Skip to content

Commit

Permalink
finish adding wealth tax
Browse files Browse the repository at this point in the history
  • Loading branch information
jdebacker committed May 7, 2024
1 parent 6416556 commit d77b014
Show file tree
Hide file tree
Showing 2 changed files with 12 additions and 6 deletions.
13 changes: 8 additions & 5 deletions docs/book/content/theory/households.md
Original file line number Diff line number Diff line change
Expand Up @@ -121,7 +121,7 @@ In this section, we describe what is arguably the most important economic agent

```{math}
:label: EqTaxCalcLiabETR
T_{j,s,t} = \tau^{etr}_{s,t}(x_{j,s,t}, y_{j,s,t})\left(x_{j,s,t} + y_{j,s,t}\right) + \frac{h^{w}p_{w}b_{j,s,t}}{h^{w}b_{j,s,t} + m^{w}} \quad\forall j,s,t
T_{j,s,t} = \tau^{etr}_{s,t}(x_{j,s,t}, y_{j,s,t})\left(x_{j,s,t} + y_{j,s,t}\right) + \left(\frac{h^{w}p_{w}b_{j,s,t}}{h^{w}b_{j,s,t} + m^{w}}\right)b{j,s,t} \quad\forall j,s,t
```

where the effective income tax rate can be a function of both labor income and capital income $\tau^{etr}_{s,t}(x_{j,s,t},y_{j,s,t})$. The calibration chapter on the microsimulation model and tax function estimation in the country-specific repository documentation details exactly how the model estimates the income tax functions from microsimulation model data.
Expand Down Expand Up @@ -205,7 +205,7 @@ In this section, we describe what is arguably the most important economic agent
```{math}
:label: EqHHBC2
\text{s.t.}\quad &p_t c_{j,s,t} + \sum_{i=1}^I (1 + \tau^{c}_{i,t})p_{i,t}c_{min,i} + b_{j,s+1,t+1} = \\
&\quad (1 + r_{p,t})b_{j,s,t} + w_t e_{j,s} n_{j,s,t} + \zeta_{j,s}\frac{BQ_t}{\lambda_j\omega_{s,t}} + \eta_{j,s,t}\frac{TR_{t}}{\lambda_j\omega_{s,t}} + ubi_{j,s,t} - T_{s,t} \\
&\quad (1 + r_{p,t})b_{j,s,t} + w_t e_{j,s} n_{j,s,t} + \zeta_{j,s}\frac{BQ_t}{\lambda_j\omega_{s,t}} + \eta_{j,s,t}\frac{TR_{t}}{\lambda_j\omega_{s,t}} + ubi_{j,s,t} - T_{j,s,t} \\
&\qquad\text{and}\quad c_{j,s,t}\geq 0,\: n_{j,s,t} \in[0,\tilde{l}],\:\text{and}\: b_{j,1,t}=0 \quad\forall j, t, \:\text{and}\: E+1\leq s\leq E+S \nonumber
```

Expand All @@ -221,7 +221,7 @@ In this section, we describe what is arguably the most important economic agent

```{math}
:label: EqHHeul_b
&\frac{(c_{j,s,t})^{-\sigma}}{p_t} = \chi^b_j\rho_s(b_{j,s+1,t+1})^{-\sigma} + \beta_j\bigl(1 - \rho_s\bigr)\left(\frac{1 + r_{p,t+1}\bigl[1 - \tau^{mtry}_{s+1,t+1}\bigr]}{p_{t+1}}\right)(c_{j,s+1,t+1})^{-\sigma} \\
&\frac{(c_{j,s,t})^{-\sigma}}{p_t} = \chi^b_j\rho_s(b_{j,s+1,t+1})^{-\sigma} + \beta_j\bigl(1 - \rho_s\bigr)\left(\frac{1 + r_{p,t+1}\bigl[1 - \tau^{mtry}_{s+1,t+1}\bigr] - MTR^w_{j,s+1,t+1}}{p_{t+1}}\right)(c_{j,s+1,t+1})^{-\sigma} \\
&\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\forall j,t, \quad\text{and}\quad E+1\leq s\leq E+S-1 \\
```

