Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
17 commits
Select commit Hold shift + click to select a range
e5eb4ed
Add device operation to conv signature. Use unions to hold conv layou…
vpietila-amd Oct 29, 2025
74ba32e
Add predicates for all device op instances.
vpietila-amd Oct 29, 2025
fbdded6
Use the device op signature for validation.
vpietila-amd Oct 29, 2025
7b14dde
Merge branch 'develop' into vpietila/ckb-generalize-conv-factory
vpietila-amd Oct 29, 2025
ee13982
Fix ckb CMakeLists.txt file for tests.
vpietila-amd Oct 30, 2025
28e0d5f
Fix building CK Builder instance traits after the introduction of dir…
vpietila-amd Oct 30, 2025
e129843
Merge branch 'vpietila/fix-building-ckb-tests' into vpietila/ckb-gene…
vpietila-amd Oct 30, 2025
c8eac6f
Fix clang-formatting.
vpietila-amd Oct 30, 2025
a40985c
Merge branch 'develop' into jeonghyun/ckb-add-remining-fwd-conv-devic…
JH-Leon-KIM-AMD Nov 3, 2025
0b83a57
add device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk
JH-Leon-KIM-AMD Nov 4, 2025
f207c90
Add full DL configurability with Option A implementation
JH-Leon-KIM-AMD Nov 4, 2025
6c778f6
Add factory and test support for DeviceGroupedConvFwdMultipleD_Xdl_CS…
JH-Leon-KIM-AMD Nov 5, 2025
6cb30a9
Merge branch 'develop' into jeonghyun/ckb-add-remining-fwd-conv-devic…
JH-Leon-KIM-AMD Nov 5, 2025
43f104a
Update copyright headers to new format
JH-Leon-KIM-AMD Nov 6, 2025
14f9e1a
Merge branch 'develop' into jeonghyun/ckb-add-remining-fwd-conv-devic…
JH-Leon-KIM-AMD Nov 6, 2025
9e334ba
fix c++ 18 format
JH-Leon-KIM-AMD Nov 6, 2025
6a230ae
Fix clang-format-18 error in device_op_types.hpp
JH-Leon-KIM-AMD Nov 6, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -183,4 +183,87 @@ concept SpecifiesLoopScheduler = requires {
{ T::loop_scheduler } -> std::convertible_to<PipelineScheduler>;
};

/******************************************** */
/* DL-specific descriptors and requirements */
/******************************************** */

// Concept for DL thread configuration
template <typename T>
concept DlThreadConfigDescriptor = requires(T t) {
{ t.k0_per_block } -> std::convertible_to<size_t>;
{ t.k1 } -> std::convertible_to<size_t>;
{ t.m1_per_thread } -> std::convertible_to<size_t>;
{ t.n1_per_thread } -> std::convertible_to<size_t>;
{ t.k_per_thread } -> std::convertible_to<size_t>;
};

// Concept for DL thread cluster
template <typename T>
concept DlThreadClusterDescriptor = requires(T t) {
{ t.m1_xs } -> std::convertible_to<std::array<size_t, 2>>;
{ t.n1_xs } -> std::convertible_to<std::array<size_t, 2>>;
};

// Concept for DL block transfer K0_M0_M1_K1 format
template <typename T>
concept DlBlockTransferK0M0M1K1Descriptor = requires(T t) {
{ t.thread_slice_lengths } -> std::convertible_to<std::array<size_t, 4>>;
{ t.thread_cluster_lengths } -> std::convertible_to<std::array<size_t, 4>>;
{ t.thread_cluster_arrange_order } -> std::convertible_to<std::array<size_t, 4>>;
{ t.src_access_order } -> std::convertible_to<std::array<size_t, 4>>;
{ t.src_vector_tensor_lengths } -> std::convertible_to<std::array<size_t, 4>>;
{ t.src_vector_tensor_contiguous_dim_order } -> std::convertible_to<std::array<size_t, 4>>;
{ t.dst_vector_tensor_lengths } -> std::convertible_to<std::array<size_t, 4>>;
};

