Skip to content

Commit

Permalink
v0.6.0 release
Browse files Browse the repository at this point in the history
Final round of cleanups
  • Loading branch information
OverLordGoldDragon authored Feb 19, 2021
1 parent 5f6e85d commit b3717f8
Show file tree
Hide file tree
Showing 35 changed files with 503 additions and 241 deletions.
5 changes: 3 additions & 2 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@
- `_infer_scaletype` -> `infer_scaletype`
- `_integrate_analytic` -> `integrate_analytic`
- `find_max_scale` -> `find_max_scale_alt`, but `find_max_scale` is still (but a different) function

#### MISC
- `phase_cwt`: takes `abs(w)` instead of zeroing negatives
- `wavelet` in `icwt` and `issq_cwt` now defaults to the default wavelet
Expand All @@ -47,13 +47,14 @@
#### FIXES
- `visuals.wavelet_heatmap`: string `scales` now functional
- `visuals`: `w` overreached into negative frequencies for odd `N` in `wavelet_tf`, `wavelet_tf_anim`, & `wavelet_heatmap`
- `icwt`: `padtype` now functional
- `icwt`: `padtype` now functional

#### FILE CHANGES
- `ssqueezepy/` added: `_gmw.py`, `_test_signals.py`, `ridge_extraction.py`, `configs.ini`, `README.md`
- `ssqueezepy/` added `utils/`, split `utils.py` into `common.py`, `cwt_utils.py`, `stft_utils.py`, `__init__.py`, & moved to `utils/`.
- `tests/` added: `gmw_test.py`, `test_signals_test.py`, `ridge_extraction_test.py`
- `examples/` added: `extracting_ridges.py`, `scales_selection.py`, `ridge_extract_readme/`: `README.md`, `imgs/*`
- Created `MANIFEST.in`


### 0.5.5 (1-14-2021): STFT & Synchrosqueezed STFT
Expand Down
5 changes: 5 additions & 0 deletions MANIFEST.in
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
include README.md
include LICENSE
include requirements.txt
include ssqueezepy/configs.ini
include ssqueezepy/README.md
5 changes: 4 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -46,6 +46,8 @@ Synchrosqueezing is a powerful _reassignment method_ that focuses time-frequency

<img src="https://user-images.githubusercontent.com/16495490/107919540-f4e5d000-6f84-11eb-9f86-dbfd34733084.png">

[More](https://github.com/OverLordGoldDragon/ssqueezepy/tree/master/examples/ridge_extraction)

### 5. Testing suite: GMW vs Morlet, reflect-added hyperbolic chirp (extreme time-loc.)

<img src="https://user-images.githubusercontent.com/16495490/107903903-d9b69880-6f63-11eb-9478-8ead016cf6f8.png">
Expand All @@ -68,7 +70,6 @@ Synchrosqueezing is a powerful _reassignment method_ that focuses time-frequency
<img src="https://raw.githubusercontent.com/OverLordGoldDragon/ssqueezepy/master/examples/imgs/morlet_5vs20_tf.png">
<img src="https://user-images.githubusercontent.com/16495490/107297978-e6338080-6a8d-11eb-8a11-60bfd6e4137d.png">

<br>
<hr>


Expand Down Expand Up @@ -110,6 +111,8 @@ Tsx, Sx, *_ = ssq_stft(x)
viz(x, Tsx, np.flipud(Sx))
```

Also see ridge extraction [README](https://github.com/OverLordGoldDragon/ssqueezepy/tree/master/examples/ridge_extraction).


## Learning resources

Expand Down
Empty file removed examples/__init__.py
Empty file.
Binary file modified examples/imgs/test_signals.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified examples/imgs/test_signals_cwt_vs_stft.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added examples/imgs/test_signals_noisy.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified examples/imgs/test_signals_vs_wavelets.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ Extracts the `n_ridges` (user selected integer) most prominent frequency ridges

The method is based on a forward-backward greedy path optimization algorithm that penalises frequency jumps similar to the MATLAB function 'tfridge' (https://de.mathworks.com/help/signal/ref/tfridge.html).

Further information about the particular algorithm (version of eq. III.4 in publication) as well as limitations and comparisson to other ridge extraction schemes can be found in publication [2] (below):
Further information about the particular algorithm (version of eq. III.4 ref [1]) as well as limitations and comparisson to other ridge extraction schemes can be found in publication [1] (below).



Expand Down Expand Up @@ -34,9 +34,9 @@ ridge_idxs = extract_ridges(Tx, scales, penalty, n_ridges=2, bw=4)
viz(x, Tx, ridge_idxs, ssq_freqs, ssq=True)
```