Expand All @@ -234,12 +234,15 @@ In this section, we describe what is arguably the most important economic agent

```{math}
:label: EqMTRx_derive
\frac{\partial T_{s,t}}{\partial n_{j,s,t}} = \frac{\partial T_{s,t}}{\partial w_t e_{j,s}n_{j,s,t}}\frac{\partial w_{t}e_{j,s}n_{j,s,t}}{\partial n_{j,s,t}} = \frac{\partial T_{s,t}}{\partial w_{t}e_{j,s}n_{j,s,t}}w_t e_{j,s} = \tau^{mtrx}_{s,t}w_t e_{j,s}
\frac{\partial T_{j,s,t}}{\partial n_{j,s,t}} = \frac{\partial T_{s,t}}{\partial w_t e_{j,s}n_{j,s,t}}\frac{\partial w_{t}e_{j,s}n_{j,s,t}}{\partial n_{j,s,t}} = \frac{\partial T_{s,t}}{\partial w_{t}e_{j,s}n_{j,s,t}}w_t e_{j,s} = \tau^{mtrx}_{s,t}w_t e_{j,s}
```

```{math}
:label: EqMTRy_derive
\frac{\partial T_{s,t}}{\partial b_{j,s,t}} = \frac{\partial T_{s,t}}{\partial r_{p,t}b_{j,s,t}}\frac{\partial r_{p,t} b_{j,s,t}}{\partial b_{j,s,t}} = \frac{\partial T_{s,t}}{\partial r_{p,t} b_{j,s,t}}r_{p,t} = \tau^{mtry}_{s,t}r_{p,t}
\frac{\partial T_{j,s,t}}{\partial b_{j,s,t}} &= \frac{\partial T_{s,t}}{\partial r_{p,t}b_{j,s,t}}\frac{\partial r_{p,t} b_{j,s,t}}{\partial b_{j,s,t}} + \left(\frac{h^{w}p_{w}b_{j,s,t}}{(b_{j,s,t}h^{w}+m^{w})}\left[2 -
\frac{h^{w}p_{w}b_{j,s,t}}{(b_{j,s,t}h^{w}+m^{w})}\right] \right) \\ &= \frac{\partial T_{s,t}}{\partial r_{p,t} b_{j,s,t}}r_{p,t} + \left( \frac{h^{w}p_{w}b_{j,s,t}}{(b_{j,s,t}h^{w}+m^{w})}\left[2 -
\frac{h^{w}p_{w}b_{j,s,t}}{(b_{j,s,t}h^{w}+m^{w})}\right]\right) \\ &= \tau^{mtry}_{s,t}r_{p,t} + \underbrace{\left( \frac{h^{w}p_{w}b_{j,s,t}}{(b_{j,s,t}h^{w}+m^{w})}\left[2 -
\frac{h^{w}p_{w}b_{j,s,t}}{(b_{j,s,t}h^{w}+m^{w})}\right]\right)}_{\equiv MTR^w_{j,s,t}}
```


Expand Down
5 changes: 4 additions & 1 deletion docs/book/content/theory/stationarization.md
Original file line number Diff line number Diff line change
Expand Up @@ -105,7 +105,7 @@ The usual definition of equilibrium would be allocations and prices such that ho
```{math}
:label: EqStnrz_eul_b
\frac{(\hat{c}_{j,s,t})^{-\sigma}}{p_t} &= e^{-\sigma g_y}\Biggl[\chi^b_j\rho_s(\hat{b}_{j,s+1,t+1})^{-\sigma} + \\
&\qquad\qquad\quad \beta_j\bigl(1 - \rho_s\bigr)\left(\frac{1 + r_{p,t+1}\bigl[1 - \tau^{mtry}_{s+1,t+1}\bigr]}{p_{t+1}}\right)(\hat{c}_{j,s+1,t+1})^{-\sigma}\Biggr] \\
&\qquad\qquad\quad \beta_j\bigl(1 - \rho_s\bigr)\left(\frac{1 + r_{p,t+1}\bigl[1 - \tau^{mtry}_{s+1,t+1}\bigr] - \hat{MTR}^w_{j,s+1,t+1}}{p_{t+1}}\right)(\hat{c}_{j,s+1,t+1})^{-\sigma}\Biggr] \\
&\qquad\qquad\qquad\qquad\qquad\qquad\qquad\forall j,t, \quad\text{and}\quad E+1\leq s\leq E+S-1 \\
```

Expand All @@ -114,6 +114,9 @@ The usual definition of equilibrium would be allocations and prices such that ho
\frac{(\hat{c}_{j,E+S,t})^{-\sigma}}{p_t} = e^{-\sigma g_y}\chi^b_j(\hat{b}_{j,E+S+1,t+1})^{-\sigma} \quad\forall j,t \quad\text{and}\quad s = E+S
```

Where $\hat{MTR}^w_{j,s,t} = \left( \frac{h^{w}p_{w}\hat{b}_{j,s,t}}{(\hat{b}_{j,s,t}h^{w}+m^{w})}\left[2 -
\frac{h^{w}p_{w}\hat{b}_{j,s,t}}{(\hat{b}_{j,s,t}h^{w}+m^{w})}\right]\right)$

(SecStnrzFirms)=
## Stationarized Firms Equations

Expand Down

0 comments on commit d77b014

Please sign in to comment.