// Concept for DL block transfer K0_N0_N1_K1 format
template <typename T>
concept DlBlockTransferK0N0N1K1Descriptor = requires(T t) {
{ t.thread_slice_lengths } -> std::convertible_to<std::array<size_t, 4>>;
{ t.thread_cluster_lengths } -> std::convertible_to<std::array<size_t, 4>>;
{ t.thread_cluster_arrange_order } -> std::convertible_to<std::array<size_t, 4>>;
{ t.src_access_order } -> std::convertible_to<std::array<size_t, 4>>;
{ t.src_vector_tensor_lengths } -> std::convertible_to<std::array<size_t, 4>>;
{ t.src_vector_tensor_contiguous_dim_order } -> std::convertible_to<std::array<size_t, 4>>;
{ t.dst_vector_tensor_lengths } -> std::convertible_to<std::array<size_t, 4>>;
};

// Concept for DL C thread transfer
template <typename T>
concept DlCThreadTransferDescriptor = requires(T t) {
{ t.src_dst_access_order } -> std::convertible_to<std::array<size_t, 6>>;
{ t.src_dst_vector_dim } -> std::convertible_to<size_t>;
{ t.dst_scalar_per_vector } -> std::convertible_to<size_t>;
};

// Concept to check if algorithm specifies DL thread config
template <typename T>
concept SpecifiesDlThreadConfig = requires {
{ T::dl_thread_config } -> DlThreadConfigDescriptor;
};

// Concept to check if algorithm specifies DL thread cluster
template <typename T>
concept SpecifiesDlThreadCluster = requires {
{ T::dl_thread_cluster } -> DlThreadClusterDescriptor;
};

// Concept to check if algorithm specifies DL A block transfer
template <typename T>
concept SpecifiesDlBlockTransferA = requires {
{ T::dl_block_transfer_a } -> DlBlockTransferK0M0M1K1Descriptor;
};

// Concept to check if algorithm specifies DL B block transfer
template <typename T>
concept SpecifiesDlBlockTransferB = requires {
{ T::dl_block_transfer_b } -> DlBlockTransferK0N0N1K1Descriptor;
};

// Concept to check if algorithm specifies DL C thread transfer
template <typename T>
concept SpecifiesDlCThreadTransfer = requires {
{ T::dl_c_thread_transfer } -> DlCThreadTransferDescriptor;
};

} // namespace ck_tile::builder
271 changes: 271 additions & 0 deletions experimental/builder/include/ck_tile/builder/conv_factory.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -36,9 +36,21 @@

#pragma once

#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_wmma_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle_v3.hpp"
// WORKAROUND: Macro namespace collision in upstream CK device operation headers.
// device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp (line 41) and
// device_grouped_conv_fwd_multiple_d_xdl_large_tensor_cshuffle.hpp (line 51) both define
// GridwiseGemmTemplateParameters macro without #undef, causing redefinition errors.
// Use pragma push/pop to isolate the Large_Tensor header's macro scope.
#pragma push_macro("GridwiseGemmTemplateParameters")
#ifdef GridwiseGemmTemplateParameters
#undef GridwiseGemmTemplateParameters
#endif
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_large_tensor_cshuffle.hpp"
#pragma pop_macro("GridwiseGemmTemplateParameters")
#include "ck_tile/builder/conv_signature_concepts.hpp"
#include "ck_tile/builder/conv_algorithm_concepts.hpp"
#include "ck_tile/builder/conv_algorithm_limits.hpp"
Expand Down Expand Up @@ -990,4 +1002,263 @@ struct ConvFactory<SIGNATURE, ALGORITHM, VERSION>
GRIDWISE_GEMM_PIPELINE_VERSION>;
};

