Skip to content

OpenLiberty/guide-microprofile-metrics

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Providing metrics from a microservice

Note
This repository contains the guide documentation source. To view the guide in published form, view it on the Open Liberty website.

You’ll explore how to provide system and application metrics from a microservice with MicroProfile Metrics.

What you’ll learn

You will learn how to use MicroProfile Metrics to provide metrics from a microservice. You can monitor metrics to determine the performance and health of a service. You can also use them to pinpoint issues, collect data for capacity planning, or to decide when to scale a service to run with more or fewer resources.

The application that you will work with is an inventory service that stores information about various systems. The inventory service communicates with the system service on a particular host to retrieve its system properties when necessary.

You will use annotations provided by MicroProfile Metrics to instrument the inventory service to provide application-level metrics data. You will add counter, gauge, and timer metrics to the service.

You will also check well-known REST endpoints that are defined by MicroProfile Metrics to review the metrics data collected. Monitoring agents can access these endpoints to collect metrics.

Point your browser to the http://localhost:9080/inventory/systems URL to access the inventory service. Because you just started the application, the inventory is empty. Access the http://localhost:9080/inventory/systems/localhost URL to add the localhost into the inventory.

Access the inventory service at the http://localhost:9080/inventory/systems URL at least once so that application metrics are collected. Otherwise, the metrics do not appear.

Next, point your browser to the https://localhost:9443/metrics MicroProfile Metrics endpoint. Log in as the admin user with adminpwd as the password. You can see both the system and application metrics in a text format.

To see only the application metrics, point your browser to https://localhost:9443/metrics?scope=application.

See the following sample outputs for the @Timed, @Gauge, and @Counted metrics:

# TYPE application_inventoryProcessingTime_rate_per_second gauge
application_inventoryProcessingTime_rate_per_second{method="get"} 0.0019189661542898407
...
# TYPE application_inventoryProcessingTime_seconds summary
# HELP application_inventoryProcessingTime_seconds Time needed to process the inventory
application_inventoryProcessingTime_seconds_count{method="get"} 1
application_inventoryProcessingTime_seconds{method="get",quantile="0.5"} 0.127965469
...
# TYPE application_inventoryProcessingTime_rate_per_second gauge
application_inventoryProcessingTime_rate_per_second{method="list"} 0.0038379320982686884
...
# TYPE application_inventoryProcessingTime_seconds summary
# HELP application_inventoryProcessingTime_seconds Time needed to process the inventory
application_inventoryProcessingTime_seconds_count{method="list"} 2
application_inventoryProcessingTime_seconds{method="list",quantile="0.5"} 2.2185000000000002E-5
...
# TYPE application_inventorySizeGauge gauge
# HELP application_inventorySizeGauge Number of systems in the inventory
application_inventorySizeGauge 1
# TYPE application_inventoryAccessCount_total counter
# HELP application_inventoryAccessCount_total Number of times the list of systems method is requested
application_inventoryAccessCount_total 1

To see only the system metrics, point your browser to https://localhost:9443/metrics?scope=base.

See the following sample output:

# TYPE base_jvm_uptime_seconds gauge
# HELP base_jvm_uptime_seconds Displays the start time of the Java virtual machine in milliseconds. This attribute displays the approximate time when the Java virtual machine started.
base_jvm_uptime_seconds 30.342000000000002
# TYPE base_classloader_loadedClasses_count gauge
# HELP base_classloader_loadedClasses_count Displays the number of classes that are currently loaded in the Java virtual machine.
base_classloader_loadedClasses_count 11231

To see only the vendor metrics, point your browser to https://localhost:9443/metrics?scope=vendor.

See the following sample output:

# TYPE vendor_threadpool_size gauge
# HELP vendor_threadpool_size The size of the thread pool.
vendor_threadpool_size{pool="Default_Executor"} 32
# TYPE vendor_servlet_request_total counter
# HELP vendor_servlet_request_total The number of visits to this servlet from the start of the server.
vendor_servlet_request_total{servlet="microprofile_metrics_io_openliberty_guides_inventory_InventoryApplication"} 1

Adding MicroProfile Metrics to the inventory service

pom.xml

link:finish/pom.xml[role=include]

Navigate to the start directory to begin.