![signal_1](/examples/ridge_extract_readme/imgs/signal_1.png)
![cwt_ridge_signal_1](/examples/ridge_extract_readme/imgs/cwt_signal_1_ridge.png)
![ssq_ridge_signal_1](/examples/ridge_extract_readme/imgs/ssq_signal_1_ridge.png)
![signal_1](/examples/ridge_extraction/imgs/signal_1.png)
![cwt_ridge_signal_1](/examples/ridge_extraction/imgs/cwt_signal_1_ridge.png)
![ssq_ridge_signal_1](/examples/ridge_extraction/imgs/ssq_signal_1_ridge.png)

## 2: Two chirp signals with linear and quadratic frequency variation

Expand All @@ -62,9 +62,9 @@ ridge_idxs = extract_ridges(Tx, scales, penalty, n_ridges=2, bw=2)
viz(x, Tx, ridge_idxs, ssq=True)
```

![signal_2](/examples/ridge_extract_readme/imgs/signal_2.png)
![cwt_ridge_signal_2](/examples/ridge_extract_readme/imgs/cwt_signal_2_ridge.png)
![ssq_ridge_signal_2](/examples/ridge_extract_readme/imgs/ssq_signal_2_ridge.png)
![signal_2](/examples/ridge_extraction/imgs/signal_2.png)
![cwt_ridge_signal_2](/examples/ridge_extraction/imgs/cwt_signal_2_ridge.png)
![ssq_ridge_signal_2](/examples/ridge_extraction/imgs/ssq_signal_2_ridge.png)

## 3: One sweep signal and one constant frequency signal

Expand All @@ -91,9 +91,9 @@ ridge_idxs = extract_ridges(Tx, scales, penalty, n_ridges=2, bw=2)
viz(x, Tx, ridge_idxs, ssq=True)
```

![signal_3](/examples/ridge_extract_readme/imgs/signal_3.png)
![cwt_ridge_signal_3](/examples/ridge_extract_readme/imgs/cwt_signal_3_ridge.png)
![ssq_ridge_signal_3](/examples/ridge_extract_readme/imgs/ssq_signal_3_ridge.png)
![signal_3](/examples/ridge_extraction/imgs/signal_3.png)
![cwt_ridge_signal_3](/examples/ridge_extraction/imgs/cwt_signal_3_ridge.png)
![ssq_ridge_signal_3](/examples/ridge_extraction/imgs/ssq_signal_3_ridge.png)

