Skip to content

Library for implementing OpenGL accelerated Qt5 C++ UI components.

License

Notifications You must be signed in to change notification settings

RespiraWorks/qnanopainter

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

QNanoPainter

QNanoPainter is an OpenGL accelerated C++ vector drawing library for Qt, offering optimal performance, productivity and rendering quality all-in-one. QNanoPainter API is a mixture of QPainter and HTML5 canvas APIs. In other words, it's very close to HTML5 canvas but transformed to object oriented C++ with separate classes.

QNanoPainter can be used together with Qt5 UIs in different ways:

  • Use QNanoQuickItem and QNanoQuickItemPainter when implementing custom C++ Qt QQuickItems. This is comparable to QQuickPaintedItem, but instead of QPainter offers own QNanoPainter API for drawing.
  • Use QNanoWidget when implementing custom QWidget. This is based on QOpenGLWidget.
  • Use QNanoWindow when implementing single-view UI, optimal for embedded usage. This is based on QOpenGLWindow.

QNanoPainter uses excellent NanoVG as its rendering backend.

Screenshots

Features

Here is a non exhaustive list of QNanoPainter features:

  • Vector drawing: Path-based drawing of rectangles, circles, lines etc. filled and/or stroked. Brush can be color, gradient or image pattern. Different cap and join options for stoked lines.
  • Images: Transformed images or rectangular areas of images. Mipmapping for smoother rendering of scaled images.
  • Text: Contains set of default fonts and supports loading custom truetype fonts. Text aligning and wrapping. Letter-spacing and blur for shadow/glow effect.
  • Antialiasing: Adjustable antialiasing amount for vector drawing.
  • Pixel aligning: Drawing and texts can be either freely positioned (smooth animations) or aligned to pixels (sharp rendering).
  • Extra: Supports high-DPI retina resolutions, global alpha, transforms, painter states etc.

Usage

Taking QNanoPainter into use in your Qt application is simple:

  • Copy 'libqnanopainter' directory into your project. Sources are included directly instead of building separate static/dynamic library which makes usage simple and allows easier customization of QNanoPainter itself.
  • In your project .pro file, include QNanoPainter with something like:
include(src/libqnanopainter/include.pri)

For custom QQuickItem

  • Implement your QNanoQuickItem and QNanoQuickItemPainter based classes (see more about these below or from available examples).
  • Export your item into QML in main.cpp with something like:
qmlRegisterType<MyQNanoItem>("MyQNanoItem", 1, 0, "MyQNanoItem");
  • Use your item in QML:
import QtQuick 2.4
import MyQNanoItem 1.0

Item {
	...
	MyQNanoItem {
		anchors.fill: parent
	}
}

To create own QNanoPainter item you should implement 2 classes:

  • QNanoQuickItem: This will be the visual QQuickItem providing API towards QML side. Your painter will be created and attached to item in createItemPainter() method.
  • QNanoQuickItemPainter: This will handle the drawing using QNanoPainter API in the paint() method. Data with the item will be transferred in synchronize() method.

The main reason for two classes is that these will run in separate threads for optimal performance. And because of this, all communication between these two need to happen in synchronize() method.

Here is a complete HelloWorld example item:

#include "qnanoquickitem.h"
#include "qnanoquickitempainter.h"

// HelloItemPainter contains the painting code
class HelloItemPainter : public QNanoQuickItemPainter
{
    Q_OBJECT

public:
    HelloItemPainter()
    {
    }

    void paint(QNanoPainter *p)
    {
        // Paint the background circle
        p->beginPath();
        p->circle(width()*0.5, height()*0.5, width()*0.46);
        QNanoRadialGradient gradient1(width()*0.5, height()*0.4, width()*0.6, width()*0.2);
        gradient1.setStartColor("#808080");
        gradient1.setEndColor("#404040");
        p->setFillStyle(gradient1);
        p->fill();
        p->setStrokeStyle("#202020");
        p->setLineWidth(width()*0.02);
        p->stroke();
        // Hello text
        p->setTextAlign(QNanoPainter::ALIGN_CENTER);
        p->setTextBaseline(QNanoPainter::BASELINE_MIDDLE);
        QNanoFont font1(QNanoFont::DEFAULT_FONT_BOLD_ITALIC);
        font1.setPixelSize(width()*0.08);
        p->setFont(font1);
        p->setFillStyle("#B0D040");
        p->fillText("HELLO", width()*0.5, height()*0.4);
        // QNanoPainter text
        QNanoFont font2(QNanoFont::DEFAULT_FONT_THIN);
        font2.setPixelSize(width()*0.18);
        p->setFont(font2);
        p->fillText("QNanoPainter", width()*0.5, height()*0.5);
    }
};

// HelloItem provides the API towards QML
class HelloItem : public QNanoQuickItem
{
    Q_OBJECT

public:
    HelloItem(QQuickItem *parent = 0)
        :  QNanoQuickItem(parent)
    {
    }

    // Reimplement
    QNanoQuickItemPainter *createItemPainter() const
    {
        // Create painter for this item
        return new HelloItemPainter();
    }
};

For custom QWidget or QWindow

Implement your own QNanoWidget or QNanoWindow subclass depending on your needs. APIs of these are very similar, basically you just override paint() method like this:

#include "qnanowindow.h"
#include "qnanopainter.h"

class HelloWindow : public QNanoWindow
{
public:
    HelloWindow()
    {
        setFillColor("#ffffff");
    }

    void paint(QNanoPainter *p)
    {
        // Paint using QNanoPainter here
        ...
    }
};

API Reference

Sources contain API documentation written with QDoc. To generate the documentation:

> cd doc
> [Qt bin path]/qdoc qnanopainter.qdocconf 

Documentation is work-in-progress, patches welcome =)

License

The library is licensed under zlib license.

Links

About

Library for implementing OpenGL accelerated Qt5 C++ UI components.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C 79.1%
  • C++ 20.2%
  • Other 0.7%