Skip to content

Commit

Permalink
fix error in goedel.tex reported by Sean Ebels-Duggan; add a couple m…
Browse files Browse the repository at this point in the history
…ore examples
  • Loading branch information
rzach committed Feb 14, 2024
1 parent fee333f commit 6ce0abe
Show file tree
Hide file tree
Showing 2 changed files with 23 additions and 10 deletions.
9 changes: 7 additions & 2 deletions content/many-valued-logic/infinite-valued-logics/goedel.tex
Original file line number Diff line number Diff line change
Expand Up @@ -103,8 +103,8 @@
are non-tautologies of~$\LogGod[\infty]$:
\begin{align*}
& p \lor \lnot p && (p \lif q) \lif (\lnot p \lor q) \\
& \lnot\lnot p \lif p && \lnot(p \land q) \lif (\lnot p \lor \lnot q) \\
&&& ((p \lif q) \lif p) \lif p
& \lnot\lnot p \lif p && \lnot(\lnot p \land \lnot q) \lif (p \lor q) \\
& ((p \lif q) \lif p) \lif p && \lnot(p \lif q) \lif (p \land \lnot q)
\end{align*}
The example of an intuitionistically invalid !!{formula} that is
nevertheless a tautology of~$\LogGod[3]$, $(p \lif q) \lor (q \lif
Expand All @@ -119,4 +119,9 @@
tautology of~$\LogGod[\infty]$.
\end{prob}

\begin{prob}
Show that $(p \lif q) \lor (q \lif r) \lor (r \lif s)$, which is
a tautology of $\LogGod[3]$, is not a tautology of~$\LogGod[\infty]$.
\end{prob}

\end{document}
24 changes: 16 additions & 8 deletions content/many-valued-logic/three-valued-logics/goedel.tex
Original file line number Diff line number Diff line change
Expand Up @@ -75,24 +75,32 @@
in~$\LogGod[3]$. For instance, the following are not tautologies:
\begin{align*}
& p \lor \lnot p && (p \lif q) \lif (\lnot p \lor q) \\
& \lnot\lnot p \lif p && \lnot(p \land q) \lif (\lnot p \lor \lnot q) \\
&&& ((p \lif q) \lif p) \lif p
& \lnot\lnot p \lif p && \lnot(\lnot p \land \lnot q) \lif (p \lor q) \\
& ((p \lif q) \lif p) \lif p && \lnot(p \lif q) \lif (p \land \lnot q)
\end{align*}
However, not every tautology of $\LogGod[3]$ is also intuitionistically
valid, e.g., $(p \lif q) \lor (q \lif p)$.
However, not every tautology of $\LogGod[3]$ is also
intuitionistically valid, e.g., $\lnot\lnot p \lor \lnot p$ or $(p
\lif q) \lor (q \lif p)$.

\begin{prob}
Give a truth table to show that $(p \lif q) \lor (q \lif p)$ is a
tautology of~$\LogGod[3]$.
Give truth tables to show that the following are tautologies
of~$\LogGod[3]$:
\begin{align*}
& \lnot\lnot p \lor \lnot p\\
& (p \lif q) \lor (q \lif p) \\
& \lnot(p \land q) \lif (\lnot p \lor \lnot q) \\
& (p \lif q) \lor (q \lif r) \lor (r \lif s)
\end{align*}
\end{prob}

\begin{prob}
Give truth tables that show that the following are not tautologies
of~$\LogGod[3]$
\begin{align*}
& (p \lif q) \lif (\lnot p \lor q) \\
& \lnot(p \land q) \lif (\lnot p \lor \lnot q) \\
& ((p \lif q) \lif p) \lif p
& \lnot(\lnot p \land \lnot q) \lif (p \lor q) \\
& ((p \lif q) \lif p) \lif p \\
& \lnot(p \lif q) \lif (p \land \lnot q)
\end{align*}
\end{prob}

Expand Down

0 comments on commit 6ce0abe

Please sign in to comment.