'total_tokens': 50})"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_aws import ChatBedrockConverse\n",
"\n",
"llm = ChatBedrockConverse(\n",
" model=\"anthropic.claude-3-sonnet-20240229-v1:0\",\n",
" temperature=0,\n",
" max_tokens=None,\n",
" # other params...\n",
")\n",
"\n",
"llm.invoke(messages)"
]
},
{
"cell_type": "markdown",
"id": "3a5bb5ca-c3ae-4a58-be67-2cd18574b9a3",
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"# The second time, while not a direct hit, the question is semantically similar to the original question,\n",
"# so it uses the cached result!\n",
"## API reference\n",
"\n",
"messages = [HumanMessage(content=\"what is amazon bedrock\")]\n",
"response_text = chat.invoke(messages)\n",
"For detailed documentation of all ChatBedrock features and configurations head to the API reference: https://api.python.langchain.com/en/latest/chat_models/langchain_aws.chat_models.bedrock.ChatBedrock.html\n",
"\n",
"print(response_text)"
"For detailed documentation of all ChatBedrockConverse features and configurations head to the API reference: https://api.python.langchain.com/en/latest/chat_models/langchain_aws.chat_models.bedrock_converse.ChatBedrockConverse.html"
]
}
],
Expand All @@ -226,7 +297,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
"version": "3.11.9"
}
},
"nbformat": 4,
Expand Down

0 comments on commit 79c07a8

Please sign in to comment.