Skip to content

Commit

Permalink
Merge pull request #8 from plant-ai-biophysics-lab/dev
Browse files Browse the repository at this point in the history
Release v0.2.2
  • Loading branch information
amogh7joshi authored Dec 1, 2021
2 parents da54798 + 43ac469 commit cb5dfbd
Show file tree
Hide file tree
Showing 19 changed files with 460 additions and 66 deletions.
4 changes: 2 additions & 2 deletions agml/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.

__version__ = '0.2.1'
__version__ = '0.2.2'
__all__ = ['data', 'backend', 'viz']

# If AgML is being imported for the first time, then we need to setup
Expand All @@ -24,7 +24,7 @@ def _setup():
_os.makedirs(_os.path.expanduser('~/.agml'))
with open(_os.path.join(
_os.path.expanduser('~/.agml/config.json')), 'w') as f:
_json.dump({'dataset_path': _os.path.expanduser('~/.agml/datasets')}, f)
_json.dump({'data_path': _os.path.expanduser('~/.agml/datasets')}, f)
_setup(); del _setup # noqa

# There are no top-level imported functions or classes, only the modules.
Expand Down
255 changes: 235 additions & 20 deletions agml/_assets/public_datasources.json
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,19 @@
"input_data_format": "jpg",
"annotation_format": "directory_names",
"n_images": "1295",
"docs_url": "https://github.com/AI-Lab-Makerere/ibean/"
"docs_url": "https://github.com/AI-Lab-Makerere/ibean/",
"stats": {
"mean": [
0.48483240604400635,
0.5186856389045715,
0.3107088804244995
],
"std": [
0.18201091885566711,
0.19948190450668335,
0.16856084764003754
]
}
},
"carrot_weeds_germany": {
"crop_types": {
Expand All @@ -36,7 +48,19 @@
"input_data_format": "png",
"annotation_format": "image",
"n_images": "60",
"docs_url": "https://github.com/cwfid/dataset"
"docs_url": "https://github.com/cwfid/dataset",
"stats": {
"mean": [
0.2736402451992035,
0.31067562103271484,
0.2736402451992035
],
"std": [
0.08643443882465363,
0.0995175838470459,
0.08643443882465363
]
}
},
"plant_seedlings_aarhus": {
"crop_types": {
Expand Down Expand Up @@ -65,7 +89,19 @@
"input_data_format": "png",
"annotation_format": "directory_names",
"n_images": "5588",
"docs_url": "https://vision.eng.au.dk/plant-seedlings-dataset/"
"docs_url": "https://vision.eng.au.dk/plant-seedlings-dataset/",
"stats": {
"mean": [
0.32876914739608765,
0.28884443640708923,
0.20677326619625092
],
"std": [
0.09281565248966217,
0.09644084423780441,
0.10552656650543213
]
}
},
"soybean_weed_uav_brazil": {
"crop_types": {
Expand All @@ -86,7 +122,19 @@
"input_data_format": "tif",
"annotation_format": "directory_names",
"n_images": "15336",
"docs_url": "https://data.mendeley.com/datasets/3fmjm7ncc6/2"
"docs_url": "https://data.mendeley.com/datasets/3fmjm7ncc6/2",
"stats": {
"mean": [
0.32902148365974426,
0.33378347754478455,
0.18654650449752808
],
"std": [
0.24514101445674896,
0.24915193021297455,
0.1570599228143692
]
}
},
"sugarcane_damage_usa": {
"crop_types": {
Expand All @@ -108,7 +156,19 @@
"input_data_format": "bmp",
"annotation_format": "directory_names",
"n_images": "153",
"docs_url": "https://github.com/The77Lab/SugarcaneBilletsDataset"
"docs_url": "https://github.com/The77Lab/SugarcaneBilletsDataset",
"stats": {
"mean": [
0.24388396739959717,
