https://gaia-air-splcogen.vercel.app/
title: GAIA AIR: Comprehensive Capabilities Document (COMCAP) author: Amedeo Pelliccia version: 1.0 date: 2025-04-04 classification: Industrial Ejemplar email: [email protected] orcid: https://orcid.org/0000-0000-0000-0000 location: Madrid & Worldwide github: https://github.com/Amepelliccia academia: https://academia.edu/amedeopelliccia linkedin: https://www.linkedin.com/in/amepelliccia/ badge: Mastering-Theory Pro 🧠
Este documento proporciona una visión completa de la arquitectura GAIA AIR, detallando las capas, componentes, flujos de información y estructura del repositorio. Sirve como referencia principal para cualquier persona que trabaje en el sistema.
El documento incluye:
- Visión general y principios arquitectónicos
- Estructura detallada de las tres capas principales
- Explicación del Digital Thread Orchestrator como componente central
- Flujos de información entre capas
- Estructura del repositorio
- Integración tecnológica y beneficios
- Enfoque en sostenibilidad
- Roadmap de implementación
- Consideraciones de seguridad y cumplimiento
- Métricas de éxito
GAIA AIR implementa una arquitectura digital integral para gestionar el ciclo de vida completo de productos aeroespaciales sostenibles. Esta arquitectura está diseñada para conectar todas las fases del desarrollo, desde la conceptualización y diseño hasta la producción, operación y mantenimiento, con un enfoque en sostenibilidad, trazabilidad y eficiencia.
flowchart TD
subgraph design_layer [Design & Documentation Layer]
A1["Semantic Memory System"]
A2["PLM & Digital Twins"]
A3["Aero. Ontologies"]
end
subgraph production_layer [Industrial Production Layer]
B1["Manufacturing Digital Twins"]
B2["Advanced MES"]
B3["Quality Control"]
end
subgraph operations_layer [Services & Operations Layer]
C1["Predictive Maintenance"]
C2["Supply Chain Management"]
C3["Lifecycle Analysis"]
end
D["Digital Thread Orchestrator"]
%% Connections
A1 --> A2
A2 --> A3
A2 --> B1
B2 --> D
D --> C1
B2 --> B3
B3 --> C2
C2 --> C3
- Digital Thread: Hilo digital continuo que conecta todas las fases del ciclo de vida
- Modularidad: Componentes desacoplados con interfaces bien definidas
- Sostenibilidad: Métricas ambientales integradas en cada fase
- Trazabilidad: Registro inmutable de todas las decisiones y cambios
- Seguridad por Diseño: Protección de datos y propiedad intelectual
La arquitectura se divide en tres capas principales interconectadas:
Centro neurálgico para la gestión del conocimiento y documentación técnica.
Componentes Clave:
- Sistema de Memoria Semántica: Almacenamiento y recuperación contextual de documentación técnica
- PLM Inteligente: Gestión del ciclo de vida del producto con integración de gemelos digitales
- Ontologías Aeroespaciales: Modelos de conocimiento estructurado específicos del dominio
Tecnologías:
- Bases de datos vectoriales (pgvector, Pinecone)
- Procesamiento de lenguaje natural y RAG
- Grafos de conocimiento
Conecta el diseño con la fabricación física mediante gemelos digitales y sistemas MES avanzados.
Componentes Clave:
- Gemelos Digitales de Fabricación: Simulación y optimización de procesos productivos
- Sistema MES Avanzado: Monitoreo y control de la producción en tiempo real
- Control de Calidad Inteligente: Inspección automatizada con visión artificial
Tecnologías:
- IoT industrial y sensores
- Visión artificial
- Simulación en tiempo real
- Blockchain para trazabilidad
Gestiona la fase operativa del producto, incluyendo mantenimiento y cadena de suministro.
Componentes Clave:
- Plataforma de Mantenimiento Predictivo: Anticipación de fallos y optimización de mantenimiento
- Gestión Inteligente de Cadena de Suministro: Optimización de inventario y logística
- Análisis de Ciclo de Vida: Monitoreo continuo de impacto ambiental
Tecnologías:
- Machine Learning predictivo
- Optimización de inventario
- Análisis de datos operacionales
El Digital Thread Orchestrator actúa como columna vertebral de la arquitectura, conectando las tres capas y asegurando la trazabilidad completa del ciclo de vida del producto.
Funcionalidades:
- Registro y coordinación de eventos entre sistemas
- Trazabilidad completa de cambios y decisiones
- Mantenimiento del linaje de datos a través de todas las fases
-
Diseño → Producción:
- Los cambios de diseño generan eventos en el Digital Thread
- Los gemelos digitales simulan el impacto en la producción
- Se actualizan automáticamente los planes de fabricación
-
Producción → Operaciones:
- Los datos de fabricación real alimentan los modelos predictivos
- La trazabilidad de componentes se mantiene para servicio postventa
- Las desviaciones de calidad informan mejoras de diseño
-
Operaciones → Diseño:
- Los datos operacionales retroalimentan el diseño
- El análisis de fallos informa mejoras futuras
- Las métricas de sostenibilidad guían la evolución del producto
Para 2026, tras completar las tres fases de implementación, la estructura del repositorio GAIA AIR reflejará una arquitectura completa y madura que integra todas las capas del sistema. A continuación, presento una proyección detallada de cómo se vería la estructura completa del código:
GAIA-AIR/
├── ARCHITECTURE.md # Documento de arquitectura
├── README.md # Documentación general
├── CONTRIBUTING.md # Guías de contribución
├── LICENSE # Licencia del proyecto
├── docker-compose.yml # Configuración de despliegue completo
├── kubernetes/ # Configuraciones para orquestación
│ ├── production/ # Manifiestos para producción
│ └── development/ # Manifiestos para desarrollo
│
├── CMS-KIT/ # Sistema de gestión de contenidos
│ ├── app/
│ │ ├── backend-fastapi/ # Backend API (FastAPI)
│ │ │ ├── core/
│ │ │ │ ├── memory/ # Núcleo de memoria semántica
│ │ │ │ │ ├── __init__.py
│ │ │ │ │ ├── memory_service.py
│ │ │ │ │ ├── vector_store.py
│ │ │ │ │ ├── embedding_service.py
│ │ │ │ │ └── cache_manager.py
│ │ │ │ ├── auth/ # Autenticación y autorización
│ │ │ │ │ ├── __init__.py
│ │ │ │ │ ├── oauth2.py
│ │ │ │ │ ├── jwt_handler.py
│ │ │ │ │ └── permissions.py
│ │ │ │ └── config/ # Configuración del sistema
│ │ │ │ ├── __init__.py
│ │ │ │ ├── settings.py
│ │ │ │ └── environment.py
│ │ │ ├── routers/
│ │ │ │ ├── __init__.py
│ │ │ │ ├── users.py # Gestión de usuarios
│ │ │ │ ├── services/ # Endpoints de API
│ │ │ │ │ ├── __init__.py
│ │ │ │ │ ├── semantic_bridge.py
│ │ │ │ │ ├── digital_twin_router.py
│ │ │ │ │ ├── plm_integration.py
│ │ │ │ │ └── sustainability_metrics.py
│ │ │ │ └── admin/ # Endpoints administrativos
│ │ │ │ ├── __init__.py
│ │ │ │ ├── system_config.py
│ │ │ │ └── monitoring.py
│ │ │ ├── services/ # Servicios de negocio
│ │ │ │ ├── __init__.py
│ │ │ │ ├── digital_thread_orchestrator.py
│ │ │ │ ├── knowledge_graph_service.py
│ │ │ │ ├── ontology_manager.py
│ │ │ │ ├── rag_service.py
│ │ │ │ └── audit_service.py
│ │ │ ├── models/ # Modelos de datos
│ │ │ │ ├── __init__.py
│ │ │ │ ├── user.py
│ │ │ │ ├── document.py
│ │ │ │ ├── thread_events.py
│ │ │ │ └── audit_log.py
│ │ │ ├── dependencies/ # Dependencias compartidas
│ │ │ │ ├── __init__.py
│ │ │ │ ├── auth.py
│ │ │ │ ├── database.py
│ │ │ │ └── telemetry.py
│ │ │ ├── utils/ # Utilidades
│ │ │ │ ├── __init__.py
│ │ │ │ ├── validators.py
│ │ │ │ ├── formatters.py
│ │ │ │ └── security.py
│ │ │ ├── tests/ # Pruebas automatizadas
│ │ │ │ ├── __init__.py
│ │ │ │ ├── test_memory.py
│ │ │ │ ├── test_semantic_bridge.py
│ │ │ │ └── test_digital_thread.py
│ │ │ ├── alembic/ # Migraciones de base de datos
│ │ │ ├── main.py # Punto de entrada FastAPI
│ │ │ ├── Dockerfile # Configuración de contenedor
│ │ │ └── requirements.txt # Dependencias Python
│ │ │
│ │ └── frontend-nextjs/ # Frontend (Next.js)
│ │ ├── app/
│ │ │ ├── layout.tsx # Layout principal
│ │ │ ├── page.tsx # Página principal
│ │ │ ├── globals.css # Estilos globales
│ │ │ ├── api/ # API routes
│ │ │ ├── auth/ # Autenticación
│ │ │ ├── dashboard/ # Interfaces de usuario
│ │ │ │ ├── page.tsx
│ │ │ │ ├── layout.tsx
│ │ │ │ ├── memory/ # Gestión de memoria
│ │ │ │ ├── documents/ # Gestión documental
│ │ │ │ ├── analytics/ # Analíticas y métricas
│ │ │ │ └── settings/ # Configuración
│ │ │ └── admin/ # Panel de administración
│ │ ├── components/
│ │ │ ├── ui/ # Componentes de UI
│ │ │ │ ├── button.tsx
│ │ │ │ ├── card.tsx
│ │ │ │ └── ...