// Factory specialization for DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK instance
// of a grouped forward convolution kernel using Direct Load (DL) approach.
template <ConvSignatureDescriptor auto SIGNATURE,
ConvAlgorithmDescriptor auto ALGORITHM,
StringLiteral VERSION>
requires ConvDirectionIsForward<SIGNATURE> &&
ConvDeviceOpIs_DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK<SIGNATURE>
struct ConvFactory<SIGNATURE, ALGORITHM, VERSION>
{
static constexpr size_t SPATIAL_DIM = SIGNATURE.spatial_dim;
using Layouts = decltype(factory_internal::GetTensorLayout<SIGNATURE.layout,
SPATIAL_DIM,
ConvDirection::FORWARD>());
using Types = factory_internal::ConvTensorTypes<SIGNATURE.data_type>;
using Ops = factory_internal::ElementwiseOps<SIGNATURE.elementwise_operation>;
using AlgorithmType = decltype(ALGORITHM);

static_assert(SpecifiesThreadBlock<AlgorithmType>,
"The convolution algorithm descriptor must specify thread block info.");
static_assert(SpecifiesFwdConcSpecialization<AlgorithmType>,
"The convolution algorithm descriptor must specify forward convolution "
"specialization.");
static_assert(SpecifiesGemmSpecialization<AlgorithmType>,
"The convolution algorithm descriptor must specify gemm specialization.");
static_assert(SpecifiesDlThreadConfig<AlgorithmType>,
"DL algorithm must specify thread config.");
static_assert(SpecifiesDlThreadCluster<AlgorithmType>,
"DL algorithm must specify thread cluster.");
static_assert(SpecifiesDlBlockTransferA<AlgorithmType>,
"DL algorithm must specify A block transfer.");
static_assert(SpecifiesDlBlockTransferB<AlgorithmType>,
"DL algorithm must specify B block transfer.");
static_assert(SpecifiesDlCThreadTransfer<AlgorithmType>,
"DL algorithm must specify C thread transfer.");

static constexpr auto FWD_CONV_SPECIALIZATION =
factory_internal::SetFwdConvSpecialization<ALGORITHM>();
static constexpr auto GEMM_SPECIALIZATION =
factory_internal::SetGemmSpecialization<ALGORITHM>();

static constexpr auto BLOCK = factory_internal::SetThreadBlockInfo<ALGORITHM>();

// DL-specific parameters from algorithm descriptor
static constexpr auto DL_THREAD_CFG = ALGORITHM.dl_thread_config;
static constexpr ck::index_t K0PerBlock = DL_THREAD_CFG.k0_per_block;
static constexpr ck::index_t K1 = DL_THREAD_CFG.k1;
static constexpr ck::index_t M1PerThread = DL_THREAD_CFG.m1_per_thread;
static constexpr ck::index_t N1PerThread = DL_THREAD_CFG.n1_per_thread;
static constexpr ck::index_t KPerThread = DL_THREAD_CFG.k_per_thread;

// Thread cluster from descriptor
static constexpr auto DL_CLUSTER = ALGORITHM.dl_thread_cluster;
using M1N1ThreadClusterM1Xs = to_sequence_v<DL_CLUSTER.m1_xs>;
using M1N1ThreadClusterN1Xs = to_sequence_v<DL_CLUSTER.n1_xs>;

// A Block Transfer from descriptor - K0_M0_M1_K1 tensor format
static constexpr auto DL_A_TRANSFER = ALGORITHM.dl_block_transfer_a;
using ABlockTransferThreadSliceLengths_K0_M0_M1_K1 =
to_sequence_v<DL_A_TRANSFER.thread_slice_lengths>;
using ABlockTransferThreadClusterLengths_K0_M0_M1_K1 =
to_sequence_v<DL_A_TRANSFER.thread_cluster_lengths>;
using ABlockTransferThreadClusterArrangeOrder =
to_sequence_v<DL_A_TRANSFER.thread_cluster_arrange_order>;
using ABlockTransferSrcAccessOrder = to_sequence_v<DL_A_TRANSFER.src_access_order>;
using ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1 =
to_sequence_v<DL_A_TRANSFER.src_vector_tensor_lengths>;
using ABlockTransferSrcVectorTensorContiguousDimOrder =
to_sequence_v<DL_A_TRANSFER.src_vector_tensor_contiguous_dim_order>;
using ABlockTransferDstVectorTensorLengths_K0_M0_M1_K1 =
to_sequence_v<DL_A_TRANSFER.dst_vector_tensor_lengths>;

