- ZAIC-2023-Elementary-Math-Solving
- Team GigaChat
- Environment
- Solution overview
- Data Curation
- Experiment Result
- Training Script
- Inference
- Inference with vLLM
Name | |
---|---|
Bùi Văn Hợp | [email protected] |
Phạm Bảo Lộc | [email protected] |
Nguyễn Thành Đồng | [email protected] |
Phan Văn Phúc | [email protected] |
- Pytorch: 2.1.0
- CUDA: 12.1
- GPU: RTX3090, RTX4090 (at least 20Gb VRAM)
pip install -r requirements.txt
huggingface-cli login
wandb login
The training steps of the model include 2 stages:
-
Continue pretraining: Using text corpus collected from external data about elementary school mathematics knowledge, some types of exercises to help LLM align with mathematical knowledge.
-
Finetuning: Using the dataset provided by the organizers and some filtered data in the format Question, Choices, Explanation, Answer to train Reasoning for the model from Stage 1.
We train the model following instruction with the input being Question + Choices and the output being Explanation + Answer.
The input data is filled with complete explanations to ensure the model always makes inferences before giving an answer.
Using intfloat/e5-base as embedding model
In the inference phase, we use a few-shot prompting, using an additional embedding model to find the top-k samples that are most similar to the question + input choice. We then post-process and give the final answer.
In this section, we will provide the data sets used and processing directions to create data sets for the two stages of Continue Pretraining and Finetuning.
This is the original data provided by the contest organizers. We used models such as GPT-3.5, GPT-4 to process the data, as well as create manual data sets for evaluation in development environment. All datasets are placed in datasets/.
All processed datasets:
Dataset Name | Description | Size | Filename | Note |
---|---|---|---|---|
Original Train | training dataset from competition organizer | 1200 | math_train.json, with explanation: 537 | Only a few with explanation |
GPT3.5 Generate Explanation | Using GPT3.5 to generate explanation fields | 1200 | with-missing-explain-3.5.json | |
GPT4 Generate Explanation | Using GPT4 to generate explanation fields | 1200 | with-missing-explain-4.json | |
Public Test | public test dataset from competition organizer | 189 | math_test.json | Several questions with no answer |
Public Test with Hand Label for Local Evaluation | add answer fields to public test dataset | 189 | math_test_with_hand_label.json | |
Crawled Hand Label Public Test | Create a similar public test dataset for evaluation | 140 | validation/convert_collect_data.json | |
Qualified dataset for Finetune | Combination of Cleaned Original Train Missing Explanation with Generated by GPT-4 | 1349 | qualified_data.json |
We rely mainly on crawling online teaching websites for elementary school students and the benchmark dataset is translated into Vietnamese to take advantage of the above two stages.
External datasets:
Dataset Name | Description | Size | Link | Note |
---|---|---|---|---|
Vietnamese Translated Grade School Math Dataset | Using GPT3.5 to translate Grade School Math Dataset 8K. | 8792 | https://huggingface.co/datasets/hllj/vi_gsm8k | a text2text Generation dataset. |
Vietnamese Grade School Math - Multiple Choice | Crawled math solving pages from grade 1 to grade 5 in https://khoahoc.vietjack.com/ | 2733 | https://huggingface.co/datasets/hllj/vi_grade_school_math_mcq | each page contains multiple-choice math questions. |
Vietnamese Elementary Math Knowledge and Workbook | Crawled dataset of text corpus in https://tech12h.com/ | 10246 | https://huggingface.co/datasets/hllj/vi_math_problem_crawl | text corpus about math and problem in books for students. |
The dataset will follow the continue pretrain direction with text corpora and training for 1 epoch. All datasets for pretraining are in datasets/pretrain/.
Dataset Name | Filename | Size |
---|---|---|
Vietnamese Translated Grade School Math Dataset | vi_train_raw.json, vi_test_raw.json | 8792 |
Vietnamese Elementary Math Knowledge and Workbook - Text | grade_{1,5}.json | 10246 |
Vietjack Text | vietjack_pretrain.json | 13615 |
Total | 32653 |
Finetuning data set is created from the competition dataset plus with external datasets with multiple-choice format, in addition to adding data, we also filter out some erroneous data or missing explanations to increase the model's inference ability. All datasets for finetuning are in datasets/finetune/.
