Skip to content

Commit

Permalink
Update study notes
Browse files Browse the repository at this point in the history
  • Loading branch information
QubitPi committed Aug 11, 2024
1 parent d55f450 commit 02329aa
Show file tree
Hide file tree
Showing 2 changed files with 7 additions and 10 deletions.
17 changes: 7 additions & 10 deletions parts/special-relativity.tex
Original file line number Diff line number Diff line change
Expand Up @@ -531,18 +531,15 @@ \subsubsection{\hfil \S3. Lorentz Transformation - Quantifying Non-Simultaneity
Eq.~\ref{eq:transformation},~\ref{eq:x-transformation},~\ref{eq:y-transformation},~\ref{eq:z-transformation}:

\begin{align}
\tau &= \varphi(v)\left[ t - \frac{v}{V^2 - v^2} (x - vt) \right] \\
&= \varphi(v)\left( \frac{V^2t - v^2t - vx + v^2t}{V^2 - v^2} \right) \\
&= \varphi(v)\left( \frac{V^2t - vx}{V^2 - v^2} \right) \\
&= \varphi(v)\frac{V^2}{V^2 - v^2}\left( t - \frac{v}{V^2}x \right)
&\tau &= \varphi(v)\left[ t - \frac{v}{V^2 - v^2} (x - vt) \right] \\
&= \varphi(v)\left( \frac{V^2t - v^2t - vx + v^2t}{V^2 - v^2} \right) \\
&= \varphi(v)\left( \frac{V^2t - vx}{V^2 - v^2} \right) \\
&= \varphi(v)\frac{V^2}{V^2 - v^2}\left( t - \frac{v}{V^2}x \right) \\
\xi &= \varphi(v)\left( \frac{V^2}{V^2 - v^2} \right) (x - vt) \\
\eta &= \varphi(v)\frac{V}{\sqrt{V^2 - v^2}}y \\
\zeta &= \varphi(v)\frac{V}{\sqrt{V^2 - v^2}}z \\
\end{align}

\begin{equation}
\xi = \varphi(v)\left( \frac{V^2}{V^2 - v^2} \right) (x - vt)
\end{equation}



It does not lose generality to say if $k$ is moving relative to $K$ at speed $v$ then $K$ is moving relative to $k$ at
speed $-v$. Directly measuring coordinates in $K$ is effectively the same thing as transforming $(x, y, z, t)$ in $K$
to $(\xi, \eta, \zeta, \tau)$ and then back to $(x, y, z, t)$ so we have along the x-axis:
Expand Down
Binary file modified study-notes.pdf
Binary file not shown.

0 comments on commit 02329aa

Please sign in to comment.