// B Block Transfer from descriptor - K0_N0_N1_K1 tensor format
static constexpr auto DL_B_TRANSFER = ALGORITHM.dl_block_transfer_b;
using BBlockTransferThreadSliceLengths_K0_N0_N1_K1 =
to_sequence_v<DL_B_TRANSFER.thread_slice_lengths>;
using BBlockTransferThreadClusterLengths_K0_N0_N1_K1 =
to_sequence_v<DL_B_TRANSFER.thread_cluster_lengths>;
using BBlockTransferThreadClusterArrangeOrder =
to_sequence_v<DL_B_TRANSFER.thread_cluster_arrange_order>;
using BBlockTransferSrcAccessOrder = to_sequence_v<DL_B_TRANSFER.src_access_order>;
using BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1 =
to_sequence_v<DL_B_TRANSFER.src_vector_tensor_lengths>;
using BBlockTransferSrcVectorTensorContiguousDimOrder =
to_sequence_v<DL_B_TRANSFER.src_vector_tensor_contiguous_dim_order>;
using BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1 =
to_sequence_v<DL_B_TRANSFER.dst_vector_tensor_lengths>;

// C Thread Transfer from descriptor
static constexpr auto DL_C_TRANSFER = ALGORITHM.dl_c_thread_transfer;
using CThreadTransferSrcDstAccessOrder = to_sequence_v<DL_C_TRANSFER.src_dst_access_order>;
static constexpr ck::index_t CThreadTransferSrcDstVectorDim = DL_C_TRANSFER.src_dst_vector_dim;
static constexpr ck::index_t CThreadTransferDstScalarPerVector =
DL_C_TRANSFER.dst_scalar_per_vector;

// The DL forward convolution kernel class instance
using Instance = ck::tensor_operation::device::DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK<
SPATIAL_DIM,
typename Types::ADataType,
typename Types::BDataType,
typename Types::DsDataTypes,
typename Types::EDataType,
typename Types::AccDataType,
typename Layouts::ALayout,
typename Layouts::BLayout,
typename Layouts::DsLayout,
typename Layouts::ELayout,
typename Ops::AElementwiseOp,
typename Ops::BElementwiseOp,
typename Ops::CDEElementwiseOp,
FWD_CONV_SPECIALIZATION,
GEMM_SPECIALIZATION,
BLOCK.block_size,
BLOCK.per_block.m,
BLOCK.per_block.n,
K0PerBlock,
K1,
M1PerThread,
N1PerThread,
KPerThread,
M1N1ThreadClusterM1Xs,
M1N1ThreadClusterN1Xs,
ABlockTransferThreadSliceLengths_K0_M0_M1_K1,
ABlockTransferThreadClusterLengths_K0_M0_M1_K1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1,
ABlockTransferSrcVectorTensorContiguousDimOrder,
ABlockTransferDstVectorTensorLengths_K0_M0_M1_K1,
BBlockTransferThreadSliceLengths_K0_N0_N1_K1,
BBlockTransferThreadClusterLengths_K0_N0_N1_K1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1,
BBlockTransferSrcVectorTensorContiguousDimOrder,
BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1,
CThreadTransferSrcDstAccessOrder,
CThreadTransferSrcDstVectorDim,
CThreadTransferDstScalarPerVector>;
};