Dataset Name | Description | Filename | Size |
---|---|---|---|
Qualified Dataset from Competition | Qualified dataset + GPT-4 Fill Explanation | convert_qualified_data.json | 1196 |
Collected Dataset | From Crawled Hand Label Public Test that we collected, similar to public test dataset. | convert_qualified_data.json | 140 |
Vietnamese Elementary Math Knowledge and Workbook | Convert to multiple-choice question format by generating 3 more false answers. | grade_{3,5}_mcq.json | 5206 |
Vietnamese Grade School Math - Multiple Choice | Filtering questions with long explanation. | vietjack_finetune.json | 2115 |
Total | 8657 |
Base model | Train loss | Eval loss | Eval_Accuracy | Eval_Perplexity |
---|---|---|---|---|
Llama-2 7B | 0.5671561380291116 | 0.6204795241355896 | 0.831146229075127 | 1.8598196564670118 |
Mistral-7b-v0.1 | 0.5717931843230705 | 0.605161726474762 | 0.8357321441998862 | 1.8315483947998228 |
zephyr-7b-beta | 0.5778149476435406 | 0.6088958978652954 | 0.8344175985305018 | 1.838400495913874 |
Qwen-7B | 0.9038185586734694 | 0.9308816194534302 | 0.7710786622703721 | 2.5367446354805163 |
BloomZ-7b1 | 1.2220947331637801 | 1.241927146911621 | 0.7222003923855691 | 3.4622793605962974 |
Base model | Finetuning | Train loss | Eval loss | public test acc |
---|---|---|---|---|
hllj/mistral-vi-math | BaoLocTown/sft-mistral-7b-vi-math-v1-clean-valid | 0.2929 | 0.4370269775 | 0.5238 |
hllj/Zephyr-beta-7B-Vi-Math | BaoLocTown/sft-zephyr-beta-7b-vi-math-v1-clean-valid | 0.2968 | 0.4378368258 | 0.6878 |
hllj/Llama2-7B-Vi-Math | BaoLocTown/sft-llama2-7b-vi-math-v1-clean-valid | 0.3555 | 0.4689075351 | 0.4126 |
python llama_recipes/finetuning.py --use_peft --peft_method lora --quantization --model_name meta-llama/Llama-2-7b-hf --output_dir outputs
model baseline: zephyr-7b-alpha with zalo_math_fill_missing_explain_4 (using GPT4)
now with load_in
options ['4bit', '8bit']
python llama_recipes/finetuning.py --use_peft --peft_method lora --quantization --model_name HuggingFaceH4/zephyr-7b-alpha --dataset zalo_math_fill_missing_explain_35 --output_dir outputs --use_wandb --wandb_entity baolocpham --wandb_key KEY --num_epochs 2
python llama_recipes/finetuning.py --use_peft --peft_method lora --quantization --model_name HuggingFaceH4/zephyr-7b-alpha --dataset zalo_math_fill_missing_explain_4 --output_dir outputs --max_length 2048 --num_epochs 6 --load_in 4bit --use_wandb --wandb_entity baolocpham --wandb_key KEY
bash run_pt.sh
using HuggingFaceH4/zephyr-7b-beta as base model
ACCELERATE_LOG_LEVEL=info accelerate launch --config_file <multi_gpu.yaml / deepspeed_zero3.yaml> --num_processes=1 sft.py config_lora.yaml
Example:
ACCELERATE_LOG_LEVEL=info accelerate launch --config_file multi_gpu.yaml --num_processes=1 sft.py config_lora.yaml
python inference.py --model_name hllj/zephyr-7b-beta-vi-math --peft_model outputs-sft-zephyr-beta-v1/checkpoint-1500/ --load_in 4bit/8bit --max_new_tokens 512 --temperature 0.1
- model_name: base model using for finetuning
- peft_model: folder contains LoRA finetune output
- load_in: 4bit / 8bit quantization
- max_new_tokens: maximum generating tokens
- temperature: temperature for sampling (we're chosing range from 0.1 to 0.5)
vLLM is faster about (20%~40%) comparing with simple quantization inference.
Because when inference with vLLM, it doesn't allow using LoRA outputs but the merged weights itself
python merge_peft_adapter.py --model_type auto --base_model <name or path base model> --tokenizer_path <name or path tokenizer> --lora_model <lora folder> --output_dir <output folder for merged model>
Example:
python merge_peft_adapter.py --model_type auto --base_model hllj/mistral-vi-math --tokenizer_path lora --lora_model lora --output_dir final
python inference_vllm.py --model_path <output folder for merged model> --max_new_tokens 1024 --temperature 0.1 --output_filepath submission.csv
Example:
python inference_vllm.py --model_path final --max_new_tokens 1024 --temperature 0.1 --output_filepath submission.csv