Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: broken doctests and typos #438

Merged
merged 4 commits into from
Dec 21, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
34 changes: 25 additions & 9 deletions ext/QuantumCliffordHeckeExt/lifted_product.jl
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@ During the construction, we do arithmetic operations to get the group algebra el
Here `x` is the generator of the group algebra, i.e., offset-1 cyclic permutation, and `GA(1)` is the unit element.

```jldoctest
julia> import Hecke: group_algebra, GF, abelian_group, gens; import LinearAlgebra: diagind;
julia> import Hecke: group_algebra, GF, abelian_group, gens; import LinearAlgebra: diagind; using QuantumClifford.ECC;

julia> l = 63; GA = group_algebra(GF(2), abelian_group(l)); x = gens(GA)[];

Expand All @@ -52,10 +52,12 @@ julia> code_n(c1), code_k(c1)
(882, 24)
```

A [[175, 19, d ≤ 0]] code from Eq. (18) in Appendix A of [raveendran2022finite](@cite),
A [[175, 19, d ≤ 10]] code from Eq. (18) in Appendix A of [raveendran2022finite](@cite),
following the 4th constructor.

```jldoctest
julia> import Hecke; using QuantumClifford.ECC;

julia> base_matrix = [0 0 0 0; 0 1 2 5; 0 6 3 1]; l = 7;

julia> c2 = LPCode(base_matrix, l .- base_matrix', l);
Expand Down Expand Up @@ -162,15 +164,15 @@ Here is an example of a [[56, 28, 2]] 2BGA code from Table 2 of [lin2024quantum]
with direct product of `C₄ x C₂`.

```jldoctest
julia> import Hecke: group_algebra, GF, abelian_group, gens
julia> import Hecke: group_algebra, GF, abelian_group, gens; using QuantumClifford.ECC;

julia> GA = group_algebra(GF(2), abelian_group([14,2]));

julia> x, s = gens(GA);

julia> A = 1 + x^7
julia> A = 1 + x^7;

julia> B = 1 + x^7 + s + x^8 + s*x^7 + x
julia> B = 1 + x^7 + s + x^8 + s*x^7 + x;

julia> c = two_block_group_algebra_codes(A,B);

Expand All @@ -189,7 +191,7 @@ The ECC Zoo has an [entry for this family](https://errorcorrectionzoo.org/c/qcga
A [[756, 16, ≤ 34]] code from Table 3 of [bravyi2024high](@cite):

```jldoctest
julia> import Hecke: group_algebra, GF, abelian_group, gens
julia> import Hecke: group_algebra, GF, abelian_group, gens; using QuantumClifford.ECC;

julia> l=21; m=18;

Expand All @@ -215,10 +217,14 @@ where `𝐺ᵣ = ℤ/l₁ × ℤ/l₂ × ... × ℤ/lᵣ`.
A [[48, 4, 6]] Weight-6 TB-QLDPC code from Appendix A Table 2 of [voss2024multivariatebicyclecodes](@cite).

```jldoctest
julia> import Hecke: group_algebra, GF, abelian_group, gens; # hide
julia> import Hecke: group_algebra, GF, abelian_group, gens; using QuantumClifford.ECC;

julia> l=4; m=6;

julia> GA = group_algebra(GF(2), abelian_group([l, m]));

julia> x, y = gens(GA);

julia> z = x*y;

julia> A = x^3 + y^5;
Expand All @@ -238,10 +244,10 @@ where `𝑙` and `𝑚` are coprime, and can be expressed as univariate polynomi
with generator `𝜋 = 𝑥𝑦`. They can be viewed as a special case of Lifted Product construction
based on abelian group `ℤₗ x ℤₘ` where `ℤⱼ` cyclic group of order `j`.

[108, 12, 6]] coprime-bivariate bicycle (BB) code from Table 2 of [wang2024coprime](@cite).
[[108, 12, 6]] coprime-bivariate bicycle (BB) code from Table 2 of [wang2024coprime](@cite).

```jldoctest
julia> import Hecke: group_algebra, GF, abelian_group, gens;
julia> import Hecke: group_algebra, GF, abelian_group, gens; using QuantumClifford.ECC;

julia> l=2; m=27;

Expand All @@ -252,6 +258,10 @@ julia> 𝜋 = gens(GA)[1];
julia> A = 𝜋^2 + 𝜋^5 + 𝜋^44;

julia> B = 𝜋^8 + 𝜋^14 + 𝜋^47;

julia> c = two_block_group_algebra_codes(A, B);

julia> code_n(c), code_k(c)
(108, 12)
```

Expand All @@ -271,6 +281,8 @@ See also: [`two_block_group_algebra_codes`](@ref), [`bicycle_codes`](@ref).
A [[254, 28, 14 ≤ d ≤ 20]] code from (A1) in Appendix B of [panteleev2021degenerate](@cite).

```jldoctest
julia> import Hecke; using QuantumClifford.ECC

julia> c = generalized_bicycle_codes([0, 15, 20, 28, 66], [0, 58, 59, 100, 121], 127);

julia> code_n(c), code_k(c)
Expand All @@ -281,6 +293,8 @@ An [[70, 8, 10]] *abelian* 2BGA code from Table 1 of [lin2024quantum](@cite), wi
order `l = 35`, illustrates that *abelian* 2BGA codes can be viewed as GB codes.

```jldoctest
julia> import Hecke; using QuantumClifford.ECC

julia> l = 35;

julia> c1 = generalized_bicycle_codes([0, 15, 16, 18], [0, 1, 24, 27], l);
Expand Down Expand Up @@ -317,6 +331,8 @@ code with the group `G = ℤ₃ˣ³` corresponds to a cubic code.
The ECC Zoo has an [entry for this family](https://errorcorrectionzoo.org/c/haah_cubic).

```jldoctest
julia> import Hecke; using QuantumClifford.ECC;

julia> c = haah_cubic_codes([0, 15, 20, 28, 66], [0, 58, 59, 100, 121], 6);

julia> code_n(c), code_k(c)
Expand Down
9 changes: 8 additions & 1 deletion test/test_doctests.jl
Original file line number Diff line number Diff line change
@@ -1,12 +1,19 @@
@testitem "Doctests" tags=[:doctests] begin
using Documenter
using QuantumClifford
using QuantumClifford.Experimental.NoisyCircuits
using QuantumInterface

ENV["HECKE_PRINT_BANNER"] = "false"
import Hecke
const QuantumCliffordHeckeExt = Base.get_extension(QuantumClifford, :QuantumCliffordHeckeExt)

ENV["LINES"] = 80 # for forcing `displaysize(io)` to be big enough
ENV["COLUMNS"] = 80
DocMeta.setdocmeta!(QuantumClifford, :DocTestSetup, :(using QuantumClifford; using QuantumClifford.ECC); recursive=true)
modules = [QuantumClifford, QuantumClifford.Experimental.NoisyCircuits, QuantumClifford.ECC, QuantumInterface, QuantumCliffordHeckeExt]
doctestfilters = [r"(QuantumClifford\.|)"]
doctest(QuantumClifford;
doctest(nothing, modules;
doctestfilters
#fix=true
)
Expand Down
Loading