│ │ │ ├── forms/ # Componentes de formularios
│ │ │ ├── layouts/ # Componentes de layout
│ │ │ └── charts/ # Visualizaciones y gráficos
│ │ ├── lib/
│ │ │ ├── stores/ # Estado global
│ │ │ │ ├── auth-store.ts
│ │ │ │ ├── document-store.ts
│ │ │ │ └── settings-store.ts
│ │ │ ├── api/ # Cliente API
│ │ │ ├── utils/ # Utilidades
│ │ │ └── hooks/ # Custom hooks
│ │ ├── widgets/ # Widgets reutilizables
│ │ │ ├── AllInsightsWidget.tsx
│ │ │ ├── NodeStatusWidget.tsx
│ │ │ ├── TelemetryWidget.tsx
│ │ │ ├── TokensWidget.tsx
│ │ │ └── UsersWidget.tsx
│ │ ├── public/ # Archivos estáticos
│ │ ├── ui/ # Componentes de UI específicos
│ │ │ ├── memory_dashboard.tsx
│ │ │ ├── document_explorer.tsx
│ │ │ └── semantic_search.tsx
│ │ ├── next.config.js # Configuración Next.js
│ │ ├── tailwind.config.js # Configuración Tailwind
│ │ ├── tsconfig.json # Configuración TypeScript
│ │ ├── package.json # Dependencias
│ │ └── Dockerfile # Configuración de contenedor
│ │
│ ├── docs/ # Documentación detallada
│ │ ├── api/ # Documentación de API
│ │ ├── architecture/ # Detalles arquitectónicos
│ │ ├── user-guides/ # Guías de usuario
│ │ └── developer-guides/ # Guías para desarrolladores
│ │
│ └── scripts/ # Scripts de utilidad
│ ├── setup.sh # Script de configuración
│ ├── seed_data.py # Carga de datos iniciales
│ └── migration.py # Utilidades de migración
│
├── DIGITAL-TWIN/ # Módulo de gemelos digitales
│ ├── core/ # Núcleo del gemelo digital
│ │ ├── simulation_engine/ # Motor de simulación
│ │ │ ├── physics_engine.py
│ │ │ ├── material_properties.py
│ │ │ └── environmental_factors.py
│ │ ├── model_registry/ # Registro de modelos
│ │ │ ├── model_manager.py
│ │ │ ├── version_control.py
│ │ │ └── model_validator.py
│ │ └── integration/ # Integraciones
│ │ ├── plm_connector.py
│ │ ├── mes_connector.py
│ │ └── iot_gateway.py
│ ├── api/ # API del gemelo digital
│ │ ├── simulation_api.py
│ │ ├── model_api.py
│ │ └── data_api.py
│ ├── visualization/ # Visualización 3D
│ │ ├── web_viewer/
│ │ ├── ar_interface/
│ │ └── vr_interface/
│ ├── models/ # Modelos predefinidos
│ │ ├── aircraft/
│ │ │ ├── fuselage/
│ │ │ ├── wings/
│ │ │ └── propulsion/
│ │ └── spaceshuttle/
│ │ ├── thermal_protection/
│ │ ├── propulsion/
│ │ └── life_support/
│ └── tests/ # Pruebas del gemelo digital
│
├── PRODUCTION-SYSTEMS/ # Sistemas de producción
│ ├── mes/ # Manufacturing Execution System
│ │ ├── production_planning/
│ │ ├── quality_control/
│ │ ├── resource_management/
│ │ └── performance_analytics/
│ ├── iot-platform/ # Plataforma IoT
│ │ ├── device_management/
│ │ ├── data_ingestion/
│ │ ├── real_time_analytics/
│ │ └── alert_system/
│ ├── vision-system/ # Sistema de visión artificial
│ │ ├── camera_integration/
│ │ ├── defect_detection/
│ │ ├── measurement/
│ │ └── reporting/
│ └── blockchain-traceability/ # Trazabilidad con blockchain
│ ├── smart_contracts/
│ ├── certification/
│ ├── audit_trail/
│ └── supplier_verification/
│
└── OPERATIONS-PLATFORM/ # Plataforma de operaciones
├── maintenance/ # Sistema de mantenimiento
│ ├── predictive_maintenance/
│ │ ├── failure_prediction/
│ │ ├── maintenance_scheduling/
│ │ └── part_lifecycle/
│ ├── service_management/
│ │ ├── ticket_system/
│ │ ├── resource_allocation/
│ │ └── knowledge_base/
│ └── digital_manuals/
│ ├── interactive_guides/
│ ├── ar_assistance/
│ └── training_modules/
├── supply-chain/ # Gestión de cadena de suministro
│ ├── inventory_management/
│ │ ├── forecasting/
│ │ ├── optimization/
│ │ └── alerts/
│ ├── supplier_management/
│ │ ├── evaluation/
│ │ ├── onboarding/
│ │ └── collaboration/
│ ├── logistics/
│ │ ├── route_optimization/
│ │ ├── carbon_tracking/
│ │ └── delivery_management/
│ └── procurement/
│ ├── sourcing/
│ ├── contract_management/
│ └── sustainable_procurement/
├── sustainability/ # Análisis de sostenibilidad
│ ├── lifecycle_assessment/
│ │ ├── carbon_footprint/
│ │ ├── resource_usage/
│ │ └── end_of_life/
│ ├── reporting/
│ │ ├── esg_metrics/
│ │ ├── regulatory_compliance/
│ │ └── sustainability_goals/
│ └── optimization/
│ ├── energy_efficiency/
│ ├── material_optimization/
│ └── waste_reduction/
└── customer-portal/ # Portal de clientes
├── fleet_management/
├── service_requests/
├── documentation_access/
└── training_center/
- Digital Thread Completo: El
digital_thread_orchestrator.py
actúa como columna vertebral, conectando todas las capas y módulos. - APIs Unificadas: Interfaces coherentes entre todos los sistemas (CMS-KIT, DIGITAL-TWIN, PRODUCTION-SYSTEMS, OPERATIONS-PLATFORM).
- Modelo de Datos Compartido: Definiciones comunes que aseguran consistencia a través de todo el ciclo de vida.
- Microservicios Especializados: Cada componente funcional está encapsulado como un servicio independiente.
- Orquestación con Kubernetes: Configuraciones completas para despliegue y escalado automático.
- Interfaces Bien Definidas: Contratos de API claros entre todos los módulos.
- Gemelos Digitales Completos: Simulación física avanzada con modelos detallados de aeronaves y transbordadores espaciales.
- IA Integrada en Todos los Niveles: Desde el mantenimiento predictivo hasta la optimización de la cadena de suministro.
- Realidad Aumentada/Virtual: Interfaces inmersivas para diseño, mantenimiento y capacitación.
- Blockchain para Trazabilidad: Registro inmutable de toda la cadena de valor.
- Análisis de Ciclo de Vida: Herramientas completas para evaluar y optimizar el impacto ambiental.
- Métricas ESG Integradas: Monitoreo continuo de indicadores ambientales, sociales y de gobernanza.
- Optimización de Recursos: Sistemas para minimizar desperdicios y maximizar eficiencia.
- CI/CD Completo: Integración y despliegue continuos para todos los componentes.
- Monitoreo Integral: Telemetría y observabilidad en todos los sistemas.
- Gestión de Configuración: Control centralizado de configuraciones para todos los entornos.
Esta estructura proyectada representa un ecosistema digital completo y maduro que abarca todo el ciclo de vida del producto aeroespacial, desde el diseño inicial hasta las operaciones y el mantenimiento, con un fuerte enfoque en sostenibilidad y trazabilidad.
Me alegra que el Modelo de Datos Unificado haya resonado tan bien con la visión de GAIA AIR. Profundicemos en la interacción entre SietEvolution
y el contenido de SietDocument
, que efectivamente constituye el núcleo del sistema de gestión del conocimiento científico.
Para ilustrar cómo funcionaría este mecanismo en la práctica, vamos a explorar varios scenarios de evolución científica:
graph LR
subgraph Versioned Hypothesis Chain
direction LR
H1_v1["Hypothesis H1 (v1.0)<br>Status: proposed"] -- Refined By EVO-101 --> H1_v2["Hypothesis H1 (v1.1)<br>Status: refined"]
H1_v2 -- Validated By EVO-102 --> H1_v3["Hypothesis H1 (v1.2)<br>Status: validated"]
end
subgraph Evolution Records
direction TB
EVO_101["SietEvolution EVO-101<br>Type: hypothesis_refinement<br>Affects: H1 (v1.0 -> v1.1)<br>Reason: New experimental data"]
EVO_102["SietEvolution EVO-102<br>Type: hypothesis_validation<br>Affects: H1 (v1.1 -> v.1.2)<br>Reason: Successful simulation"]
end
SietDoc1["SietDocument DOC-A v2.0<br>References H1 (v1.0)"] --> |Update Triggered| EVO_101
EVO_101 --> SietDoc2["SietDocument DOC-A v2.1<br>References H1 (v1.1)"]
SietDoc2 --> |Update Triggered| EVO_102
EVO_102 --> SietDoc3["SietDocument DOC-A v2.2<br>References H1 (v1.2)"]
style H1_v1 fill:#f9f,stroke:#333,stroke-width:2px
style H1_v2 fill:#ccf,stroke:#333,stroke-width:2px
style H1_v3 fill:#cfc,stroke:#333,stroke-width:2px
style EVO_101 fill:#eee,stroke:#333,stroke-width:1px
style EVO_102 fill:#eee,stroke:#333,stroke-width:1px
Funcionamiento:
- Inmutabilidad con Versionado: Cuando ocurre un refinamiento de hipótesis, la hipótesis original no se modifica. En su lugar:
- Se crea una nueva versión de la hipótesis con el mismo ID base pero incrementando el número de versión (e.g.,
v1.0
->v1.1
). - La nueva versión mantiene una referencia a la versión anterior.