## 4: Example of insufficient penalty term

Expand All @@ -119,26 +119,27 @@ ridge_idxs = extract_ridges(Wx, scales, penalty=0.5, n_ridges=2, bw=25)
viz(x, Wx, ridge_idxs)
```

![signal_failed_wsst](/examples/ridge_extract_readme/imgs/signal_failed_wsst.png)
![cwt_ridge_signal_failed_wsst_noPen](/examples/ridge_extract_readme/imgs/cwt_signal_failed_wsst_ridge_pen00.png)
![cwt_ridge_signal_failed_wsst_penalty05](/examples/ridge_extract_readme/imgs/cwt_signal_failed_wsst_ridge_pen05.png)
![signal_failed_wsst](/examples/ridge_extraction/imgs/signal_failed_wsst.png)
![cwt_ridge_signal_failed_wsst_noPen](/examples/ridge_extraction/imgs/cwt_signal_failed_wsst_ridge_pen00.png)
![cwt_ridge_signal_failed_wsst_penalty05](/examples/ridge_extraction/imgs/cwt_signal_failed_wsst_ridge_pen05.png)


### Practical considerations

## 1. Ridge extraction on ssq_cwt

The idea of a syncrosqueezed time-frequency representation is to improve upon the localization process and more accurately recover the frequency components compared to inverting the CWT over the entire time-scale plan [1]. However, whether ridge extraction is improved on a syncrosqueezed transform is still uncertain and may require further considerations [2] and expertise from the users on appropriate parameter tuning for stable and improved results.
The idea of a syncrosqueezed time-frequency representation is to improve upon the localization process and more accurately recover the frequency components compared to inverting the CWT over the entire time-scale plane [2]. However, whether ridge extraction is improved on a syncrosqueezed transform is still uncertain and may require further considerations [1] and expertise from the users on appropriate parameter tuning for stable and improved results.

[1] On the extraction of instantaneous frequencies from ridges in time-frequency representations of signals. D. Iatsenko, P. V. E. McClintock, A. Stefanovska. https://arxiv.org/pdf/1310.7276.pdf <br>
[2] The Synchrosqueezing algorithm for time-varying spectral analysis: robustness properties and new paleoclimate applications. Gaurav Thakur, Eugene Brevdo, Neven S. Fuˇckar, and Hau-Tieng Wu. https://arxiv.org/pdf/1105.0010.pdf

[1] The Synchrosqueezing algorithm for time-varying spectral analysis: robustness properties and new paleoclimate applications. Gaurav Thakur, Eugene Brevdo, Neven S. Fuˇckar, and Hau-Tieng Wu. https://arxiv.org/pdf/1105.0010.pdf <br>
[2] On the extraction of instantaneous frequencies from ridges in time-frequency representations of signals. D. Iatsenko, P. V. E. McClintock, A. Stefanovska. https://arxiv.org/pdf/1310.7276.pdf

Example 1 particularly highlights how edge-effects may make ridge extraction on the syncrosqueezed transform more unstable.

## 2. Signal padding

Particular consideration to choice of wavelet type, signal padding and other input parameters are advised before using the time-frequency ridge extraction.
Different padding schems suited to your time signals may be nessecary to handle edge effects in your time frequency maps. Example 2 & 3 highlights an appropriate padding along with usage of wavelet.
Different padding schems suited to your time signals may be nessecary to handle edge effects in your time frequency maps. Examples 2 & 3 highlight an appropriate padding along with usage of wavelet.


## 3. Penalty term
Expand Down
55 changes: 41 additions & 14 deletions examples/test_transforms.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
from ssqueezepy import Wavelet, TestSignals
from ssqueezepy.utils import window_resolution

tsigs = TestSignals(N=512)
tsigs = TestSignals(N=2048)
#%%# Viz signals #############################################################
# set `dft` to 'rows' or 'cols' to also plot signals' DFT, along rows or columns
dft = (None, 'rows', 'cols')[0]
Expand All @@ -16,40 +16,67 @@
('hchirp', dict(fmin=.2)),
('sine:am-cosine', (dict(f=32, phi0=1), dict(amin=.3))),
]
tsigs.demo(signals, N=512)
tsigs.demo(signals, N=2048)

#%%# With `dft` ##################
tsigs.demo(signals, dft='rows')
tsigs.demo(signals, dft='cols')

#%%# Viz CWT & SSQ_CWT with different wavelets ###############################
tsigs = TestSignals(N=512)
wavelets = [Wavelet(('gmw', {'beta': 5})),
Wavelet(('gmw', {'beta': 22}))]
tsigs.wavcomp(wavelets)
tsigs = TestSignals(N=2048)
wavelets = [
Wavelet(('gmw', {'beta': 60})),
Wavelet(('gmw', {'beta': 5})),
]
tsigs.wavcomp(wavelets, signals='all')

#%%#
tsigs.wavcomp(wavelets, signals=[('#echirp', dict(fmin=.1))], N=512)
tsigs.wavcomp(wavelets, signals=[('#echirp', dict(fmin=.1))], N=2048)

#%%# Viz CWT vs STFT (& SSQ'd) ###############################################