// Factory specialization for DeviceGroupedConvFwdMultipleD_Xdl_CShuffle_Large_Tensor instance
// of a grouped forward convolution kernel with large tensor support (N-splitting).
template <ConvSignatureDescriptor auto SIGNATURE,
ConvAlgorithmDescriptor auto ALGORITHM,
StringLiteral VERSION>
requires ConvDirectionIsForward<SIGNATURE> &&
ConvDeviceOpIs_DeviceGroupedConvFwdMultipleD_Xdl_CShuffle_Large_Tensor<SIGNATURE>
struct ConvFactory<SIGNATURE, ALGORITHM, VERSION>
{
static constexpr size_t SPATIAL_DIM = SIGNATURE.spatial_dim;
using Layouts = decltype(factory_internal::GetTensorLayout<SIGNATURE.layout,
SPATIAL_DIM,
ConvDirection::FORWARD>());
using Types = factory_internal::ConvTensorTypes<SIGNATURE.data_type>;
using Ops = factory_internal::ElementwiseOps<SIGNATURE.elementwise_operation>;
using AlgorithmType = decltype(ALGORITHM);

static_assert(SpecifiesThreadBlock<AlgorithmType>,
"The convolution algorithm descriptor must specify thread block info.");
static_assert(SpecifiesGridwiseXdlGemm<AlgorithmType>,
"The convolution algorithm descriptor must specify gridwise GEMM info.");
static_assert(SpecifiesBlockTransfer<AlgorithmType>,
"The convolution algorithm descriptor must specify block transfer info.");
static_assert(SpecifiesLdsTransfer<AlgorithmType>,
"The convolution algorithm descriptor must specify LDS transfer info.");
static_assert(
SpecifiesThreadClusterAccessOrder<AlgorithmType>,
"The convolution algorithm descriptor must specify thread cluster access order info.");
static_assert(SpecifiesSourceAccessOrder<AlgorithmType>,
"The convolution algorithm descriptor must specify source access order info.");
static_assert(SpecifiesFwdConcSpecialization<AlgorithmType>,
"The convolution algorithm descriptor must specify forward convolution "
"specialization.");
static_assert(SpecifiesGemmSpecialization<AlgorithmType>,
"The convolution algorithm descriptor must specify gemm specialization.");
static_assert(SpecifiesNumPrefetchStages<AlgorithmType>,
"The convolution algorithm descriptor must specify number of prefetch stages.");
static_assert(SpecifiesLoopScheduler<AlgorithmType>,
"The convolution algorithm descriptor must specify loop scheduler.");

static constexpr auto FWD_CONV_SPECIALIZATION =
factory_internal::SetFwdConvSpecialization<ALGORITHM>();
static constexpr auto GEMM_SPECIALIZATION =
factory_internal::SetGemmSpecialization<ALGORITHM>();
static constexpr factory_internal::ConvSpec SPECIALIZATION{.conv_spec = FWD_CONV_SPECIALIZATION,
.gemm_spec = GEMM_SPECIALIZATION};

static constexpr auto LOOP_SCHEDULER = factory_internal::SetLoopScheduler<ALGORITHM>();
static constexpr auto BLOCK = factory_internal::SetThreadBlockInfo<ALGORITHM>();
static constexpr auto GRIDWISE_GEMM = ALGORITHM.gridwise_gemm;
static constexpr auto A_BLOCK_TRANSFER =
factory_internal::SetFwdConvABlockTransfer<ALGORITHM>();
static constexpr auto B_BLOCK_TRANSFER =
factory_internal::SetFwdConvBBlockTransfer<ALGORITHM>();
static constexpr auto C_BLOCK_TRANSFER =
factory_internal::SetCBlockTransfer<SIGNATURE, ALGORITHM>();

