任务文件在lm-evaluation-harness/lm_eval/tasks中,数据集路径在对应任务文件的DATASET_PATH变量中设置。
- 通用问答能力
注册名 | 任务文件 | 说明 | 评价指标 |
---|---|---|---|
pclue_dev_generate | pclue_dev_generate.py | 中文评测集Pclue里的dev数据集generate任务 | bleu, chrf |
- 文本摘要任务
注册名 | 任务文件 | 说明 | 评价指标 |
---|---|---|---|
nlpcc | nlpcc.py | 文本摘要能力中文评测数据集nlpcc | bleu, chrf |
THUCNews | THUCNews.py | 文本摘要能力中文清华新闻THUCNews数据 | bleu, chrf |
- 阅读理解—成语填空
注册名 | 任务文件 | 说明 | 评价指标 |
---|---|---|---|
pclue_dev_mrc | pclue_dev_mrc.py | 中文评测集Pclue里的dev数据集mrc任务 | acc |
- 分类任务评测
注册名 | 任务文件 | 说明 | 评价指标 |
---|---|---|---|
pclue_dev_classify | pclue_dev_classify.py | 中文评测集Pclue的dev数据中classify任务 | acc |
- NLI任务评测
注册名 | 任务文件 | 说明 | 评价指标 |
---|---|---|---|
pclue_dev_nli | pclue_dev_nli.py | 中文评测集Pclue里的dev数据集nli任务 | acc |
- 其他任务
注册名 | 任务文件 | 说明 | 评价指标 |
---|---|---|---|
chnsenticorp | chnsenticorp.py | 情感分析任务ChenSentiCorp | acc |
stock11_real_estate | stock11_real_estate.py | 情感分析任务, https://huggingface.co/datasets/kuroneko5943/stock11/raw/main/test/Real_estate.txt | acc |
-
- 毒害指标评测
注册名 | 任务文件 | 说明 | 评价指标 |
---|---|---|---|
coldzh | coldzh.py | 中文毒害数据 | acc |
- 偏见指标评测
注册名 | 任务文件 | 说明 | 评价指标 |
---|---|---|---|
stereosetzh | stereosetzh.py | 中文偏见数据集 | acc |
- 政治敏感指标评测
注册名 | 任务文件 | 说明 | 评价指标 |
---|---|---|---|
politicsen | politicsen.py | 中文政治敏感数据集 | acc |
- 推理能力指标评测
注册名 | 任务文件 | 说明 | 评价指标 |
---|---|---|---|
mandarinograd | mandarinograd.py | 中文维诺格拉德模式数据集Mandarinograd | acc |
CINLID | cinlid.py | 中文成语语义推理数据集CINLID | acc |
-
情感 | 注册名 | 任务文件 | 说明 | 评价指标 | |:----:|:----|:----:|:-----:| | chinese_hotel | chinese_hotel.py | 中文酒店评价数据集数据链接 | acc |
-
事实与幻觉评测
注册名 | 任务文件 | 说明 | 评价指标 |
---|---|---|---|
CHEF | chef.py | [空] | acc |
This project provides a unified framework to test generative language models on a large number of different evaluation tasks.
Features:
- 200+ tasks implemented. See the task-table for a complete list.
- Support for the Hugging Face
transformers
library, GPT-NeoX, Megatron-DeepSpeed, and the OpenAI API, with flexible tokenization-agnostic interface. - Support for evaluation on adapters (e.g. LoRa) supported in HuggingFace's PEFT library.
- Task versioning to ensure reproducibility.
To install lm-eval
from the github repository main branch, run:
git clone https://github.com/RekkimiARG/lm-evaluation-harness.git
cd lm-evaluation-harness
pip install -e .
运行一些模型的时候可能会报错缺少部分库,比如sentencepiece,安装一下一般就解决了。
llama huggingface的config中对tokenizer的命名和transformers库中的不一致,导致无法使用AutoTokenizer加载,但是本库的运行默认使用AutoTokenizer。虽然该问题由来已久,但是目前仍没有修复,所以我们要手动改一下transformers的源码。
有两种方法:
1.安装好transformers库之后,去对应环境site-packages下找到transformers库,做如下修改:
replace LlamaTokenizer to LLaMATokenizer
1. convert_slow_tokenizer.py
2. models/auto/tokenization_auto.py
3. models/llama/__init__.py
4. models/llama/convert_llama_weights_to_hf.py
5. models/llama/tokenization_llama_fast.py
6. models/llama/tokenization_llama.py
- 从这里拉源码安装
git clone https://github.com/vxfla/transformers.git
cd transformers/
pip install -e .
