Skip to content

Commit

Permalink
remove redundant code
Browse files Browse the repository at this point in the history
  • Loading branch information
Fe-r-oz committed Nov 27, 2024
1 parent bec7222 commit 36b3914
Show file tree
Hide file tree
Showing 2 changed files with 19 additions and 31 deletions.
2 changes: 1 addition & 1 deletion ext/QuantumCliffordHeckeExt/lifted_product.jl
Original file line number Diff line number Diff line change
Expand Up @@ -282,7 +282,7 @@ groups, specifically for single cyclic groups, using a group presentation with
no *extra relations*, such as `⟨r | r³⁰⟩`.For the construction of *general* groups
with specific group presentations, the only effective method is to use *finitely
presented groups* (`Oscar.FPGroup`), which allow for defining direct products of
two or more *general* groups—something not supported directly by Hecke.
two or more *general* groups—something not supported by Hecke.
```jldoctest sg
julia> r^30 == 1
Expand Down
48 changes: 18 additions & 30 deletions test/test_ecc_small_groups.jl
Original file line number Diff line number Diff line change
Expand Up @@ -11,11 +11,9 @@
GA = group_algebra(GF(2), G)
r = prod(gens(GA))
@test r^36 == 1 # presentation ⟨r|r³⁶⟩ satisfied
a_elts = [one(G), r^28]
b_elts = [one(G), r, r^18, r^12, r^29, r^14]
a = sum(GA(x) for x in a_elts)
b = sum(GA(x) for x in b_elts)
c = two_block_group_algebra_codes(a,b)
A = 1 + r^28
B = 1 + r + r^18 + r^12 + r^29 + r^14
c = two_block_group_algebra_codes(A,B)
@test code_n(c) == 72 && code_k(c) == 8

# [[54, 6, 9]]
Expand All @@ -25,11 +23,9 @@
GA = group_algebra(GF(2), G)
r = prod(gens(GA))
@test r^27 == 1 # presentation ⟨r|r²⁷⟩ satisfied
a_elts = [one(G), r, r^3, r^7]
b_elts = [one(G), r, r^12, r^19]
a = sum(GA(x) for x in a_elts)
b = sum(GA(x) for x in b_elts)
c = two_block_group_algebra_codes(a,b)
A = 1 + r + r^3 + r^7
B = 1 + r + r^12 + r^19
c = two_block_group_algebra_codes(A,B)
@test code_n(c) == 54 && code_k(c) == 6

# [[60, 6, 10]]
Expand All @@ -39,11 +35,9 @@
GA = group_algebra(GF(2), G)
r = prod(gens(GA))
@test r^30 == 1 # presentation ⟨r|r³⁰⟩ satisfied
a_elts = [one(G), r^10, r^6, r^13]
b_elts = [one(G), r^25, r^16, r^12]
a = sum(GA(x) for x in a_elts)
b = sum(GA(x) for x in b_elts)
c = two_block_group_algebra_codes(a,b)
A = 1 + r^10 + r^6 + r^13
B = 1 + r^25 + r^16 + r^12
c = two_block_group_algebra_codes(A,B)
@test code_n(c) == 60 && code_k(c) == 6

# [[70, 8, 10]]
Expand All @@ -53,11 +47,9 @@
GA = group_algebra(GF(2), G)
r = prod(gens(GA))
@test r^35 == 1 # presentation ⟨r|r³⁵⟩ satisfied
a_elts = [one(G), r^15, r^16, r^18]
b_elts = [one(G), r, r^24, r^27]
a = sum(GA(x) for x in a_elts)
b = sum(GA(x) for x in b_elts)
c = two_block_group_algebra_codes(a,b)
A = 1 + r^15 + r^16 + r^18
B = 1 + r + r^24 + r^27
c = two_block_group_algebra_codes(A,B)
@test code_n(c) == 70 && code_k(c) == 8

# [[72, 8, 10]]
Expand All @@ -67,11 +59,9 @@
GA = group_algebra(GF(2), G)
r = prod(gens(GA))
@test r^36 == 1 # presentation ⟨r|r³⁶⟩ satisfied
a_elts = [one(G), r^9, r^28, r^31]
b_elts = [one(G), r, r^21, r^34]
a = sum(GA(x) for x in a_elts)
b = sum(GA(x) for x in b_elts)
c = two_block_group_algebra_codes(a,b)
A = 1 + r^9 + r^28 + r^31
B = 1 + r + r^21 + r^34
c = two_block_group_algebra_codes(A,B)
@test code_n(c) == 72 && code_k(c) == 8

# [[72, 10, 9]]
Expand All @@ -81,11 +71,9 @@
GA = group_algebra(GF(2), G)
r = prod(gens(GA))
@test r^36 == 1 # presentation ⟨r|r³⁶⟩ satisfied
a_elts = [one(G), r^9, r^28, r^13]
b_elts = [one(G), r, r^3, r^22]
a = sum(GA(x) for x in a_elts)
b = sum(GA(x) for x in b_elts)
c = two_block_group_algebra_codes(a,b)
A = 1 + r^9 + r^28 + r^13
B = 1 + r + r^3 + r^22
c = two_block_group_algebra_codes(A,B)
@test code_n(c) == 72 && code_k(c) == 10
end
end

0 comments on commit 36b3914

Please sign in to comment.