- El estado de la hipótesis se actualiza (ej: de
"proposed"
a"refined"
o"validated"
).
- Se crea una nueva versión de la hipótesis con el mismo ID base pero incrementando el número de versión (e.g.,
- Registro de Evolución: Cada transición entre versiones está documentada por un objeto
SietEvolution
que:- Registra el razonamiento detrás del cambio.
- Documenta la evidencia que provocó el refinamiento.
- Mantiene metadatos sobre quién, cuándo y por qué se realizó el cambio.
Implementación Técnica:
// Interfaz simplificada para la evidencia (puede ser más compleja)
interface Evidence {
evidenceType: "experiment" | "literature" | "simulation" | "field_observation";
source: string;
description: string;
link: string;
}
// Cuando se refina una hipótesis:
async function refineHypothesis(
hypothesisId: string,
refinementData: {
newStatement: string;
reasoning: string;
evidence: Evidence;
proposedBy: string;
}
): Promise<{ updatedHypothesis: Hypothesis; evolution: SietEvolution }> {
// 1. Obtener la hipótesis actual (asume funciones de acceso a datos)
const currentHypothesis = await getLatestHypothesisVersion(hypothesisId);
// 2. Crear nueva versión de la hipótesis
const newVersionNumber = parseFloat(currentHypothesis.version) + 0.1;
const newVersionString = newVersionNumber.toFixed(1);
const refinedHypothesis: Hypothesis = {
id: currentHypothesis.id, // Mismo ID base
version: newVersionString,
statement: refinementData.newStatement,
proposedBy: refinementData.proposedBy,
dateProposed: new Date(),
status: "refined", // O 'validated' según el caso
confidenceLevel: calculateNewConfidence(currentHypothesis, refinementData.evidence), // Lógica de cálculo de confianza
supportingEvidence: [...currentHypothesis.supportingEvidence, refinementData.evidence.link], // Añadir nueva evidencia
contradictingEvidence: currentHypothesis.contradictingEvidence, // Mantener o actualizar
previousVersion: currentHypothesis.version, // Enlace a la versión anterior
refinements: [], // Las versiones refinadas no refinan otras, pero pueden ser refinadas
};
// 3. Crear registro de evolución
const evolution: SietEvolution = {
evolutionId: generateUniqueId(), // Función para generar ID
timestamp: new Date(),
author: refinementData.proposedBy,
changeType: "hypothesis_refinement",
affectedEntities: [{
type: "hypothesis",
id: hypothesisId,
fromVersion: currentHypothesis.version,
toVersion: newVersionString
}],
changes: {
before: currentHypothesis.statement,
after: refinementData.newStatement,
reasoning: refinementData.reasoning
},
triggeringEvidence: refinementData.evidence,
knowledgeImpact: {
significanceLevel: calculateSignificance(currentHypothesis, refinedHypothesis), // Lógica de cálculo
paradigmShift: checkParadigmShift(currentHypothesis, refinedHypothesis), // Lógica de evaluación
newQuestionsRaised: [], // A completar durante la revisión
practicalImplications: [] // A completar durante la revisión
},
validation: { // Validación del REGISTRO DE EVOLUCIÓN, no de la hipótesis en sí
status: "pending",
reviewedBy: [],
approvedBy: null,
approvalDate: null,
comments: ""
}
};
// 4. Persistir ambos objetos en la base de datos (asume funciones de guardado)
await saveHypothesisVersion(refinedHypothesis);
await saveEvolution(evolution);
// 5. Actualizar referencias en los documentos SIET afectados (ver sección 3)
await updateSietDocumentReferences("hypothesis", hypothesisId, newVersionString);
return { updatedHypothesis: refinedHypothesis, evolution };
}
La granularidad de los cambios es un aspecto crucial. GAIA AIR implementaría un sistema de "parches científicos" que permite cambios a múltiples niveles:
graph TD
Granularity["Niveles de Granularidad<br>en SietEvolution"] --> DocLevel["Nivel Documento<br>(Metadatos, Status General)"]
Granularity --> SectionLevel["Nivel Sección<br>(Contenido Completo, Título)"]
Granularity --> EntityLevel["Nivel Entidad Científica<br>(Hypothesis, Experiment, etc.)"]
Granularity --> AttributeLevel["Nivel Atributo<br>(Valor Específico: e.g., confidenceLevel)"]
Granularity --> FragmentLevel["Nivel Fragmento<br>(Texto/Dato Específico dentro de Contenido)"]
style Granularity fill:#ddd,stroke:#333,stroke-width:2px
Implementación de Granularidad:
-
Referencia Precisa: Cada
SietEvolution
incluiría un campoaffectedEntities
(o similar) que especifica exactamente qué elementos se modificaron:interface AffectedEntity { type: "document" | "section" | "hypothesis" | "experiment" | "model" | "discovery" | "property" | "content_fragment"; // Añadido content_fragment id: string; // ID del documento o entidad principal path?: string; // Ruta JSONPath o similar para cambios de atributo o fragmento (e.g., "sections.results.content", "scientificData.hypotheses[0].confidenceLevel") fromVersion: string; // Versión antes del cambio toVersion: string; // Versión después del cambio } interface SietEvolution { // ... otros campos affectedEntities: AffectedEntity[]; // ... otros campos }
-
Ejemplo de Cambio a Nivel de Fragmento:
// Ejemplo de SietEvolution para un cambio en un fragmento de texto const textFragmentEvolution: SietEvolution = { evolutionId: "EVO-103", timestamp: new Date("2024-04-02T14:32:00Z"), author: "Dr. Amedeo Pelliccia", changeType: "content_correction", // Podría ser un tipo específico affectedEntities: [{ type: "content_fragment", id: "SIET-CFRPG-001", // ID del SietDocument path: "sections.results.content", // Dónde está el contenido fromVersion: "1.0", // Versión del SietDocument antes toVersion: "1.0.1" // Versión del SietDocument después (o versión específica de la sección si aplica) }], changes: { before: "Resistencia a la tracción: Aumento del 25.5% (2750 MPa vs. 2200 MPa)", after: "Resistencia a la tracción: Aumento del 29.5% (2850 MPa vs. 2200 MPa)", // Podríamos usar un formato diff si el cambio es grande reasoning: "Corrección basada en la recalibración de los instrumentos de medición" }, triggeringEvidence: { evidenceType: "experiment", source: "Laboratorio de Materiales Avanzados", description: "Recalibración de equipos de prueba de tracción", link: "LAB-CAL-2024-042" // ID o URI de la evidencia }, knowledgeImpact: { significanceLevel: 1, paradigmShift: false, newQuestionsRaised: [], practicalImplications: ["Accuracy improvement in material report"] }, validation: { status: "approved", reviewedBy: ["QA_Team"], approvedBy: "Lead_Scientist", approvalDate: new Date("2024-04-03T09:00:00Z"), comments: "Correction verified." } };
Para responder específicamente a tu pregunta sobre cómo se actualizaría una Hypothesis
cuando ocurre una evolución:
sequenceDiagram
participant User
participant GAIA_AIR_Backend as Backend
participant SIET_DB as SIET Database
participant Graph_DB as Graph Database
User->>Backend: refineHypothesis(H1_ID, refinementData)
Backend->>SIET_DB: getLatestHypothesisVersion(H1_ID)
SIET_DB-->>Backend: currentHypothesis (v1.0)
Backend->>Backend: Genera refinedHypothesis (v1.1)
Backend->>Backend: Genera SietEvolution (EVO-101)
Backend->>SIET_DB: saveHypothesisVersion(refinedHypothesis v1.1)
SIET_DB-->>Backend: Success (H1 v1.1 saved)
Backend->>SIET_DB: saveEvolution(EVO-101)
SIET_DB-->>Backend: Success (EVO-101 saved)
Backend->>Graph_DB: findSietDocumentsReferencing(H1_ID, v1.0)
Graph_DB-->>Backend: [DOC-A, DOC-B]
loop For each affected document
Backend->>Graph_DB: updateReference(DOC-A, H1_ID, v1.0 -> v1.1)
Graph_DB-->>Backend: Success (DOC-A reference updated)
Backend->>SIET_DB: getSietDocument(DOC-A)
SIET_DB-->>Backend: SietDocument DOC-A data
Backend->>Backend: Increment version (e.g., v2.0 -> v2.1)
Backend->>SIET_DB: saveSietDocument(DOC-A updated data v2.1)
SIET_DB-->>Backend: Success (DOC-A v2.1 saved)
Backend->>SIET_DB: createDocumentUpdateRecord(DOC-A, EVO-101 details)
SIET_DB-->>Backend: Success (Update record saved)
end
Backend-->>User: Success { updatedHypothesis: H1 v1.1, evolution: EVO-101 }
Proceso Completo:
-
Creación de Nueva Versión: Como se mostró en el primer diagrama, se crea una nueva versión de la entidad científica (
Hypothesis
v1.1). -
Actualización de Referencias: El sistema (posiblemente usando la base de datos de grafos para eficiencia) identifica todos los
SietDocument
s que referencian la versión anterior (v1.0
) de la entidad. Para cada documento afectado:- La referencia interna (por ejemplo, en el array
scientificData.hypotheses
o en menciones dentro del contenido) se actualiza para apuntar a la nueva versión (v1.1
). - Potencialmente, la versión del propio
SietDocument
se incrementa (ej:v2.0
->v2.1
) para indicar que su contenido referenciado ha cambiado. - Se registra un evento de actualización en el historial del
SietDocument
indicando qué referencia cambió y por qué (SietEvolution
que lo causó).