The MicroProfile Metrics API is included in the MicroProfile dependency specified by your pom.xml file. Look for the dependency with the microprofile artifact ID. This dependency provides a library that allows you to use the MicroProfile Metrics API in your code to provide metrics from your microservices.

Replace the Liberty server.xml configuration file.
src/main/liberty/config/server.xml

server.xml

link:finish/src/main/liberty/config/server.xml[role=include]

The mpMetrics feature enables MicroProfile Metrics support in Open Liberty. Note that this feature requires SSL and the configuration has been provided for you.

The quickStartSecurity configuration element provides basic security to secure the Liberty. When you visit the /metrics endpoint, use the credentials defined in the Liberty’s configuration to log in and view the data.

Adding the annotations

Replace the InventoryManager class.
src/main/java/io/openliberty/guides/inventory/InventoryManager.java

InventoryManager.java

link:finish/src/main/java/io/openliberty/guides/inventory/InventoryManager.java[role=include]

Apply the @Timed annotation to the get() method, and apply the @Timed annotation to the list() method.

This annotation has these metadata fields:

name

Optional. Use this field to name the metric.

tags

Optional. Use this field to add tags to the metric with the same name.

absolute

Optional. Use this field to determine whether the metric name is the exact name that is specified in the name field or that is specified with the package prefix.

description

Optional. Use this field to describe the purpose of the metric.

The @Timed annotation tracks how frequently the method is invoked and how long it takes for each invocation of the method to complete. Both the get() and list() methods are annotated with the @Timed metric and have the same inventoryProcessingTime name. The method=get and method=list tags add a dimension that uniquely identifies the collected metric data from the inventory processing time in getting the system properties.

  • The method=get tag identifies the inventoryProcessingTime metric that measures the elapsed time to get the system properties when you call the system service.

  • The method=list tag identifies the inventoryProcessingTime metric that measures the elapsed time for the inventory service to list all of the system properties in the inventory.

The tags allow you to query the metrics together or separately based on the functionality of the monitoring tool of your choice. The inventoryProcessingTime metrics for example could be queried to display an aggregate time of both tagged metrics or individual times.

Apply the @Timed annotation to the add() method to track how frequently the method is invoked and how long it takes for each invocation of the method to complete.

Apply the @Counted annotation to the list() method to count how many times the http://localhost:9080/inventory/systems URL is accessed monotonically, which is counting up sequentially.

Apply the @Gauge annotation to the getTotal() method to track the number of systems that are stored in the inventory. When the value of the gauge is retrieved, the underlying getTotal() method is called to return the size of the inventory. Note the additional metadata field:

unit

Set the unit of the metric. If it is MetricUnits.NONE, the metric name is used without appending the unit name, no scaling is applied.

Additional information about these annotations, relevant metadata fields, and more are available at the MicroProfile Metrics Annotation Javadoc.

Enabling vendor metrics for the microservices

server.xml

link:finish/src/main/liberty/config/server.xml[role=include]

MicroProfile Metrics API implementers can provide vendor metrics in the same forms as the base and application metrics do. Open Liberty as a vendor supplies server component metrics when the mpMetrics feature is enabled in the server.xml configuration file.

You can see the vendor-only metrics in the metrics?scope=vendor endpoint. You see metrics from the runtime components, such as Web Application, ThreadPool and Session Management. Note that these metrics are specific to the Liberty instance. Different vendors may provide other metrics. Visit the Metrics reference list for more information.

Building and running the application

The Open Liberty instance was started in dev mode at the beginning of the guide and all the changes were automatically picked up.

Point your browser to the https://localhost:9443/metrics URL to review all the metrics that are enabled through MicroProfile Metrics. Log in with admin as your username and adminpwd as your password. You see only the system and vendor metrics because the Liberty instance just started, and the inventory service has not been accessed.

Next, point your browser to the http://localhost:9080/inventory/systems URL. Reload the https://localhost:9443/metrics URL, or access only the application metrics at the https://localhost:9443/metrics?scope=application URL.

You can see the system metrics in the https://localhost:9443/metrics?scope=base URL as well as see the vendor metrics in the https://localhost:9443/metrics?scope=vendor URL.

Testing the metrics

You can test your application manually, but automated tests ensure code quality because they trigger a failure whenever a code change introduces a defect. JUnit and the Jakarta Restful Web Services Client API provide a simple environment for you to write tests.