0.24691258370876312,
0.26203399896621704
],
"std": [
0.2236362099647522,
0.21735337376594543,
0.1923859417438507
]
}
},
"crop_weeds_greece": {
"crop_types": {
Expand All @@ -128,7 +188,19 @@
"input_data_format": "jpg",
"annotation_format": "directory_names",
"n_images": "508",
"docs_url": "https://github.com/AUAgroup/early-crop-weed"
"docs_url": "https://github.com/AUAgroup/early-crop-weed",
"stats": {
"mean": [
0.7246999740600586,
0.6694438457489014,
0.5436030626296997
],
"std": [
0.16351650655269623,
0.1530727595090866,
0.13750973343849182
]
}
},
"sugarbeet_weed_segmentation": {
"crop_types": {
Expand All @@ -147,7 +219,19 @@
"input_data_format": "png",
"annotation_format": "image",
"n_images": "1931",
"docs_url": "https://github.com/inkyusa/weedNet"
"docs_url": "https://github.com/inkyusa/weedNet",
"stats": {
"mean": [
0.374398797750473,
0.374398797750473,
0.374398797750473
],
"std": [
0.16996806859970093,
0.16996806859970093,
0.16996806859970093
]
}
},
"rangeland_weeds_australia": {
"crop_types": {
Expand All @@ -174,7 +258,19 @@
"input_data_format": "jpg",
"annotation_format": "directory_names",
"n_images": "17509",
"docs_url": "https://github.com/AlexOlsen/DeepWeeds"
"docs_url": "https://github.com/AlexOlsen/DeepWeeds",
"stats": {
"mean": [
0.3785816431045532,
0.38957422971725464,
0.3797682821750641
],
"std": [
0.22421954572200775,
0.22450360655784607,
0.22274591028690338
]
}
},
"fruit_detection_worldwide": {
"crop_types": {
Expand All @@ -198,7 +294,19 @@
"input_data_format": "jpg",
"annotation_format": "coco_json",
"n_images": "565",
"docs_url": "https://drive.google.com/drive/folders/1CmsZb1caggLRN7ANfika8WuPiywo4mBb"
"docs_url": "https://drive.google.com/drive/folders/1CmsZb1caggLRN7ANfika8WuPiywo4mBb",
"stats": {
"mean": [
0.3779049813747406,
0.4085286557674408,
0.28682708740234375
],
"std": [
0.2306382656097412,
0.22500208020210266,
0.2183498740196228
]
}
},
"leaf_counting_denmark": {
"crop_types": {
Expand All @@ -218,7 +326,19 @@
"input_data_format": "png",
"annotation_format": "directory_names",
"n_images": "9372",
"docs_url": "https://vision.eng.au.dk/leaf-counting-dataset/"
"docs_url": "https://vision.eng.au.dk/leaf-counting-dataset/",
"stats": {
"mean": [
0.42661601305007935,
0.42741888761520386,
0.341794490814209
],
"std": [
0.12296481430530548,
0.1434885710477829,
0.11489786207675934
]
}
},
"apple_detection_usa": {
"crop_types": {
Expand All @@ -236,7 +356,19 @@
"input_data_format": "png",
"annotation_format": "coco_json",
"n_images": "2290",
"docs_url": "https://hdl.handle.net/2376/17721"
"docs_url": "https://hdl.handle.net/2376/17721",
"stats": {
"mean": [
0.2810896933078766,
0.29005560278892517,
0.2775411605834961
],
"std": [
0.18863406777381897,
0.18647761642932892,
0.1885077804327011
]
}
},
"cotton_seedling_counting": {
"crop_types": {
Expand All @@ -255,7 +387,19 @@
"input_data_format": "png",
"annotation_format": "coco_json",
"n_images": "2290",
"docs_url": "https://github.com/UGA-BSAIL/deepseedling"
"docs_url": "https://github.com/UGA-BSAIL/deepseedling",
"stats": {
"mean": [
0.6695063710212708,
0.5673825144767761,
0.4538835883140564
],
"std": [
0.07037307322025299,
0.07951230555772781,
0.07661264389753342