# (N, beta, NW): (512, 42.5, 255); (256, 21.5, 255)
N = 512
N = 2048
signals = 'all'

n_fft = N
win_len = n_fft // 2
win_len = 720
tsigs = TestSignals(N=N)
wavelet = Wavelet(('GMW', {'beta': 21.5}))
wavelet = Wavelet(('GMW', {'beta': 60}))

NW = win_len//2 - 1
window = np.abs(sig.windows.dpss(win_len, NW))
window = np.pad(window, win_len//2)
window = np.pad(window, (N - len(window))//2)
assert len(window) == N
window_name = 'DPSS'
config_str = '\nNW=%s, win_pad_len=%s' % (NW, len(window) - win_len)
config_str = 'NW=%s, win_len=%s, win_pad_len=%s' % (
NW, win_len, len(window) - win_len)

# ensure `wavelet` and `window` have ~same time & frequency resolutions
print("std_w, std_t, harea\nwavelet: {:.4f}, {:.4f}, {:.8f}"
"\nwindow: {:.4f}, {:.4f}, {:.8f}".format(
wavelet.std_w, wavelet.std_t, wavelet.harea,
*window_resolution(window)))
#%%
tsigs.cwt_vs_stft(wavelet, window, signals='all', N=N, win_len=None,
n_fft=n_fft, window_name=window_name, config_str=config_str)
kw = dict(wavelet=wavelet, window=window, win_len=None, n_fft=n_fft,
window_name=window_name, config_str=config_str)
tsigs.cwt_vs_stft(N=N, signals=signals, **kw)

#%%# Noisy example ###########################################################
N = 2048
snr = -2 # in dB
signals = 'packed-poly'

tsigs = TestSignals(N=N, snr=snr)
tsigs.cwt_vs_stft(N=N, signals=signals, **kw)

#%%# Ridge extraction ########################################################
N = 512
signals = 'poly-cubic'
snr = None
n_ridges = 3
penalty = 25

tsigs = TestSignals(N=N, snr=snr)
kw = dict(N=N, signals=signals, n_ridges=n_ridges, penalty=penalty)
tsigs.ridgecomp(transform='cwt', **kw)
tsigs.ridgecomp(transform='stft', **kw)
7 changes: 6 additions & 1 deletion ssqueezepy/README.md
Original file line number Diff line number Diff line change
@@ -1,7 +1,12 @@
# Usage guide

See full README and `examples/` at https://github.com/OverLordGoldDragon/ssqueezepy/ . Also
see method/object docstrings via e.g. `help(cwt)`, `help(wavelet)`.
see method/object docstrings via e.g. `help(cwt)`, `help(wavelet)`. Other READMEs/references:

- Ridge extraction: https://github.com/OverLordGoldDragon/ssqueezepy/tree/master/examples/ridge_extraction
- Generalized Morse Wavelets: https://overlordgolddragon.github.io/generalized-morse-wavelets/
- Testing suite: https://overlordgolddragon.github.io/test-signals/


## Selecting `scales` (CWT)

Expand Down
6 changes: 4 additions & 2 deletions ssqueezepy/_cwt.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,8 @@ def cwt(x, wavelet='gmw', scales='log-piecewise', fs=None, t=None, nv=32,
wavelet: str / tuple[str, dict] / `wavelets.Wavelet`
Wavelet sampled in Fourier frequency domain.
- str: name of builtin wavelet. See `ssqueezepy.wavs()`/
- str: name of builtin wavelet. See `ssqueezepy.wavs()`
or `Wavelet.SUPPORTED`.
- tuple: name of builtin wavelet and its configs.
E.g. `('morlet', {'mu': 5})`.
- `wavelets.Wavelet` instance. Can use for custom wavelet.
Expand Down Expand Up @@ -391,13 +392,14 @@ def _process_gmw_wavelet(wavelet, l1_norm):
def cwt_higher_order(x, wavelet='gmw', order=1, average=None, **kw):
"""Compute `cwt` with GMW wavelets of order 0 to `order`. See `help(cwt)`.
Yields lower variance and more noise robust representation. See ref[1].
Yields lower variance and more noise robust representation. See VI in ref[1].
# Arguments:
x: np.ndarray
Input, 1D.
wavelet: str / wavelets.Wavelet
CWT wavelet.
order: int / tuple[int] / range
Order of GMW to use for CWT. If tuple, will compute for each
Expand Down
3 changes: 1 addition & 2 deletions ssqueezepy/_gmw.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,8 +2,7 @@
"""Generalized Morse Wavelets.
For complete functionality, utility functions have been ported from jLab, and
largely validated to match jLab's behavior. These can be used to compute
higher-order wavelets, or pertinent properties thereof. jLab tests not ported.
largely validated to match jLab's behavior. jLab tests not ported.
"""
import numpy as np
from numpy.fft import ifft
Expand Down
2 changes: 1 addition & 1 deletion ssqueezepy/_stft.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,7 @@ def stft(x, window=None, n_fft=None, win_len=None, hop_len=1, fs=None, t=None,
windowings. Relates to 'overlap' as `overlap = n_fft - hop_len`.
Must be 1 for invertible synchrosqueezed STFT.
fs: float
fs: float / None
Sampling frequency of `x`. Defaults to 1, which makes ssq
frequencies range from 0 to 0.5*fs, i.e. as fraction of reference
sampling rate up to Nyquist limit. Used to compute `dSx` and
Expand Down
Loading

0 comments on commit b3717f8

Please sign in to comment.