// Check limits for the algorithm parameters.
static_assert(InputVectorTransferLimits<A_BLOCK_TRANSFER>);
static_assert(InputVectorTransferLimits<B_BLOCK_TRANSFER>);
static_assert(OutputVectorTransferLimits<C_BLOCK_TRANSFER>);
static_assert(AccessOrderLimits<A_BLOCK_TRANSFER.thread_cluster_order>);
static_assert(AccessOrderLimits<B_BLOCK_TRANSFER.thread_cluster_order>);
static_assert(AccessOrderLimits<A_BLOCK_TRANSFER.src_access_order>);
static_assert(AccessOrderLimits<B_BLOCK_TRANSFER.src_access_order>);

// The forward convolution kernel class instance with large tensor support.
using Instance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD_Xdl_CShuffle_Large_Tensor<
SPATIAL_DIM,
typename Layouts::ALayout,
typename Layouts::BLayout,
typename Layouts::DsLayout,
typename Layouts::ELayout,
typename Types::ADataType,
typename Types::BDataType,
typename Types::AccDataType,
typename Types::CShuffleDataType,
typename Types::DsDataTypes,
typename Types::EDataType,
typename Ops::AElementwiseOp,
typename Ops::BElementwiseOp,
typename Ops::CDEElementwiseOp,
SPECIALIZATION.conv_spec,
SPECIALIZATION.gemm_spec,
ALGORITHM.num_gemm_k_prefetch_stages,
BLOCK.block_size,
BLOCK.per_block.m,
BLOCK.per_block.n,
BLOCK.per_block.k,
GRIDWISE_GEMM.ak1,
GRIDWISE_GEMM.bk1,
GRIDWISE_GEMM.m_per_xdl,
GRIDWISE_GEMM.n_per_xdl,
GRIDWISE_GEMM.m_xdl_per_wave,
GRIDWISE_GEMM.n_xdl_per_wave,
to_sequence_v<A_BLOCK_TRANSFER.thread_cluster_dims>,
to_sequence_v<A_BLOCK_TRANSFER.thread_cluster_order>,
to_sequence_v<A_BLOCK_TRANSFER.src_access_order>,
A_BLOCK_TRANSFER.src_vector_dim,
A_BLOCK_TRANSFER.src_scalar_per_vector,
A_BLOCK_TRANSFER.lds_dst_scalar_per_vector,
A_BLOCK_TRANSFER.lds_padding,
to_sequence_v<B_BLOCK_TRANSFER.thread_cluster_dims>,
to_sequence_v<B_BLOCK_TRANSFER.thread_cluster_order>,
to_sequence_v<B_BLOCK_TRANSFER.src_access_order>,
B_BLOCK_TRANSFER.src_vector_dim,
B_BLOCK_TRANSFER.src_scalar_per_vector,
B_BLOCK_TRANSFER.lds_dst_scalar_per_vector,
B_BLOCK_TRANSFER.lds_padding,
C_BLOCK_TRANSFER.m_per_wave_per_shuffle,
C_BLOCK_TRANSFER.n_per_wave_per_shuffle,
to_sequence_v<C_BLOCK_TRANSFER.thread_cluster_dims>,
C_BLOCK_TRANSFER.scalar_per_vector,
typename Types::AComputeType,
typename Types::BComputeType,
LOOP_SCHEDULER>;
};

} // namespace ck_tile::builder
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
// Copyright (C) Advanced Micro Devices, Inc., or its affiliates.
// SPDX-License-Identifier: MIT

#pragma once

namespace ck_tile::builder {

// Enumeration for CK Device Operation types.
// This allows the builder to select which device operation template to instantiate
// based on the user's requirements.
enum class DeviceOpType
{
// Forward Convolution - Non-grouped
CONV_FWD, // Maps to: DeviceConvFwd (TODO: No implementation with tuning params exists yet)

// Forward Convolution - Grouped
GROUPED_CONV_FWD_MULTIPLE_ABD, // Maps to: DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
GROUPED_CONV_FWD_MULTIPLE_ABD_XDL_CSHUFFLE_V3, // Maps to:
// DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle_V3
};

} // namespace ck_tile::builder
Loading