async function updateSietDocumentReferences(entityType: string, entityId: string, newVersion: string, triggeringEvolutionId: string) { // 1. Encontrar documentos que referencian CUALQUIER versión de la entidad // (La consulta podría ser más específica a versiones anteriores si es necesario) const affectedDocuments = await findSietDocumentsReferencingEntity(entityType, entityId); // 2. Para cada documento, actualizar la referencia a la ÚLTIMA versión for (const docId of affectedDocuments) { const doc = await getSietDocument(docId); // Cargar el documento let referenceUpdated = false; // Actualizar la referencia en el array de datos científicos si existe if (doc.scientificData?.[`${entityType}s`]) { // e.g., scientificData.hypotheses const entityArray = doc.scientificData[`${entityType}s`]; const entityIndex = entityArray.findIndex(e => e.id === entityId); if (entityIndex >= 0 && entityArray[entityIndex].version !== newVersion) { // Cargar la nueva versión de la entidad para insertarla/actualizarla const newEntityVersionData = await getEntityByVersion(entityType, entityId, newVersion); entityArray[entityIndex] = newEntityVersionData; // Actualizar o reemplazar referenceUpdated = true; } } // TODO: Actualizar referencias embebidas en el contenido de las secciones // (Esto podría requerir análisis de texto, IDs embebidos, etc.) // Podría marcar la sección como 'requiere revisión de referencias' if (referenceUpdated) { // Incrementar la versión del documento SIET (estrategia de versionado a definir) doc.version = incrementMinorVersion(doc.version); doc.lastModified = new Date(); // Añadir al historial del documento que una referencia fue actualizada doc.internalHistory = doc.internalHistory || []; doc.internalHistory.push({ timestamp: new Date(), type: "reference_update", details: `Updated ${entityType} ${entityId} to version ${newVersion}`, triggeredBy: triggeringEvolutionId }); // Guardar el documento SIET actualizado await saveSietDocument(doc); // Actualizar el grafo si es necesario (relación Doc -> Entidad versión) await updateGraphReference(doc.sietId, entityType, entityId, newVersion); } } }
- La referencia interna (por ejemplo, en el array
-
Preservación de Historia: Todas las versiones anteriores de las entidades (
Hypothesis v1.0
) y los documentos (SietDocument v2.0
) se mantienen accesibles en la base de datos histórica. Se pueden recuperar utilizando funciones como:// Obtener el historial completo de una hipótesis (Simplificado) async function getHypothesisEvolutionHistory(hypothesisId: string): Promise<{ hypothesis: Hypothesis; evolution: SietEvolution | null; // Evolución que LLEVÓ a esta versión }[]> { // 1. Obtener todas las versiones ordenadas de la hipótesis const allVersions = await getAllHypothesisVersionsSorted(hypothesisId); // 2. Obtener todos los eventos de evolución que afectaron a esta hipótesis const evolutions = await getEvolutionsForEntity("hypothesis", hypothesisId); // 3. Construir la historia const history = []; for (const version of allVersions) { // Encontrar la evolución que resultó en ESTA versión const evolutionTrigger = evolutions.find(e => e.affectedEntities.some(ae => ae.type === "hypothesis" && ae.id === hypothesisId && ae.toVersion === version.version ) ); history.push({ hypothesis: version, evolution: evolutionTrigger || null // La versión inicial no tiene evolución previa que la cree }); } return history; }
Para que este sistema sea realmente útil, GAIA AIR incluiría interfaces de visualización específicas que permitan:
- Ver el historial de versiones de una hipótesis o documento.
- Comparar ("diff") versiones.
- Visualizar el grafo de evolución (
SietEvolution
como nodos conectados). - Navegar desde un cambio (
SietEvolution
) a la evidencia que lo motivó. - Ver el impacto de un cambio en otros documentos o entidades.
Pregunta 1: Actualización de Hipótesis
-
Cuando ocurre una
SietEvolution
de tipohypothesis_refinement
, ¿cómo se actualizaría exactamente la entidadHypothesis
dentro deSietDocument.scientificData.hypotheses
? -
Respuesta: Se implementa un modelo de versionado inmutable:
- La hipótesis original (
v1.0
) permanece intacta en el historial. - Se crea una nueva versión de la hipótesis (
v1.1
) con los cambios. - En los
SietDocument
s afectados, la referencia a la hipótesis (dentro descientificData.hypotheses
o en el contenido) se actualiza para apuntar a la versión más reciente (v1.1
). La versiónv1.0
ya no estaría directamente en el arrayhypotheses
de la última versión delSietDocument
, pero sería accesible a través del historial. - Se crea un registro
SietEvolution
que documenta el cambio, su razonamiento y evidencia, vinculandov1.0
conv1.1
.
- La hipótesis original (
Pregunta 2: Granularidad
-
¿Cómo manejaríamos la granularidad? ¿Una
SietEvolution
puede referirse a un cambio muy específico dentro delcontent
de unaSietSection
, o solo a nivel de sección/entidad científica? -
Respuesta: El sistema admite múltiples niveles de granularidad mediante el campo
affectedEntities
enSietEvolution
:- Se pueden registrar cambios a nivel de documento, sección, entidad científica completa (hipótesis, experimento), atributo específico de una entidad, o incluso un fragmento específico de contenido (
content_fragment
). - Para cambios de fragmento o atributo, el campo
path
dentro deAffectedEntity
se usaría para especificar la ubicación exacta del cambio (e.g., usando JSONPath).
- Se pueden registrar cambios a nivel de documento, sección, entidad científica completa (hipótesis, experimento), atributo específico de una entidad, o incluso un fragmento específico de contenido (
Este mecanismo detallado de evolución científica tiene profundas implicaciones:
- Trazabilidad Científica Completa: Cada cambio en el conocimiento científico está documentado con su razonamiento y evidencia.
- Auditoría Científica: Posibilidad de revisar la evolución completa del pensamiento científico detrás de cada componente o decisión.
- Aprendizaje Organizacional: El sistema no solo captura el conocimiento final, sino el proceso de descubrimiento, incluyendo callejones sin salida y refinamientos.
- Base para IA Científica: Esta estructura rica proporciona datos ideales para algoritmos de IA que podrían identificar patrones en la evolución del conocimiento o sugerir conexiones entre diferentes líneas de investigación.
- Certificación Avanzada: Proporciona un nivel de documentación y trazabilidad que va más allá de los requisitos actuales de certificación aeroespacial, anticipándose a futuras demandas regulatorias.
Below a complete Data Module Required Delivery Packages (DMRDP) covering whole digital building blocks to documenmt, track and audit in Aerospace Industry domain
Amedeo Pelliccia MADRID 01/04/2025
https://imagen-ai-gaiaair-softwares.vercel.app/
File Type | Format | Purpose |
---|---|---|
Requirements | .reqif | Requirements management |
Word Documents | .docx | Reports, procedures, specifications |
Spreadsheets | .xlsx | Analysis, matrices, lists |
Presentations | .pptx | Reviews, briefings |
Diagrams | .vsdx | Architecture, flows, schematics |
Drawings | .dwg | 2D engineering drawings |
Final deliverables, signed documents |
File Type | Format | Purpose | Software |
---|---|---|---|
3D CAD Models | .stp, .step | Industry standard exchange format | Multiple CAD systems |
Native CAD | .catpart, .catproduct | Detailed design (CATIA) | CATIA |
Native CAD | .prt, .asm | Detailed design (NX) | Siemens NX |
Native CAD | .sldprt, .sldasm | Detailed design (SolidWorks) | SolidWorks |
Lightweight Visualization | .jt | Visualization and review | Multiple viewers |
Mesh Models | .stl | 3D printing, simplified analysis | Multiple systems |
Point Cloud | .xyz, .pts | Scan data, reverse engineering | Multiple systems |
FEA Models | .fem, .nas | Finite Element Analysis | NASTRAN, ANSYS |
CFD Models | .cgns | Computational Fluid Dynamics | FLUENT, CFX |
PMI/MBD | .3dpdf | Product Manufacturing Information | Multiple viewers |
Format: [TYPE]-[ATA]-[DESCRIPTION]-[VERSION].[ext]
Where:
- TYPE: Document type (REQ=Requirements, DES=Design, ANA=Analysis, TST=Test, ICD=Interface Control, DWG=Drawing)
- ATA: Two-digit ATA chapter number
- DESCRIPTION: Brief description of the document
- VERSION: Version number (PDR=1.0, CDR=2.0, with increments)
- ext: File extension
Format: 3D-[ATA]-[TYPE]-[DESCRIPTION]-[VERSION].[ext]
Where:
- 3D: Prefix for all 3D design files
- ATA: Two-digit ATA chapter number
- TYPE: Design type (ASM=Assembly, PRT=Part, FEM=FEA Model, CFD=CFD Model, MBD=Model Based Definition)
- DESCRIPTION: Brief description of the component
- VERSION: Version number (PDR=1.0, CDR=2.0, with increments)
- ext: File extension
All documents must include the following metadata:
- Document ID: Unique identifier
- Title: Document title
- Author: Author name
- Date: Creation/revision date
- Version: Version number
- Status: Draft, Review, Approved
- Classification: Proprietary, Export Controlled, etc.
