-
Notifications
You must be signed in to change notification settings - Fork 241
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #3322 from Snafkin547/downscale/hourly
Downscale Function created for for hourly data in nc
- Loading branch information
Showing
4 changed files
with
132 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,103 @@ | ||
#' SDA Downscale Function for Hourly Data | ||
#' | ||
#' This function uses the randomForest model to downscale forecast data (hourly) to unmodeled locations using covariates and site locations | ||
#' | ||
#' @author Harunobu Ishii | ||
#' @param nc_file In quotes, file path for .nc containing ensemble data. | ||
#' @param coords In quotes, file path for .csv file containing the site coordinates, columns named "lon" and "lat". | ||
#' @param yyyy In string, format is yyyy(year of interest) | ||
#' @param covariates SpatRaster stack, used as predictors in randomForest. Layers within stack should be named. Recommended that this stack be generated using 'covariates' instructions in assim.sequential/inst folder | ||
#' @return It returns the `downscale_output` list containing lists for the training and testing data sets, models, and predicted maps for each ensemble member. | ||
#' @export | ||
|
||
SDA_downscale_hrly <- function(nc_file, coords, yyyy, covariates){ | ||
|
||
# Read the input data and site coordinates | ||
nc_data <- ncdf4::nc_open(nc_file) | ||
on.exit(ncdf4::nc_close(nc_data)) | ||
input_data <- ncdf4::ncvar_get(nc_data, "NEE") | ||
covariate_names <- names(covariates) | ||
|
||
|
||
# Extract time and units | ||
time <- nc_data$dim$time$vals | ||
time_units <- nc_data$dim$time$units | ||
time_origin_str <- substr(time_units, 12, 31) | ||
|
||
# Check if timezone is specified in the time units string | ||
if (grepl("UTC|GMT", time_units)) { | ||
time_origin <- lubridate::ymd_hm(time_origin_str, tz = "UTC") | ||
} else if (grepl("EST", time_units)) { | ||
time_origin <- lubridate::ymd_hm(time_origin_str, tz = "EST") | ||
} else { | ||
time_origin <- lubridate::ymd_hm(time_origin_str, tz = "UTC") # Default to UTC if not specified | ||
} | ||
|
||
# Timereadable | ||
if (grepl("hours", time_units)) { | ||
time_readable <- time_origin + lubridate::dhours(time) | ||
} else if (grepl("seconds", time_units)) { | ||
time_readable <- time_origin + lubridate::dseconds(time) | ||
} else { | ||
stop("Unsupported time units") | ||
} | ||
|
||
# Extract predictors from covariates raster using site coordinates | ||
site_coordinates <- terra::vect(readr::read_csv(coords), geom=c("lon", "lat"), crs="EPSG:4326") | ||
predictors <- as.data.frame(terra::extract(covariates, site_coordinates,ID = FALSE)) | ||
|
||
downscale_output<- list() | ||
|
||
# Train & Test split | ||
sample <- sample(1:nrow(predictors), size = round(0.75*nrow(predictors))) | ||
|
||
# Predict for each time stamp of the year selected | ||
time_indices <- which(year(time_readable) == yyyy) | ||
for (index in time_indices) { | ||
data <- input_data[index, , ] | ||
carbon_data <- as.data.frame(data) | ||
names(carbon_data) <- paste0("ensemble",seq(1:ncol(carbon_data))) | ||
|
||
# Combine carbon data and covariates/predictors and split into training/test | ||
full_data <- cbind(carbon_data, predictors) | ||
train_data <- full_data[sample, ] | ||
test_data <- full_data[-sample, ] | ||
|
||
# Combine each ensemble member with all predictors | ||
models <- list() | ||
maps <- list() | ||
predictions <- list() | ||
ensembles <- list() | ||
for (i in seq_along(carbon_data)) { | ||
ensemble_col <- paste0("ensemble", i) | ||
formula <- stats::as.formula(paste(ensemble_col, "~", paste(covariate_names, collapse = " + "))) | ||
models[[i]] <- randomForest::randomForest(formula, | ||
data = train_data, | ||
ntree = 1000, | ||
na.action = stats::na.omit, | ||
keep.forest = TRUE, | ||
importance = TRUE) | ||
|
||
maps[[i]] <- terra::predict(covariates, model = models[[i]], na.rm = TRUE) | ||
predictions[[i]] <- stats::predict(models[[i]], test_data) | ||
} | ||
|
||
# Organize the results into a single output list | ||
curr_downscaled <- list( data = list(training = train_data, testing = test_data), | ||
models = models, | ||
maps = maps, | ||
predictions = predictions | ||
) | ||
|
||
# Rename each element of the output list with appropriate ensemble numbers | ||
for (i in 1:length(curr_downscaled$data)) { | ||
names(curr_downscaled$data[[i]]) <- paste0("ensemble", seq(1:ncol(carbon_data))) | ||
} | ||
names(curr_downscaled$models) <- paste0("ensemble", seq(1:ncol(carbon_data))) | ||
names(curr_downscaled$maps) <- paste0("ensemble", seq(1:ncol(carbon_data))) | ||
names(curr_downscaled$predictions) <- paste0("ensemble", seq(1:ncol(carbon_data))) | ||
|
||
downscale_output[[as.character(time_readable[index])]]<-curr_downscaled | ||
} | ||
return(downscale_output) | ||
} |
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Oops, something went wrong.