Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Time varying ability matrix #895

Merged
merged 25 commits into from
Jan 22, 2024
Merged
Show file tree
Hide file tree
Changes from 23 commits
Commits
Show all changes
25 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion environment.yml
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@ name: ogcore-dev
channels:
- conda-forge
dependencies:
- python>=3.7.7
- python>=3.7.7, <3.12
- ipython
- setuptools
- scipy>=1.7.1
Expand Down
35 changes: 20 additions & 15 deletions ogcore/SS.py
Original file line number Diff line number Diff line change
Expand Up @@ -78,7 +78,6 @@ def euler_equation_solver(guesses, *args):
tr,
ubi,
theta,
p.e[:, j],
p.rho[-1, :],
p.etr_params[-1],
p.mtry_params[-1],
Expand All @@ -100,7 +99,6 @@ def euler_equation_solver(guesses, *args):
ubi,
theta,
p.chi_n,
p.e[:, j],
p.etr_params[-1],
p.mtrx_params[-1],
None,
Expand Down Expand Up @@ -138,7 +136,7 @@ def euler_equation_solver(guesses, *args):
j,
False,
"SS",
p.e[:, j],
p.e[-1, :, j],
p.etr_params[-1],
p,
)
Expand All @@ -151,7 +149,7 @@ def euler_equation_solver(guesses, *args):
n_guess,
bq,
taxes,
p.e[:, j],
p.e[-1, :, j],
p,
)
mask6 = cons < 0
Expand Down Expand Up @@ -293,7 +291,7 @@ def inner_loop(outer_loop_vars, p, client):
None,
False,
"SS",
p.e,
np.squeeze(p.e[-1, :, :]),
etr_params_3D,
p,
)
Expand All @@ -306,7 +304,7 @@ def inner_loop(outer_loop_vars, p, client):
nssmat,
bq,
net_tax,
p.e,
np.squeeze(p.e[-1, :, :]),
p,
)
c_i = household.get_ci(c_s, p_i, p_tilde, p.tau_c[-1, :], p.alpha_c)
Expand Down Expand Up @@ -383,7 +381,7 @@ def inner_loop(outer_loop_vars, p, client):
new_r, new_r_gov, p_m, K_vec, K_g, D, MPKg_vec, p, "SS"
)
average_income_model = (
(new_r_p * b_s + new_w * p.e * nssmat)
(new_r_p * b_s + new_w * np.squeeze(p.e[-1, :, :]) * nssmat)
* p.omega_SS.reshape(p.S, 1)
* p.lambdas.reshape(1, p.J)
).sum()
Expand Down Expand Up @@ -425,7 +423,7 @@ def inner_loop(outer_loop_vars, p, client):
None,
False,
"SS",
p.e,
np.squeeze(p.e[-1, :, :]),
etr_params_3D,
p,
)
Expand All @@ -438,7 +436,7 @@ def inner_loop(outer_loop_vars, p, client):
nssmat,
new_bq,
taxss,
p.e,
np.squeeze(p.e[-1, :, :]),
p,
)
(
Expand Down Expand Up @@ -467,6 +465,7 @@ def inner_loop(outer_loop_vars, p, client):
ubi,
theta,
etr_params_3D,
np.squeeze(p.e[-1, :, :]),
p,
None,
"SS",
Expand All @@ -482,6 +481,9 @@ def inner_loop(outer_loop_vars, p, client):
debt_service,
p,
)
print("Agg tax = ", total_tax_revenue)
print("Agg pension outlays = ", agg_pension_outlays)
print("Agg UBI outlays = ", UBI_outlays)
new_TR = fiscal.get_TR(
Y,
TR,
Expand Down Expand Up @@ -757,7 +759,7 @@ def SS_solver(
nssmat,
factor,
True,
p.e,
np.squeeze(p.e[-1, :, :]),
etr_params_3D,
mtry_params_3D,
capital_noncompliance_rate_2D,
Expand All @@ -770,7 +772,7 @@ def SS_solver(
nssmat,
factor,
False,
p.e,
np.squeeze(p.e[-1, :, :]),
etr_params_3D,
mtrx_params_3D,
labor_noncompliance_rate_2D,
Expand All @@ -782,7 +784,7 @@ def SS_solver(
bssmat_s,
nssmat,
factor,
p.e,
np.squeeze(p.e[-1, :, :]),
etr_params_3D,
labor_noncompliance_rate_2D,
capital_noncompliance_rate_2D,
Expand All @@ -803,7 +805,7 @@ def SS_solver(
None,
False,
"SS",
p.e,
np.squeeze(p.e[-1, :, :]),
etr_params_3D,
p,
)
Expand All @@ -816,10 +818,12 @@ def SS_solver(
nssmat,
bqssmat,
taxss,
p.e,
np.squeeze(p.e[-1, :, :]),
p,
)
yss_before_tax_mat = household.get_y(r_p_ss, wss, bssmat_s, nssmat, p)
yss_before_tax_mat = household.get_y(
r_p_ss, wss, bssmat_s, nssmat, p, "SS"
)
Css = aggr.get_C(cssmat, p, "SS")
c_i_ss_mat = household.get_ci(
cssmat, p_i_ss, p_tilde_ss, p.tau_c[-1, :], p.alpha_c
Expand Down Expand Up @@ -860,6 +864,7 @@ def SS_solver(
ubissmat,
theta,
etr_params_3D,
np.squeeze(p.e[-1, :, :]),
p,
None,
"SS",
Expand Down
10 changes: 4 additions & 6 deletions ogcore/TPI.py
Original file line number Diff line number Diff line change
Expand Up @@ -154,7 +154,6 @@ def firstdoughnutring(
np.array([tr]),
np.array([ubi]),
theta[j],
p.e[-1, j],
p.rho[0, -1],
p.etr_params[0][-1],
p.mtry_params[0][-1],
Expand All @@ -177,7 +176,6 @@ def firstdoughnutring(
np.array([ubi]),
theta[j],
p.chi_n[-1],
p.e[-1, j],
p.etr_params[0][-1],
p.mtrx_params[0][-1],
None,
Expand Down Expand Up @@ -261,7 +259,6 @@ def twist_doughnut(
p_tilde_s = p_tilde[t : t + length]
n_s = n_guess
chi_n_s = p.chi_n[-length:]
e_s = p.e[-length:, j]
rho_s = np.diag(p.rho[t : t + p.S, :], max(p.S - length, 0))

