-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
chore(examples): Automatic commit of example files in Markdown and Ju…
…pyter Notebook format.
- Loading branch information
1 parent
577238b
commit 00ecd65
Showing
1 changed file
with
130 additions
and
130 deletions.
There are no files selected for viewing
260 changes: 130 additions & 130 deletions
260
docs/jupyter_notebooks/e1_pull_DWD_historical_to_all_output_formats.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,131 +1,131 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": "# AixWeather Tutorial\n" | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": "This example is a step-by-step guide to pull historical weather data from the DWD open access database\nand convert it to different output formats.\nThus showing all possible steps on how to use AixWeather.\nTo run the tool for other weather data sources, just change the project class.\nThe rest of the code is streamlined and will remain the same.\n" | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": "Enable logging, this is just to get more feedback through the terminal\n" | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": "import logging\nlogging.basicConfig(level=\"DEBUG\")\n" | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": "Choose the project class according to the desired weather data origin.\nCheck the project classes file or the API documentation to see which classes are available.\n" | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": "from aixweather.project_class import ProjectClassDWDHistorical\n" | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": "Step 0: Initiate the project class which contains or creates all variables and functions.\nFor this, we use the datetime module to specify dates.\n" | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": "import datetime as dt\nDWD_pull_project = ProjectClassDWDHistorical(\n start=dt.datetime(2022, 1, 1),\n end=dt.datetime(2023, 1, 1),\n station=15000,\n # specify whether nan-values should be filled when exporting\n fillna=True,\n # define results path if desired\n abs_result_folder_path=None,\n)\n" | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": "Step 1: Import historical weather from the DWD open access database\n" | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": "DWD_pull_project.import_data()\nprint(\n f\"\\nHow the imported data looks like:\\n{DWD_pull_project.imported_data.head()}\\n\"\n)\n" | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": "Step 2: Convert this imported data to the core format\n" | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": "DWD_pull_project.data_2_core_data()\nprint(f\"\\nHow the core data looks like:\\n{DWD_pull_project.core_data.head()}\\n\")\n" | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": "You may optionally also use data quality check utils, like:\n" | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": "from aixweather.data_quality_checks import plot_heatmap_missing_values\n" | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": "Plot data quality\n" | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": "plot = plot_heatmap_missing_values(DWD_pull_project.core_data)\nplot.show()\n" | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": "Step 3: Convert this core data to an output data format of your choice\n" | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": "DWD_pull_project.core_2_csv()\nDWD_pull_project.core_2_json()\nDWD_pull_project.core_2_pickle()\nDWD_pull_project.core_2_mos()\nDWD_pull_project.core_2_epw()\n" | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.6.4" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": "# AixWeather Tutorial\n" | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": "This example is a step-by-step guide to pull historical weather data from the DWD open access database\nand convert it to different output formats.\nThus showing all possible steps on how to use AixWeather.\nTo run the tool for other weather data sources, just change the project class.\nThe rest of the code is streamlined and will remain the same.\n" | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": "Enable logging, this is just to get more feedback through the terminal\n" | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": "import logging\nlogging.basicConfig(level=\"DEBUG\")\n" | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": "Choose the project class according to the desired weather data origin.\nCheck the project classes file or the API documentation to see which classes are available.\n" | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": "from aixweather.project_class import ProjectClassDWDHistorical\n" | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": "Step 0: Initiate the project class which contains or creates all variables and functions.\nFor this, we use the datetime module to specify dates.\n" | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": "import datetime as dt\nDWD_pull_project = ProjectClassDWDHistorical(\n start=dt.datetime(2022, 1, 1),\n end=dt.datetime(2023, 1, 1),\n station=15000,\n # specify whether nan-values should be filled when exporting\n fillna=True,\n # define results path if desired\n abs_result_folder_path=None,\n)\n" | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": "Step 1: Import historical weather from the DWD open access database\n" | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": "DWD_pull_project.import_data()\nprint(\n f\"\\nHow the imported data looks like:\\n{DWD_pull_project.imported_data.head()}\\n\"\n)\n" | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": "Step 2: Convert this imported data to the core format\n" | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": "DWD_pull_project.data_2_core_data()\nprint(f\"\\nHow the core data looks like:\\n{DWD_pull_project.core_data.head()}\\n\")\n" | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": "You may optionally also use data quality check utils, like:\n" | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": "from aixweather.data_quality_checks import plot_heatmap_missing_values\n" | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": "Plot data quality\n" | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": "plot = plot_heatmap_missing_values(DWD_pull_project.core_data)\nplot.show()\n" | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": "Step 3: Convert this core data to an output data format of your choice\n" | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": "DWD_pull_project.core_2_csv()\nDWD_pull_project.core_2_json()\nDWD_pull_project.core_2_pickle()\nDWD_pull_project.core_2_mos()\nDWD_pull_project.core_2_epw()\n" | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.6.4" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |