This Sales Analytics Dashboard is a comprehensive data analysis and visualization project designed to provide deep insights into e-commerce sales data. The project demonstrates advanced skills in data science, business intelligence, and interactive dashboard creation.
- Data Processing: Pandas data manipulation
- Statistical Analysis: Advanced statistical techniques
- Data Visualization: Interactive dashboards with Streamlit and Plotly
- Machine Learning: Customer segmentation and predictive analytics
- Business Intelligence: Comprehensive sales insights
- E-commerce sales dataset
- Comprehensive sample retail sales data
- Python 3.8+
- Pandas
- NumPy
- Streamlit
- Plotly
- Scikit-learn
- Seaborn
- Matplotlib
sales-analytics-dashboard/
│
├── data/
│ ├── sample_ecommerce_data.csv
│ └── cleaned_sales_data.csv
│
├── notebooks/
│ ├── data_cleaning.ipynb
│ └── data_analysis.ipynb
│
├── sql/
│ └── sales_analysis_queries.sql
│
├── dashboard/
│ ├── dashboard.py
│ └── requirements.txt
│
└── README.md
- Python 3.8 or higher
- pip (Python package manager)
- Virtual environment (recommended)
-
Clone the repository
git clone https://github.com/yourusername/sales-analytics-dashboard.git cd sales-analytics-dashboard
-
Create a virtual environment
python -m venv venv source venv/bin/activate # On Windows use `venv\Scripts\activate`
-
Install required dependencies
pip install -r dashboard/requirements.txt
jupyter notebook notebooks/data_cleaning.ipynb
jupyter notebook notebooks/data_analysis.ipynb
streamlit run dashboard/dashboard.py
- Handling missing values
- Date formatting
- Numerical validation
- Outlier removal
- Monthly sales trends
- Product performance metrics
- Customer segmentation
- Geographic sales analysis
- Predictive analytics preparation
- Interactive date range selection
- Product category filtering
- Dynamic visualizations
- Geographical sales insights
- RFM (Recency, Frequency, Monetary) Analysis
- K-means Clustering
- Customer value identification
- Descriptive statistics
- Correlation analysis
- Hypothesis testing (ANOVA)
- Predictive modeling preparation
- Time series analysis
- Comparative bar charts
- Correlation heatmaps
- Geographical sales choropleth
- Customer segment scatter plots
- Implement machine learning predictive models
- Add more advanced customer segmentation
- Develop real-time dashboard updates
- Integrate more complex statistical analyses
- Create additional visualization techniques
- Fork the repository
- Create your feature branch (
git checkout -b feature/AmazingFeature
) - Commit your changes (
git commit -m 'Add some AmazingFeature'
) - Push to the branch (
git push origin feature/AmazingFeature
) - Open a pull request
Distributed under the MIT License. See LICENSE
for more information.
Your Name - Pranav970
- Pandas
- Streamlit
- Plotly
- Scikit-learn
- Jupyter Notebook