[CVPR 2023] Delving into Discrete Normalizing Flows on SO(3) Manifold for Probabilistic Rotation Modeling
symsol.mp4
- Our code are based on python 3.9, with GPU version pytorch and pytorch3d install.
- Our code has been tested on torch 1.13.0, pytorch3d 0.7.5, nvcc 11.8.
- You can refer to pytorch3d for installation of pytorch3d.
- install other dependencies:
pip install scipy scikit-learn nflows healpy opencv-python wget scikit-image
conda install -y tqdm configargparse matplotlib
conda install -y -c conda-forge python-lmdb
SYNTHETIC
Obtain synthetic dataset used in unconditional experiments in raw and link it to data
.
unzip raw.zip
ln -s $PWD/rwa $PROJECT_PATH/data
SYMSOL
Obtain SYMSOL dataset following the same setting as in IPDF and link it to data
ModelNet10-SO(3)
Obtain ModelNet10-SO(3) dataset from website and link it to data
unzip ModelNet10-SO3.zip
ln -s $PWD/ModelNet10-SO3 $PROJECT_PATH/data
Pascal3D+
Obtain Pascal3D+ (release1.1) dataset from website and link it to data
unzip PASCAL3D+_release1.1.zip
ln -s $PWD/PASCAL3D+_release1.1 $PROJECT_PATH/data
Obtain the synthetic data from website and link it to data
tar -xvf syn_images_cropped_bkg_overlaid.tar
ln -s $PWD/syn_images_cropped_bkg_overlaid $PROJECT_PATH/data
Please note that when using Pascal3D+, the data annotations will be generated during the first run of the program.
After downloading all datasets, you should have following folder tree:
./
├── configs/
├── data/
│ ├── ModelNet10-SO3/
│ ├── PASCAL3D+_release1.1
│ │ └── /syn_images_cropped_bkg_overlaid
│ ├── raw
│ └── symsol_dataset
├── settings/
├── utils/
...
python train_uncondition.py --config=<config> [--args] # for unconditional experiments
python train.py --config=<config> [--args] # for conditional experiments
The training process is logged by tensorboard
.
python train_uncondition.py --config=settings/raw.yml --category=<category>
# category can be [peak, cone, line, fisher24]
python train.py --config=settings/symsol.yml # symsol I
python train.py --config=settings/symsol2.yml --category=<category> # symsol II, category can be [sphereX, cylO, tetX]
python train.py --config=settings/modelnet.yml
python train.py --config=settings/modelnet_fisher.yml
We use pretrained fisher as backbone to extract feature from image and also provide a good estimation for base distribution. These pretrained model can be obtained in website, and unzip it and link it to Matrixfisher
. You should have the following folder tree:
./
├── configs/
├── data/
├── Matrixfisher/
│ ├── storage/
│ │ ├── modelnet/
│ │ ├── pascal/
│ ....
├── settings/
├── utils/
...
python train.py --config=settings/pascal_uni.yml
python train.py --config=settings/pascal_fisher.yml
python eval_uncondition.py <ckpt_path> --configs <config name> --eval_only [--args] # for conditional experiments
python eval.py <ckpt_path> --configs <config name> --eval_only [--args] # for unconditional experiments
⚡ Checkpoint can be obtained in website. We provide checkpoint of synthetic datasets (for unconditional experiments, in raw
folder), and of modelnet10-SO3, SYMSOL and Pascal3d+ datasets.
python eval_uncondition.py <ckpt_path> --config=settings/raw.yml --category=<category> # category can be [peak, cone, line, fisher24]
python eval.py <ckpt_path> --config=settings/symsol.yml # symsol I (MobiusAffine)
python eval.py <ckpt_path> --config=settings/symsol.yml --rot 16UnRot # symsol I (Ablation: MobiusRot)
python eval.py <ckpt_path> --config=settings/symsol.yml --layers 42 --last_affine 0 --rot None # symsol I (Ablation: Mobius)
python eval.py <ckpt_path> --config=settings/symsol.yml --layers 42 --dist noflow # symsol I (Ablation: Affine)
python eval.py <ckpt_path> --config=settings/symsol.yml --lu 1 # symsol I (Ablation: lu)
python eval.py <ckpt_path> --config=settings/symsol2.yml --category=<category> # symsol II, category can be [sphereX, cylO, tetX]
python eval.py <ckpt_path> --config=settings/modelnet.yml
python eval.py <ckpt_path> --config=settings/modelnet_fisher.yml
python eval.py <ckpt_path> --config=settings/pascal.yml
python eval.py <ckpt_path> --config=settings/pascal_fisher.yml
@inproceedings{liu2023delving,
title={Delving into Discrete Normalizing Flows on SO (3) Manifold for Probabilistic Rotation Modeling},
author={Liu, Yulin and Liu, Haoran and Yin, Yingda and Wang, Yang and Chen, Baoquan and Wang, He},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={21264--21273},
year={2023}
}
The code base used in this project is sourced from the repository of the matrix Fisher distribution and , Implicit-PDF (for visualization), Flow on tori and sphere.
If you have any question, please feel free to mail [email protected]
.