- Focus Area: Compliance, Innovation, Integrated, Aerospace, IT, All
- ATA Chapter: Relevant ATA chapter
- Review Status: PDR, CDR, etc.
- Approval Signatures: Required approvals
All 3D models must include the following metadata:
- Author: Designer name
- Creation Date: Initial creation date
- Last Modified: Last modification date
- Approval Status: Draft, Reviewed, Approved
- Material: Material specification
- Weight: Component weight
- Revision History: Change log
- Reference Documents: Associated documentation
- Classification: Proprietary, Export Controlled, etc.
Document | Format | Filename | Metadata Focus |
---|---|---|---|
High-Level Requirements | .reqif | REQ-00-GEN-1.0.reqif | Compliance, All |
Conceptual Architecture | .vsdx | DES-00-ARCH-1.0.vsdx | Integrated, All |
Certification Strategy | .docx | DES-00-CERT-1.0.docx | Compliance, Aerospace |
COAFI Overview | .pptx | DES-00-COAFI-1.0.pptx | Innovation, All |
Overall Aircraft Concept | .stp | 3D-00-ASM-AIRCRAFT-1.0.stp | Integrated, All |
Conceptual Envelope | .jt | 3D-00-PRT-ENVELOPE-1.0.jt | Compliance, Aerospace |
Coordinate System Definition | .catproduct | 3D-00-ASM-COORD-1.0.catproduct | Compliance, All |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Final Requirements Baseline | .reqif | REQ-00-GEN-2.0.reqif | Compliance, All |
Final Architecture | .vsdx | DES-00-ARCH-2.0.vsdx | Integrated, All |
Master Compliance Index | .xlsx | REQ-00-COMPL-2.0.xlsx | Compliance, Aerospace |
System Design Description | .docx | DES-00-SDD-2.0.docx | Integrated, All |
Final Aircraft Assembly | .stp | 3D-00-ASM-AIRCRAFT-2.0.stp | Integrated, All |
Final Envelope | .jt | 3D-00-PRT-ENVELOPE-2.0.jt | Compliance, Aerospace |
Master Geometry | .catproduct | 3D-00-ASM-MASTER-2.0.catproduct | Integrated, All |
Digital Twin Framework | .jt | 3D-00-ASM-DTWIN-2.0.jt | Innovation, All |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Maintenance Philosophy | .docx | DES-05-MAINT-1.0.docx | Compliance, Aerospace |
Airworthiness Limits Concept | .docx | REQ-05-AWLIM-1.0.docx | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
MPD Structure | .docx | DES-05-MPD-2.0.docx | Compliance, Aerospace |
Life Limits List | .xlsx | ANA-05-LIFE-2.0.xlsx | Compliance, Aerospace |
Airworthiness Limitations | .docx | REQ-05-AWLIM-2.0.docx | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Preliminary Dimensions Data | .xlsx | ANA-06-DIM-1.0.xlsx | Compliance, Aerospace |
Conceptual Layout | .dwg | DWG-06-LAYOUT-1.0.dwg | Integrated, Aerospace |
Dimensional 3D Reference | .stp | 3D-06-ASM-DIM-1.0.stp | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Final Dimensions Data | .xlsx | ANA-06-DIM-2.0.xlsx | Compliance, Aerospace |
Final Layout | .dwg | DWG-06-LAYOUT-2.0.dwg | Compliance, Aerospace |
Final Dimensional 3D Model | .stp | 3D-06-ASM-DIM-2.0.stp | Compliance, Aerospace |
Zoning 3D Model | .jt | 3D-06-ASM-ZONE-2.0.jt | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Conceptual Lifting Points | .dwg | DWG-07-LIFT-1.0.dwg | Compliance, Aerospace |
Initial Stress Analysis | .xlsx | ANA-07-STRESS-1.0.xlsx | Compliance, Aerospace |
Draft Lifting Concept | .docx | DES-07-PROC-1.0.docx | Compliance, Aerospace |
Lifting Points 3D Model | .stp | 3D-07-ASM-LIFT-1.0.stp | Compliance, Aerospace |
Preliminary FEA Model | .fem | 3D-07-FEM-LIFT-1.0.fem | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Detailed Lifting Points | .dwg | DWG-07-LIFT-2.0.dwg | Compliance, Aerospace |
Final Stress Analysis | .xlsx | ANA-07-STRESS-2.0.xlsx | Compliance, Aerospace |
GSE Interface Specification | .docx | ICD-07-GSE-2.0.docx | Compliance, Aerospace |
Detailed Lifting Points 3D | .stp | 3D-07-ASM-LIFT-2.0.stp | Compliance, Aerospace |
Final FEA Model | .fem | 3D-07-FEM-LIFT-2.0.fem | Compliance, Aerospace |
Manufacturing Model with PMI | .3dpdf | 3D-07-MBD-LIFT-2.0.3dpdf | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Draft Leveling Concept | .docx | DES-08-LEVEL-1.0.docx | Compliance, Aerospace |
Accuracy Requirements | .docx | REQ-08-ACC-1.0.docx | Compliance, Aerospace |
Leveling Points 3D Model | .stp | 3D-08-ASM-LEVEL-1.0.stp | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Detailed Leveling Procedure | .docx | DES-08-LEVEL-2.0.docx | Compliance, Aerospace |
Procedure Validation Plan | .docx | TST-08-VAL-2.0.docx | Compliance, Aerospace |
Equipment Interface | .docx | ICD-08-EQUIP-2.0.docx | Compliance, Aerospace |
Detailed Leveling Points 3D | .stp | 3D-08-ASM-LEVEL-2.0.stp | Compliance, Aerospace |
Equipment Interface 3D | .jt | 3D-08-ASM-EQUIP-2.0.jt | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Interface Concept | .dwg | DWG-09-TOW-1.0.dwg | Compliance, Aerospace |
Draft Towing Concept | .docx | DES-09-PROC-1.0.docx | Compliance, Aerospace |
Limitations Specification | .docx | REQ-09-LIM-1.0.docx | Compliance, Aerospace |
Towing Interface 3D Model | .stp | 3D-09-ASM-TOW-1.0.stp | Compliance, Aerospace |
Preliminary Stress Model | .fem | 3D-09-FEM-TOW-1.0.fem | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Detailed Interface | .dwg | DWG-09-TOW-2.0.dwg | Compliance, Aerospace |
Detailed Towing Procedure | .docx | DES-09-PROC-2.0.docx | Compliance, Aerospace |
Turning Radius and Loads | .xlsx | ANA-09-TURN-2.0.xlsx | Compliance, Aerospace |
Detailed Towing Interface 3D | .stp | 3D-09-ASM-TOW-2.0.stp | Compliance, Aerospace |
Final Stress Model | .fem | 3D-09-FEM-TOW-2.0.fem | Compliance, Aerospace |
Manufacturing Model with PMI | .3dpdf | 3D-09-MBD-TOW-2.0.3dpdf | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Draft Parking/Mooring Concepts | .docx | DES-10-PARK-1.0.docx | Compliance, Aerospace |
Environmental Requirements | .docx | REQ-10-ENV-1.0.docx | Compliance, Aerospace |
Mooring Points 3D Model | .stp | 3D-10-ASM-MOOR-1.0.stp | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Detailed Parking/Mooring Procedures | .docx | DES-10-PARK-2.0.docx | Compliance, Aerospace |
Covers and Plugs Specification | .docx | REQ-10-COVER-2.0.docx | Compliance, Aerospace |
Detailed Mooring Points 3D | .stp | 3D-10-ASM-MOOR-2.0.stp | Compliance, Aerospace |
Covers and Plugs 3D | .stp | 3D-10-ASM-COVER-2.0.stp | Compliance, Aerospace |
Manufacturing Model with PMI | .3dpdf | 3D-10-MBD-MOOR-2.0.3dpdf | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Draft Placards List | .xlsx | ANA-11-PLAC-1.0.xlsx | Compliance, Aerospace |
Draft Livery Concept | .docx | DES-11-LIVERY-1.0.docx | Integrated, Aerospace |
Placards Location 3D | .jt | 3D-11-ASM-PLAC-1.0.jt | Compliance, Aerospace |
Livery Concept 3D | .jt | 3D-11-ASM-LIVERY-1.0.jt | Integrated, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Final Placards List | .xlsx | ANA-11-PLAC-2.0.xlsx | Compliance, Aerospace |
Location Drawings | .dwg | DWG-11-LOC-2.0.dwg | Compliance, Aerospace |
Final Livery/Material | .docx | DES-11-LIVERY-2.0.docx | Integrated, Aerospace |
Final Placards Location 3D | .jt | 3D-11-ASM-PLAC-2.0.jt | Compliance, Aerospace |