]
}
},
"mango_detection_australia": {
"crop_types": {
Expand All @@ -273,7 +417,19 @@
"input_data_format": "jpg",
"annotation_format": "coco_json",
"n_images": "1730",
"docs_url": "https://researchdata.edu.au/mangoyolo-set/1697505"
"docs_url": "https://researchdata.edu.au/mangoyolo-set/1697505",
"stats": {
"mean": [
0.07288186252117157,
0.1193767637014389,
0.050045181065797806
],
"std": [
0.058673080056905746,
0.07924807816743851,
0.043408144265413284
]
}
},
"apple_flower_segmentation": {
"crop_types": {
Expand All @@ -291,7 +447,19 @@
"input_data_format": "jpg",
"annotation_format": "image",
"n_images": "148",
"docs_url": "https://data.nal.usda.gov/dataset/data-multi-species-fruit-flower-detection-using-refined-semantic-segmentation-network"
"docs_url": "https://data.nal.usda.gov/dataset/data-multi-species-fruit-flower-detection-using-refined-semantic-segmentation-network",
"stats": {
"mean": [
0.4580204486846924,
0.47888585925102234,
0.4053090512752533
],
"std": [
0.2040298879146576,
0.19258278608322144,
0.2156316637992859
]
}
},
"apple_segmentation_minnesota": {
"crop_types": {
Expand All @@ -309,7 +477,19 @@
"input_data_format": "png",
"annotation_format": "image",
"n_images": "670",
"docs_url": "https://rsn.umn.edu/projects/orchard-monitoring/minneapple"
"docs_url": "https://rsn.umn.edu/projects/orchard-monitoring/minneapple",
"stats": {
"mean": [
0.3736153841018677,
0.43716397881507874,
0.33839237689971924
],
"std": [
0.2627662420272827,
0.28767505288124084,
0.33136168122291565
]
}
},
"rice_seedling_segmentation": {
"crop_types": {
Expand All @@ -329,7 +509,19 @@
"input_data_format": "jpg",
"annotation_format": "image",
"n_images": "224",
"docs_url": "https://github.com/kabbas570/CED-Net-Crops-and-Weeds-Segmentation-for-Smart-Farming-Using-a-Small-Cascaded-Encoder-Decoder-Archi"
"docs_url": "https://github.com/kabbas570/CED-Net-Crops-and-Weeds-Segmentation-for-Smart-Farming-Using-a-Small-Cascaded-Encoder-Decoder-Archi",
"stats": {
"mean": [
0.6552301049232483,
0.7014582753181458,
0.6353084444999695
],
"std": [
0.08477462828159332,
0.1075846329331398,
0.11058590561151505
]
}
},
"plant_village_classification": {
"crop_types": {
Expand Down Expand Up @@ -385,7 +577,19 @@
"input_data_format": "jpg",
"annotation_format": "directory_names",
"n_images": "55448",
"docs_url": "https://github.com/spMohanty/PlantVillage-Dataset"
"docs_url": "https://github.com/spMohanty/PlantVillage-Dataset",
"stats": {
"mean": [
0.4667864739894867,
0.4892069697380066,
0.41197869181632996
],
"std": [
0.17720915377140045,
0.15169815719127655,
0.19375969469547272
]
}
},
"plant_doc_classification": {
"crop_types": {
Expand Down Expand Up @@ -430,7 +634,18 @@
"input_data_format": "jpg",
"annotation_format": "directory_names",
"n_images": "2598",
"docs_url": "https://github.com/pratikkayal/PlantDoc-Dataset"
"docs_url": "https://github.com/pratikkayal/PlantDoc-Dataset",
"stats": {
"mean": [
0.4769977033138275,
0.5441237688064575,
0.37798669934272766
],
"std": [
0.2114635556936264,
0.20371955633163452,
0.2188636064529419
]
}
}
}

}
Binary file modified agml/_assets/shape_info.pickle
Binary file not shown.
Loading

0 comments on commit cb5dfbd

Please sign in to comment.