Skip to content

Pranav970/Sales-Analytics-Dashboard-Project

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Sales Analytics Dashboard

📊 Project Overview

This Sales Analytics Dashboard is a comprehensive data analysis and visualization project designed to provide deep insights into e-commerce sales data. The project demonstrates advanced skills in data science, business intelligence, and interactive dashboard creation.

🚀 Skills Demonstrated

  • Data Processing: Pandas data manipulation
  • Statistical Analysis: Advanced statistical techniques
  • Data Visualization: Interactive dashboards with Streamlit and Plotly
  • Machine Learning: Customer segmentation and predictive analytics
  • Business Intelligence: Comprehensive sales insights

🔧 Technical Components

Data Sources

  • E-commerce sales dataset
  • Comprehensive sample retail sales data

Technologies Used

  • Python 3.8+
  • Pandas
  • NumPy
  • Streamlit
  • Plotly
  • Scikit-learn
  • Seaborn
  • Matplotlib

📁 Project Structure

sales-analytics-dashboard/
│
├── data/
│   ├── sample_ecommerce_data.csv
│   └── cleaned_sales_data.csv
│
├── notebooks/
│   ├── data_cleaning.ipynb
│   └── data_analysis.ipynb
│
├── sql/
│   └── sales_analysis_queries.sql
│
├── dashboard/
│   ├── dashboard.py
│   └── requirements.txt
│
└── README.md

🛠 Installation and Setup

Prerequisites

  • Python 3.8 or higher
  • pip (Python package manager)
  • Virtual environment (recommended)

Installation Steps

  1. Clone the repository

    git clone https://github.com/yourusername/sales-analytics-dashboard.git
    cd sales-analytics-dashboard
  2. Create a virtual environment

    python -m venv venv
    source venv/bin/activate  # On Windows use `venv\Scripts\activate`
  3. Install required dependencies

    pip install -r dashboard/requirements.txt

🚀 Running the Project

Data Preprocessing

jupyter notebook notebooks/data_cleaning.ipynb
jupyter notebook notebooks/data_analysis.ipynb

Launch Dashboard

streamlit run dashboard/dashboard.py

📈 Key Features

1. Data Cleaning

  • Handling missing values
  • Date formatting
  • Numerical validation
  • Outlier removal

2. Analysis Capabilities

  • Monthly sales trends
  • Product performance metrics
  • Customer segmentation
  • Geographic sales analysis
  • Predictive analytics preparation

3. Dashboard Highlights

  • Interactive date range selection
  • Product category filtering
  • Dynamic visualizations
  • Geographical sales insights

🔍 Advanced Analyses

Customer Segmentation

  • RFM (Recency, Frequency, Monetary) Analysis
  • K-means Clustering
  • Customer value identification

Statistical Techniques

  • Descriptive statistics
  • Correlation analysis
  • Hypothesis testing (ANOVA)
  • Predictive modeling preparation

📊 Visualization Techniques

  • Time series analysis
  • Comparative bar charts
  • Correlation heatmaps
  • Geographical sales choropleth
  • Customer segment scatter plots

🔬 Potential Enhancements

  1. Implement machine learning predictive models
  2. Add more advanced customer segmentation
  3. Develop real-time dashboard updates
  4. Integrate more complex statistical analyses
  5. Create additional visualization techniques

📝 Contributing

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/AmazingFeature)
  3. Commit your changes (git commit -m 'Add some AmazingFeature')
  4. Push to the branch (git push origin feature/AmazingFeature)
  5. Open a pull request

📄 License

Distributed under the MIT License. See LICENSE for more information.

📧 Contact

Your Name - Pranav970

🙏 Acknowledgements

  • Pandas
  • Streamlit
  • Plotly
  • Scikit-learn
  • Jupyter Notebook

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published