Create the MetricsIT class.
src/test/java/it/io/openliberty/guides/metrics/MetricsIT.java

MetricsIT.java

link:finish/src/test/java/it/io/openliberty/guides/metrics/MetricsIT.java[role=include]

InventoryManager.java

link:finish/src/main/java/io/openliberty/guides/inventory/InventoryManager.java[role=include]
  • The testPropertiesRequestTimeMetric() test case validates the @Timed metric. The test case sends a request to the http://localhost:9080/inventory/systems/localhost URL to access the inventory service, which adds the localhost host to the inventory. Next, the test case makes a connection to the https://localhost:9443/metrics?scope=application URL to retrieve application metrics as plain text. Then, it asserts whether the time that is needed to retrieve the system properties for localhost is less than 4 seconds.

  • The testInventoryAccessCountMetric() test case validates the @Counted metric. The test case obtains metric data before and after a request to the http://localhost:9080/inventory/systems URL. It then asserts that the metric was increased after the URL was accessed.

  • The testInventorySizeGaugeMetric() test case validates the @Gauge metric. The test case first ensures that the localhost is in the inventory, then looks for the @Gauge metric and asserts that the inventory size is greater or equal to 1.

  • The testPropertiesAddTimeMetric() test case validates the @Timed metric. The test case sends a request to the http://localhost:9080/inventory/systems/localhost URL to access the inventory service, which adds the localhost host to the inventory. Next, the test case makes a connection to the https://localhost:9443/metrics?scope=application URL to retrieve application metrics as plain text. Then, it looks for the @Timed metric and asserts true if the metric exists.

The oneTimeSetup() method retrieves the port number for the Liberty and builds a base URL string to set up the tests. Apply the @BeforeAll annotation to this method to run it before any of the test cases.

The setup() method creates a JAX-RS client that makes HTTP requests to the inventory service. The teardown() method destroys this client instance. Apply the @BeforeEach annotation so that a method runs before a test case and apply the @AfterEach annotation so that a method runs after a test case. Apply these annotations to methods that are generally used to perform any setup and teardown tasks before and after a test.

To force these test cases to run in a particular order, annotate your MetricsIT test class with the @TestMethodOrder(OrderAnnotation.class) annotation. OrderAnnotation.class runs test methods in numerical order, according to the values specified in the @Order annotation. You can also create a custom MethodOrderer class or use built-in MethodOrderer implementations, such as OrderAnnotation.class, Alphanumeric.class, or Random.class. Label your test cases with the @Test annotation so that they automatically run when your test class runs.

In addition, the endpoint tests src/test/java/it/io/openliberty/guides/inventory/InventoryEndpointIT.java and src/test/java/it/io/openliberty/guides/system/SystemEndpointIT.java are provided for you to test the basic functionality of the inventory and system services. If a test failure occurs, then you might have introduced a bug into the code.

Running the tests

Because you started Open Liberty in dev mode at the start of the guide, press the enter/return key to run the tests and see the following output:

-------------------------------------------------------
 T E S T S
-------------------------------------------------------
Running it.io.openliberty.guides.system.SystemEndpointIT
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 1.4 sec - in it.io.openliberty.guides.system.SystemEndpointIT
Running it.io.openliberty.guides.metrics.MetricsIT
Tests run: 4, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 1.476 sec - in it.io.openliberty.guides.metrics.MetricsIT
Running it.io.openliberty.guides.inventory.InventoryEndpointIT
[WARNING ] Interceptor for {http://client.inventory.guides.openliberty.io/}SystemClient has thrown exception, unwinding now
Could not send Message.
[err] The specified host is unknown.
Tests run: 3, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.264 sec - in it.io.openliberty.guides.inventory.InventoryEndpointIT

Results :

Tests run: 8, Failures: 0, Errors: 0, Skipped: 0

The warning and error messages are expected and result from a request to a bad or an unknown hostname. This request is made in the testUnknownHost() test from the InventoryEndpointIT integration test.

To determine whether the tests detect a failure, go to the MetricsIT.java file and change any of the assertions in the test methods. Then re-run the tests to see a test failure occur.

Great work! You’re done!

You learned how to enable system, application and vendor metrics for microservices by using MicroProfile Metrics and wrote tests to validate them in Open Liberty.