Final Livery 3D | .jt | 3D-11-ASM-LIVERY-2.0.jt | Integrated, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Conceptual Access/Ports | .dwg | DWG-12-ACCESS-1.0.dwg | Compliance, Aerospace |
Fluid Types Specification | .docx | REQ-12-FLUID-1.0.docx | Compliance, Aerospace |
Draft Servicing Concept | .docx | DES-12-SERV-1.0.docx | Compliance, Aerospace |
Service Points 3D Model | .stp | 3D-12-ASM-SERV-1.0.stp | Compliance, Aerospace |
Access Doors 3D Model | .stp | 3D-12-ASM-ACCESS-1.0.stp | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Detailed Access/Ports | .dwg | DWG-12-ACCESS-2.0.dwg | Compliance, Aerospace |
Final Fluid Specifications | .docx | REQ-12-FLUID-2.0.docx | Compliance, Aerospace |
Detailed Servicing Procedures | .docx | DES-12-SERV-2.0.docx | Compliance, Aerospace |
Detailed Service Points 3D | .stp | 3D-12-ASM-SERV-2.0.stp | Compliance, Aerospace |
Detailed Access Doors 3D | .stp | 3D-12-ASM-ACCESS-2.0.stp | Compliance, Aerospace |
Manufacturing Model with PMI | .3dpdf | 3D-12-MBD-SERV-2.0.3dpdf | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Preliminary Vibration/Noise Models | .xlsx | ANA-18-VIB-1.0.xlsx | Compliance, Aerospace |
Control Strategy | .docx | DES-18-CTRL-1.0.docx | Integrated, Aerospace |
Limits Requirements | .docx | REQ-18-LIM-1.0.docx | Compliance, Aerospace |
Vibration Analysis Model | .fem | 3D-18-FEM-VIB-1.0.fem | Compliance, Aerospace |
Acoustic Model | .fem | 3D-18-FEM-ACOUSTIC-1.0.fem | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Detailed Vibration/Noise Results | .xlsx | ANA-18-VIB-2.0.xlsx | Compliance, Aerospace |
Control Treatments | .docx | DES-18-TREAT-2.0.docx | Integrated, Aerospace |
Measurement Test Plan | .docx | TST-18-MEAS-2.0.docx | Compliance, Aerospace |
Final Vibration Analysis Model | .fem | 3D-18-FEM-VIB-2.0.fem | Compliance, Aerospace |
Final Acoustic Model | .fem | 3D-18-FEM-ACOUSTIC-2.0.fem | Compliance, Aerospace |
Treatment Installation 3D | .stp | 3D-18-ASM-TREAT-2.0.stp | Integrated, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Materials/Processes Philosophy | .docx | REQ-20-MAT-1.0.docx | Compliance, Aerospace |
Manual Outline | .docx | DES-20-MAN-1.0.docx | Compliance, Aerospace |
Standard Joints 3D Models | .stp | 3D-20-ASM-JOINT-1.0.stp | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Final Materials/Processes | .docx | REQ-20-MAT-2.0.docx | Compliance, Aerospace |
Manual Draft Sections | .docx | DES-20-MAN-2.0.docx | Compliance, Aerospace |
Key Standard Repairs Draft | .docx | DES-20-REPAIR-2.0.docx | Compliance, Aerospace |
Detailed Standard Joints 3D | .stp | 3D-20-ASM-JOINT-2.0.stp | Compliance, Aerospace |
Standard Repair 3D Models | .stp | 3D-20-ASM-REPAIR-2.0.stp | Compliance, Aerospace |
Manufacturing Models with PMI | .3dpdf | 3D-20-MBD-STD-2.0.3dpdf | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
ECS Requirements | .reqif | REQ-21-ECS-1.0.reqif | Compliance, Aerospace |
ECS Concept Description | .docx | DES-21-ECS-1.0.docx | Integrated, Aerospace |
ECS Architecture | .vsdx | DES-21-ARCH-1.0.vsdx | Integrated, Aerospace |
Preliminary Loads | .xlsx | ANA-21-LOAD-1.0.xlsx | Compliance, Aerospace |
Draft Interface Control | .docx | ICD-21-ECS-1.0.docx | Compliance, Aerospace |
ECS Conceptual Layout | .stp | 3D-21-ASM-ECS-1.0.stp | Integrated, Aerospace |
Ducting Concept | .catpart | 3D-21-PRT-DUCT-1.0.catpart | Compliance, Aerospace |
Flow Simulation | .cgns | 3D-21-CFD-FLOW-1.0.cgns | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
ECS Requirements Trace Matrix | .xlsx | REQ-21-MATRIX-2.0.xlsx | Compliance, Aerospace |
Detailed ECS System Design | .docx | DES-21-ECS-2.0.docx | Integrated, Aerospace |
ECS Installation | .dwg | DWG-21-INST-2.0.dwg | Compliance, Aerospace |
Final Loads/Performance | .xlsx | ANA-21-LOAD-2.0.xlsx | Compliance, Aerospace |
Final Interface Control | .docx | ICD-21-ECS-2.0.docx | Compliance, Aerospace |
ECS Test Plan | .docx | TST-21-ECS-2.0.docx | Compliance, Aerospace |
ECS Detailed Assembly | .stp | 3D-21-ASM-ECS-2.0.stp | Integrated, Aerospace |
Detailed Components | .catpart | 3D-21-PRT-COMP-2.0.catpart | Compliance, Aerospace |
Final Flow Simulation | .cgns | 3D-21-CFD-FLOW-2.0.cgns | Compliance, Aerospace |
Thermal Analysis | .fem | 3D-21-FEM-THERM-2.0.fem | Compliance, Aerospace |
Manufacturing Model with PMI | .3dpdf | 3D-21-MBD-ECS-2.0.3dpdf | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
AFCS Requirements | .reqif | REQ-22-AFCS-1.0.reqif | Compliance, Aerospace |
AFCS Concept Description | .docx | DES-22-AFCS-1.0.docx | Innovation, Aerospace |
Software/Hardware Architecture | .vsdx | DES-22-ARCH-1.0.vsdx | Innovation, Integrated |
Preliminary Algorithm | .xlsx | ANA-22-ALGO-1.0.xlsx | Innovation, IT |
Draft Interface Control | .docx | ICD-22-AFCS-1.0.docx | Compliance, IT |
AI Concept/Risk Report | .docx | ANA-22-AI-1.0.docx | Innovation, IT |
AFCS Hardware Concept | .stp | 3D-22-ASM-AFCS-1.0.stp | Innovation, Aerospace |
Sensor Placement | .jt | 3D-22-ASM-SENSOR-1.0.jt | Innovation, Integrated |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
AFCS Requirements Trace Matrix | .xlsx | REQ-22-MATRIX-2.0.xlsx | Compliance, Aerospace |
Detailed AFCS System Design | .docx | DES-22-AFCS-2.0.docx | Integrated, Aerospace |
Hardware Drawing | .dwg | DWG-22-HW-2.0.dwg | Compliance, Aerospace |
Software Detailed Specification | .docx | REQ-22-SW-2.0.docx | Integrated, IT |
Final Algorithm/Simulation | .xlsx | ANA-22-ALGO-2.0.xlsx | Innovation, IT |
Test Plan/Cases | .docx | TST-22-AFCS-2.0.docx | Compliance, Integrated |
AFCS Hardware Detailed | .stp | 3D-22-ASM-AFCS-2.0.stp | Innovation, Aerospace |
Detailed Sensor Integration | .jt | 3D-22-ASM-SENSOR-2.0.jt | Innovation, Integrated |
Installation Space Envelope | .catpart | 3D-22-PRT-SPACE-2.0.catpart | Compliance, Aerospace |
Cooling Analysis | .fem | 3D-22-FEM-THERM-2.0.fem | Compliance, IT |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
COM Requirements | .reqif | REQ-23-COM-1.0.reqif | Compliance, Aerospace |
COM Concept Description | .docx | DES-23-COM-1.0.docx | Integrated, Aerospace |
COM Architecture | .vsdx | DES-23-ARCH-1.0.vsdx | Integrated, IT |
Link Budget Concept | .xlsx | ANA-23-LINK-1.0.xlsx | Compliance, IT |
QCS Feasibility Report | .docx | ANA-23-QCS-1.0.docx | Innovation, IT |
COM Hardware Concept | .stp | 3D-23-ASM-COM-1.0.stp | Integrated, Aerospace |
Antenna Placement Concept | .jt | 3D-23-ASM-ANT-1.0.jt | Compliance, Aerospace |
EMI Analysis Model | .fem | 3D-23-FEM-EMI-1.0.fem | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
COM Requirements Trace Matrix | .xlsx | REQ-23-MATRIX-2.0.xlsx | Compliance, Aerospace |
Detailed COM System Design | .docx | DES-23-COM-2.0.docx | Integrated, Aerospace |
Installation/Antenna Drawing | .dwg | DWG-23-ANT-2.0.dwg | Compliance, Aerospace |
Hardware/Software Specification | .docx | REQ-23-HWSW-2.0.docx | Integrated, IT |
Final Link Budget | .xlsx | ANA-23-LINK-2.0.xlsx | Compliance, IT |
COM Test Plan | .docx | TST-23-COM-2.0.docx | Compliance, Aerospace |