error1 = household.FOC_savings(
Expand All @@ -276,7 +273,6 @@ def twist_doughnut(
tr,
ubi,
theta,
e_s,
rho_s,
etr_params,
mtry_params,
Expand All @@ -299,7 +295,6 @@ def twist_doughnut(
ubi,
theta,
chi_n_s,
e_s,
etr_params,
mtrx_params,
t,
Expand Down Expand Up @@ -823,6 +818,7 @@ def run_TPI(p, client=None):
bmat_s[: p.T, :, :],
n_mat[: p.T, :, :],
p,
"TPI",
)

L[: p.T] = aggr.get_L(n_mat[: p.T], p, "TPI")
Expand Down Expand Up @@ -908,6 +904,7 @@ def run_TPI(p, client=None):
ubi[: p.T, :, :],
theta,
etr_params_4D,
p.e,
p,
None,
"TPI",
Expand Down Expand Up @@ -1014,6 +1011,7 @@ def run_TPI(p, client=None):
ubi[: p.T, :, :],
theta,
etr_params_4D,
p.e,
p,
None,
"TPI",
Expand Down Expand Up @@ -1143,7 +1141,7 @@ def run_TPI(p, client=None):
),
(1, p.S, 1),
)
e_3D = np.tile(p.e.reshape(1, p.S, p.J), (p.T, 1, 1))
e_3D = p.e
mtry_path = tax.MTR_income(
r_p_path[: p.T],
wpath[: p.T],
Expand Down
12 changes: 9 additions & 3 deletions ogcore/aggregates.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,11 @@ def get_L(n, p, method):

"""
if method == "SS":
L_presum = p.e * np.transpose(p.omega_SS * p.lambdas) * n
L_presum = (
np.squeeze(p.e[-1, :, :])
* np.transpose(p.omega_SS * p.lambdas)
* n
)
L = L_presum.sum()
elif method == "TPI":
L_presum = (n * (p.e * np.squeeze(p.lambdas))) * np.tile(
Expand Down Expand Up @@ -284,6 +288,7 @@ def revenue(
ubi,
theta,
etr_params,
e,
p,
m,
method,
Expand Down Expand Up @@ -317,6 +322,7 @@ def revenue(
lifetime income group
etr_params (list): list of parameters of the effective tax rate
functions
e (Numpy array): effective labor units
p (OG-Core Specifications object): model parameters
method (str): adjusts calculation dimensions based on 'SS' or
'TPI'
Expand All @@ -339,10 +345,10 @@ def revenue(

"""
inc_pay_tax_liab = tax.income_tax_liab(
r, w, b, n, factor, 0, None, method, p.e, etr_params, p
r, w, b, n, factor, 0, None, method, e, etr_params, p
)
pension_benefits = tax.pension_amount(
w, n, theta, 0, None, False, method, p.e, p
w, n, theta, 0, None, False, method, e, p
)
bq_tax_liab = tax.bequest_tax_liab(r, b, bq, 0, None, method, p)
w_tax_liab = tax.wealth_tax_liab(r, b, 0, None, method, p)
Expand Down
Loading
Loading