Basic Machine Learning / Deep Learning Library
Implemented with numpy and scipy in python codes.
Also includes a simple version of autogradable Tensor.
For more information, please refer to my blog.
- python==3.6
- numpy==1.17.0
- scipy==1.2.1
- torch==1.3.0
.
βββ LICENSE
βββ README.md
βββ graph
βΒ Β βββ __init__.py
βΒ Β βββ _conditional_random_field.py
βΒ Β βββ _hidden_markov.py
βββ nn
βΒ Β βββ __init__.py
βΒ Β βββ _activation.py
βΒ Β βββ _base.py
βΒ Β βββ _criterion.py
βΒ Β βββ _fully_connect.py
βΒ Β βββ autograd
βΒ Β βββ __init__.py
βΒ Β βββ tensor.py
βββ supervised
βΒ Β βββ __init__.py
βΒ Β βββ _base.py
βΒ Β βββ bayes
βΒ Β βΒ Β βββ __init__.py
βΒ Β βΒ Β βββ _bayes.py
βΒ Β βββ knn
βΒ Β βΒ Β βββ __init__.py
βΒ Β βΒ Β βββ _k_nearest.py
βΒ Β βββ linear
βΒ Β βΒ Β βββ __init__.py
βΒ Β βΒ Β βββ _base.py
βΒ Β βΒ Β βββ _linear_regression.py
βΒ Β βΒ Β βββ _logistic_regression.py
βΒ Β βΒ Β βββ _multi_classifier.py
βΒ Β βΒ Β βββ _perceptron.py
βΒ Β βΒ Β βββ _regularization.py
βΒ Β βΒ Β βββ _support_vector_machine.py
βΒ Β βββ tree
βΒ Β βββ __init__.py
βΒ Β βββ _cart.py
βΒ Β βββ _id3.py
βΒ Β βββ ensemble
βΒ Β βββ __init__.py
βΒ Β βββ _adaptive_boosting.py
βΒ Β βββ _random_forest.py
βββ test
βΒ Β βββ nn_models
βΒ Β βΒ Β βββ fcnn.py
βΒ Β βββ test_graph.py
βΒ Β βββ test_supervised.py
βββ unsupervised
βΒ Β βββ __init__.py
βΒ Β βββ clustering
βΒ Β βΒ Β βββ __init__.py
βΒ Β βΒ Β βββ _base.py
βΒ Β βΒ Β βββ _kmeans.py
βΒ Β βΒ Β βββ _spectral.py
βΒ Β βββ decomposition
βΒ Β βββ __init__.py
βΒ Β βββ _base.py
βΒ Β βββ _pca.py
βββ utils
βββ __init__.py
βββ _batch.py
βββ _cross_validate.py
βββ _make_data.py
βββ _scaling.py
- 2019.6.12
- Linear Regression
- Logistic Regression
- Perceptron
- utils.scaling / batch / cross_validate
- 6.13
- Support Vector Machine
- K-Nearest-Neighbor
- test script
- 6.15
- Bayes
- 6.16
- K-Means
- 6.19
- Spectral
- Principle Component Analysis
- 6.24
- Decision Tree(ID3)
- 7.2
- Multi-classifier
- Regularization
- 7.13
- Activation
- Criterion
- Fully Connected Layer
- Fully Connected Neural Network Model
- 8.17-8.20
- Improve project structure
- Decision Tree(CART)
- Random Forest
- Adaboost
- 8.23
- Hidden Markov Model
- 11.6
- Conditional Random Field Model(Based on
Torch
) - Autograd Tensor
- Conditional Random Field Model(Based on