COM Hardware Detailed | .stp | 3D-23-ASM-COM-2.0.stp | Integrated, Aerospace |
Detailed Antenna Integration | .stp | 3D-23-ASM-ANT-2.0.stp | Compliance, Aerospace |
Final EMI Analysis | .fem | 3D-23-FEM-EMI-2.0.fem | Compliance, Aerospace |
Manufacturing Model with PMI | .3dpdf | 3D-23-MBD-COM-2.0.3dpdf | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
EPS Requirements | .reqif | REQ-24-EPS-1.0.reqif | Compliance, Aerospace |
EPS Concept Description | .docx | DES-24-EPS-1.0.docx | Integrated, Aerospace |
EPS Architecture | .vsdx | DES-24-ARCH-1.0.vsdx | Integrated, Aerospace |
Preliminary ELA/Q-Batt Size | .xlsx | ANA-24-ELA-1.0.xlsx | Innovation, Aerospace |
Technology Readiness Level/Risk | .docx | ANA-24-TRL-1.0.docx | Innovation, Aerospace |
EPS Conceptual Layout | .stp | 3D-24-ASM-EPS-1.0.stp | Integrated, Aerospace |
Distribution Concept | .jt | 3D-24-ASM-DIST-1.0.jt | Compliance, Aerospace |
Battery Concept | .catpart | 3D-24-PRT-BATT-1.0.catpart | Innovation, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
EPS Requirements Trace Matrix | .xlsx | REQ-24-MATRIX-2.0.xlsx | Compliance, Aerospace |
Detailed EPS System Design | .docx | DES-24-EPS-2.0.docx | Integrated, Aerospace |
Distribution/Installation Drawing | .dwg | DWG-24-DIST-2.0.dwg | Compliance, Aerospace |
Final ELA/Q-Batt Performance | .xlsx | ANA-24-ELA-2.0.xlsx | Innovation, Aerospace |
EPS Test Plan | .docx | TST-24-EPS-2.0.docx | Compliance, Aerospace |
EPS Detailed Assembly | .stp | 3D-24-ASM-EPS-2.0.stp | Integrated, Aerospace |
Detailed Distribution | .jt | 3D-24-ASM-DIST-2.0.jt | Compliance, Aerospace |
Detailed Battery Design | .catpart | 3D-24-PRT-BATT-2.0.catpart | Innovation, Aerospace |
Thermal Analysis | .fem | 3D-24-FEM-THERM-2.0.fem | Compliance, Aerospace |
Manufacturing Model with PMI | .3dpdf | 3D-24-MBD-EPS-2.0.3dpdf | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Layout/PaxEx Requirements | .reqif | REQ-25-PAXEX-1.0.reqif | Compliance, Aerospace |
Conceptual Layout | .dwg | DWG-25-LAYOUT-1.0.dwg | Integrated, Aerospace |
Key Component Concepts | .docx | REQ-25-COMP-1.0.docx | Integrated, Aerospace |
Interior 3D Layout | .stp | 3D-25-ASM-INT-1.0.stp | Integrated, Aerospace |
Seat Concept | .catpart | 3D-25-PRT-SEAT-1.0.catpart | Integrated, Aerospace |
Galley Concept | .catpart | 3D-25-PRT-GALLEY-1.0.catpart | Integrated, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Requirements Trace Matrix | .xlsx | REQ-25-MATRIX-2.0.xlsx | Compliance, Aerospace |
Detailed Layout/Installation | .dwg | DWG-25-LAYOUT-2.0.dwg | Compliance, Aerospace |
Final Component Selection | .docx | REQ-25-COMP-2.0.docx | Compliance, Aerospace |
Safety/Flammability Test Plan | .docx | TST-25-SAFETY-2.0.docx | Compliance, Aerospace |
Detailed Interior 3D | .stp | 3D-25-ASM-INT-2.0.stp | Integrated, Aerospace |
Detailed Seat Design | .catpart | 3D-25-PRT-SEAT-2.0.catpart | Integrated, Aerospace |
Detailed Galley Design | .catpart | 3D-25-PRT-GALLEY-2.0.catpart | Integrated, Aerospace |
Manufacturing Model with PMI | .3dpdf | 3D-25-MBD-INT-2.0.3dpdf | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Fire Protection Requirements | .reqif | REQ-26-FIRE-1.0.reqif | Compliance, Aerospace |
Fire Protection Concept | .docx | DES-26-FIRE-1.0.docx | Compliance, Aerospace |
Detection/Suppression Zones | .vsdx | DES-26-ZONES-1.0.vsdx | Compliance, Aerospace |
Preliminary Hazard Analysis | .xlsx | ANA-26-HAZ-1.0.xlsx | Compliance, Aerospace |
QRFSS Feasibility Report | .docx | ANA-26-QRFSS-1.0.docx | Innovation, Aerospace |
Fire Protection System 3D | .stp | 3D-26-ASM-FIRE-1.0.stp | Compliance, Aerospace |
Detection Zones 3D | .jt | 3D-26-ASM-DETECT-1.0.jt | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Fire Protection Requirements Trace Matrix | .xlsx | REQ-26-MATRIX-2.0.xlsx | Compliance, Aerospace |
Detailed Fire Protection System Design | .docx | DES-26-FIRE-2.0.docx | Compliance, Aerospace |
Installation Drawing | .dwg | DWG-26-INST-2.0.dwg | Compliance, Aerospace |
Hardware Specification | .docx | REQ-26-HW-2.0.docx | Compliance, Aerospace |
Final Hazard/Safety Analysis | .xlsx | ANA-26-HAZ-2.0.xlsx | Compliance, Aerospace |
Fire Protection Test Plan | .docx | TST-26-FIRE-2.0.docx | Compliance, Aerospace |
Detailed Fire Protection 3D | .stp | 3D-26-ASM-FIRE-2.0.stp | Compliance, Aerospace |
Detailed Detection Zones 3D | .jt | 3D-26-ASM-DETECT-2.0.jt | Compliance, Aerospace |
Manufacturing Model with PMI | .3dpdf | 3D-26-MBD-FIRE-2.0.3dpdf | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
FCS Requirements | .reqif | REQ-27-FCS-1.0.reqif | Compliance, Aerospace |
FCS Concept Description | .docx | DES-27-FCS-1.0.docx | Integrated, Aerospace |
Actuation Concept Architecture | .vsdx | DES-27-ACT-1.0.vsdx | Integrated, Aerospace |
Preliminary Loads/Aero | .xlsx | ANA-27-LOADS-1.0.xlsx | Compliance, Aerospace |
Q-FCAS Concept Report | .docx | ANA-27-QFCAS-1.0.docx | Innovation, Aerospace |
FCS Conceptual Layout | .stp | 3D-27-ASM-FCS-1.0.stp | Integrated, Aerospace |
Actuation Concept | .catproduct | 3D-27-ASM-ACT-1.0.catproduct | Integrated, Aerospace |
Control Surface Kinematics | .jt | 3D-27-ASM-KINEM-1.0.jt | Compliance, Aerospace |
Preliminary Stress Model | .fem | 3D-27-FEM-STRESS-1.0.fem | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
FCS Requirements Trace Matrix | .xlsx | REQ-27-MATRIX-2.0.xlsx | Compliance, Aerospace |
Detailed FCS System Design | .docx | DES-27-FCS-2.0.docx | Integrated, Aerospace |
Installation/Mechanism Drawing | .dwg | DWG-27-MECH-2.0.dwg | Compliance, Aerospace |
Final Loads/Performance | .xlsx | ANA-27-LOADS-2.0.xlsx | Compliance, Aerospace |
Software/Hardware Specification | .docx | REQ-27-HWSW-2.0.docx | Integrated, Aerospace |
Test Plan/Cases | .docx | TST-27-FCS-2.0.docx | Compliance, Aerospace |
FCS Detailed Assembly | .stp | 3D-27-ASM-FCS-2.0.stp | Integrated, Aerospace |
Detailed Actuation System | .catproduct | 3D-27-ASM-ACT-2.0.catproduct | Integrated, Aerospace |
Final Kinematics Simulation | .jt | 3D-27-ASM-KINEM-2.0.jt | Compliance, Aerospace |
Final Stress Model | .fem | 3D-27-FEM-STRESS-2.0.fem | Compliance, Aerospace |
Manufacturing Model with PMI | .3dpdf | 3D-27-MBD-FCS-2.0.3dpdf | Compliance, Aerospace |
Aerodynamic Analysis | .cgns | 3D-27-CFD-AERO-2.0.cgns | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Fuel System Requirements | .reqif | REQ-28-FUEL-1.0.reqif | Compliance, Aerospace |
Fuel System Concept | .docx | DES-28-FUEL-1.0.docx | Innovation, Aerospace |
Storage/Distribution Concept | .vsdx | DES-28-STOR-1.0.vsdx | Innovation, Aerospace |
Preliminary Sizing | .xlsx | ANA-28-SIZE-1.0.xlsx | Compliance, Aerospace |
Safety Concept Analysis | .docx | ANA-28-SAFETY-1.0.docx | Compliance, Aerospace |
Fuel System Concept | .stp | 3D-28-ASM-FUEL-1.0.stp | Innovation, Aerospace |
Tank Concept | .catpart | 3D-28-PRT-TANK-1.0.catpart | Innovation, Aerospace |
Flow Simulation Concept | .cgns | 3D-28-CFD-FLOW-1.0.cgns | Innovation, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Fuel System Requirements Trace Matrix | .xlsx | REQ-28-MATRIX-2.0.xlsx | Compliance, Aerospace |