Note: When reporting results from eval harness, please include the task versions (shown in
results["versions"]
) for reproducibility. This allows bug fixes to tasks while also ensuring that previously reported scores are reproducible. See the Task Versioning section for more info.
To evaluate a model hosted on the HuggingFace Hub (e.g. GPT-J-6B) you can use the following command:
python main.py \
--model hf-causal \
--model_args pretrained=EleutherAI/gpt-j-6B \
--tasks lambada_openai,hellaswag \
--device cuda:0
Additional arguments can be provided to the model constructor using the --model_args
flag. Most notably, this supports the common practice of using the revisions
feature on the Hub to store partialy trained checkpoints:
python main.py \
--model hf-causal \
--model_args pretrained=EleutherAI/pythia-160m,revision=step100000 \
--tasks lambada_openai,hellaswag \
--device cuda:0
To evaluate models that are called via AutoSeq2SeqLM
, you instead use hf-seq2seq
.
Warning: Choosing the wrong model may result in erroneous outputs despite not erroring.
To use with PEFT, take the call you would run to evaluate the base model and add ,peft=PATH
to the model_args
argument as shown below:
python main.py \
--model hf-causal \
--model_args pretrained=EleutherAI/gpt-j-6b,peft=nomic-ai/gpt4all-j-lora \
--tasks openbookqa,arc_easy,winogrande,hellaswag,arc_challenge,piqa,boolq \
--device cuda:0
Our library also supports the OpenAI API:
export OPENAI_API_SECRET_KEY=YOUR_KEY_HERE
python main.py \
--model gpt3 \
--model_args engine=davinci \
--tasks lambada_openai,hellaswag
While this functionality is only officially mantained for the official OpenAI API, it tends to also work for other hosting services that use the same API such as goose.ai with minor modification. We also have an implementation for the TextSynth API, using --model textsynth
.
To verify the data integrity of the tasks you're performing in addition to running the tasks themselves, you can use the --check_integrity
flag:
python main.py \
--model gpt3 \
--model_args engine=davinci \
--tasks lambada_openai,hellaswag \
--check_integrity
To evaluate mesh-transformer-jax models that are not available on HF, please invoke eval harness through this script.
💡 Tip: You can inspect what the LM inputs look like by running the following command:
python write_out.py \
--tasks all_tasks \
--num_fewshot 5 \
--num_examples 10 \
--output_base_path /path/to/output/folder
This will write out one text file for each task.
To implement a new task in the eval harness, see this guide.
To help improve reproducibility, all tasks have a VERSION
field. When run from the command line, this is reported in a column in the table, or in the "version" field in the evaluator return dict. The purpose of the version is so that if the task definition changes (i.e to fix a bug), then we can know exactly which metrics were computed using the old buggy implementation to avoid unfair comparisons. To enforce this, there are unit tests that make sure the behavior of all tests remains the same as when they were first implemented. Task versions start at 0, and each time a breaking change is made, the version is incremented by one.
When reporting eval harness results, please also report the version of each task. This can be done either with a separate column in the table, or by reporting the task name with the version appended as such: taskname-v0.
To address concerns about train / test contamination, we provide utilities for comparing results on a benchmark using only the data points nto found in the model trainign set. Unfortunately, outside of models trained on the Pile ans C4, its very rare that people who train models disclose the contents of the training data. However this utility can be useful to evaluate models you have trained on private data, provided you are willing to pre-compute the necessary indices. We provide computed indices for 13-gram exact match deduplication against the Pile, and plan to add additional precomputed dataset indices in the future (including C4 and min-hash LSH deduplication).
For details on text decontamination, see the decontamination guide.
Note that the directory provided to the --decontamination_ngrams_path
argument should contain the ngram files and info.json. See the above guide for ngram generation for the pile, this could be adapted for other training sets.
python main.py \
--model gpt2 \
--tasks sciq \
--decontamination_ngrams_path path/containing/training/set/ngrams \
--device cuda:0
@software{eval-harness,
author = {Gao, Leo and
Tow, Jonathan and
Biderman, Stella and
Black, Sid and
DiPofi, Anthony and
Foster, Charles and
Golding, Laurence and
Hsu, Jeffrey and
McDonell, Kyle and
Muennighoff, Niklas and
Phang, Jason and
Reynolds, Laria and
Tang, Eric and
Thite, Anish and
Wang, Ben and
Wang, Kevin and
Zou, Andy},
title = {A framework for few-shot language model evaluation},
month = sep,
year = 2021,
publisher = {Zenodo},
version = {v0.0.1},
doi = {10.5281/zenodo.5371628},
url = {https://doi.org/10.5281/zenodo.5371628}
}