Detailed Fuel System Design | .docx | DES-28-FUEL-2.0.docx | Integrated, Aerospace |
Installation/Plumbing Drawing | .dwg | DWG-28-PLUMB-2.0.dwg | Compliance, Aerospace |
Final Sizing/Performance | .xlsx | ANA-28-SIZE-2.0.xlsx | Compliance, Aerospace |
Components Specification | .docx | REQ-28-COMP-2.0.docx | Compliance, Aerospace |
Fuel System Test Plan | .docx | TST-28-FUEL-2.0.docx | Compliance, Aerospace |
Fuel System Detailed | .stp | 3D-28-ASM-FUEL-2.0.stp | Innovation, Aerospace |
Detailed Tank Design | .catpart | 3D-28-PRT-TANK-2.0.catpart | Innovation, Aerospace |
Final Flow Simulation | .cgns | 3D-28-CFD-FLOW-2.0.cgns | Innovation, Aerospace |
Thermal Analysis | .fem | 3D-28-FEM-THERM-2.0.fem | Compliance, Aerospace |
Stress Analysis | .fem | 3D-28-FEM-STRESS-2.0.fem | Compliance, Aerospace |
Manufacturing Model with PMI | .3dpdf | 3D-28-MBD-FUEL-2.0.3dpdf | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Hydraulic System Requirements | .reqif | REQ-29-HYD-1.0.reqif | Compliance, Aerospace |
Hydraulic System Concept | .docx | DES-29-HYD-1.0.docx | Compliance, Aerospace |
Hydraulic System Architecture | .vsdx | DES-29-ARCH-1.0.vsdx | Compliance, Aerospace |
Preliminary Pressure/Flow | .xlsx | ANA-29-FLOW-1.0.xlsx | Compliance, Aerospace |
Hydraulic System 3D Concept | .stp | 3D-29-ASM-HYD-1.0.stp | Compliance, Aerospace |
Reservoir Concept | .catpart | 3D-29-PRT-RES-1.0.catpart | Compliance, Aerospace |
Flow Simulation | .cgns | 3D-29-CFD-FLOW-1.0.cgns | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Hydraulic System Requirements Trace Matrix | .xlsx | REQ-29-MATRIX-2.0.xlsx | Compliance, Aerospace |
Detailed Hydraulic System Design | .docx | DES-29-HYD-2.0.docx | Compliance, Aerospace |
Schematics/Installation Drawing | .dwg | DWG-29-SCHEM-2.0.dwg | Compliance, Aerospace |
Final Analysis | .xlsx | ANA-29-FLOW-2.0.xlsx | Compliance, Aerospace |
Components Specification | .docx | REQ-29-COMP-2.0.docx | Compliance, Aerospace |
Hydraulic System Test Plan | .docx | TST-29-HYD-2.0.docx | Compliance, Aerospace |
Hydraulic System Detailed | .stp | 3D-29-ASM-HYD-2.0.stp | Compliance, Aerospace |
Detailed Components | .catpart | 3D-29-PRT-COMP-2.0.catpart | Compliance, Aerospace |
Final Flow Simulation | .cgns | 3D-29-CFD-FLOW-2.0.cgns | Compliance, Aerospace |
Manufacturing Model with PMI | .3dpdf | 3D-29-MBD-HYD-2.0.3dpdf | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Ice/Rain Protection Requirements | .reqif | REQ-30-ICE-1.0.reqif | Compliance, Aerospace |
Ice/Rain Protection Concept | .docx | DES-30-ICE-1.0.docx | Integrated, Aerospace |
Ice/Rain Protection Architecture | .vsdx | DES-30-ARCH-1.0.vsdx | Integrated, Aerospace |
Preliminary Power Requirement | .xlsx | ANA-30-POWER-1.0.xlsx | Compliance, Aerospace |
QE-IDS Concept Report | .docx | ANA-30-QEIDS-1.0.docx | Innovation, Aerospace |
Ice Protection System 3D | .stp | 3D-30-ASM-ICE-1.0.stp | Integrated, Aerospace |
Protected Areas 3D | .jt | 3D-30-ASM-AREA-1.0.jt | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Ice/Rain Protection Requirements Trace Matrix | .xlsx | REQ-30-MATRIX-2.0.xlsx | Compliance, Aerospace |
Detailed Ice/Rain Protection System Design | .docx | DES-30-ICE-2.0.docx | Integrated, Aerospace |
Installation Drawing | .dwg | DWG-30-INST-2.0.dwg | Compliance, Aerospace |
Final Power/Performance | .xlsx | ANA-30-POWER-2.0.xlsx | Compliance, Aerospace |
Hardware Specification | .docx | REQ-30-HW-2.0.docx | Compliance, Aerospace |
Ice/Rain Protection Test Plan | .docx | TST-30-ICE-2.0.docx | Compliance, Aerospace |
Detailed Ice Protection 3D | .stp | 3D-30-ASM-ICE-2.0.stp | Integrated, Aerospace |
Final Protected Areas 3D | .jt | 3D-30-ASM-AREA-2.0.jt | Compliance, Aerospace |
Manufacturing Model with PMI | .3dpdf | 3D-30-MBD-ICE-2.0.3dpdf | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Display/Recording Requirements | .reqif | REQ-31-DISP-1.0.reqif | Compliance, Aerospace |
Indicating/Recording Concept | .docx | DES-31-IND-1.0.docx | Integrated, Aerospace |
Hardware/Software Architecture | .vsdx | DES-31-ARCH-1.0.vsdx | Integrated, IT |
Q-DMRS Concept Report | .docx | ANA-31-QDMRS-1.0.docx | Innovation, IT |
Display System 3D Concept | .stp | 3D-31-ASM-DISP-1.0.stp | Integrated, Aerospace |
Recorder Placement 3D | .jt | 3D-31-ASM-REC-1.0.jt | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Indicating/Recording Requirements Trace Matrix | .xlsx | REQ-31-MATRIX-2.0.xlsx | Compliance, Aerospace |
Detailed Indicating/Recording System Design | .docx | DES-31-IND-2.0.docx | Integrated, Aerospace |
Hardware Installation Drawing | .dwg | DWG-31-INST-2.0.dwg | Compliance, Aerospace |
Software/Display Formats Specification | .docx | REQ-31-SW-2.0.docx | Integrated, IT |
Indicating/Recording Test Plan | .docx | TST-31-IND-2.0.docx | Compliance, Aerospace |
Detailed Display System 3D | .stp | 3D-31-ASM-DISP-2.0.stp | Integrated, Aerospace |
Detailed Recorder Installation | .jt | 3D-31-ASM-REC-2.0.jt | Compliance, Aerospace |
Manufacturing Model with PMI | .3dpdf | 3D-31-MBD-IND-2.0.3dpdf | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
LG Requirements | .reqif | REQ-32-LG-1.0.reqif | Compliance, Aerospace |
LG Concept Description | .docx | DES-32-LG-1.0.docx | Integrated, Aerospace |
Conceptual Layout | .dwg | DWG-32-LAYOUT-1.0.dwg | Compliance, Aerospace |
Preliminary Loads | .xlsx | ANA-32-LOADS-1.0.xlsx | Compliance, Aerospace |
Q-LGAS Concept Report | .docx | ANA-32-QLGAS-1.0.docx | Innovation, Aerospace |
LG Conceptual Layout | .stp | 3D-32-ASM-LG-1.0.stp | Integrated, Aerospace |
Retraction Kinematics | .jt | 3D-32-ASM-RETRACT-1.0.jt | Compliance, Aerospace |
Preliminary Stress Model | .fem | 3D-32-FEM-STRESS-1.0.fem | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
LG Requirements Trace Matrix | .xlsx | REQ-32-MATRIX-2.0.xlsx | Compliance, Aerospace |
Detailed LG System Design | .docx | DES-32-LG-2.0.docx | Integrated, Aerospace |
Detailed Structure/Mechanism | .dwg | DWG-32-MECH-2.0.dwg | Compliance, Aerospace |
Final Loads/Stress/Performance | .xlsx | ANA-32-LOADS-2.0.xlsx | Compliance, Aerospace |
Components Specification | .docx | REQ-32-COMP-2.0.docx | Compliance, Aerospace |
Test Plan | .docx | TST-32-LG-2.0.docx | Compliance, Aerospace |
LG Detailed Assembly | .stp | 3D-32-ASM-LG-2.0.stp | Integrated, Aerospace |
Final Retraction Kinematics | .jt | 3D-32-ASM-RETRACT-2.0.jt | Compliance, Aerospace |
Final Stress Model | .fem | 3D-32-FEM-STRESS-2.0.fem | Compliance, Aerospace |
Drop Test Simulation | .fem | 3D-32-FEM-DROP-2.0.fem | Compliance, Aerospace |
Manufacturing Model with PMI | .3dpdf | 3D-32-MBD-LG-2.0.3dpdf | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Lighting Requirements | .reqif | REQ-33-LIGHT-1.0.reqif | Compliance, Aerospace |
Lighting Concept Description | .docx | DES-33-LIGHT-1.0.docx | Integrated, Aerospace |
Conceptual Placement | .dwg | DWG-33-PLACE-1.0.dwg | Compliance, Aerospace |
Technology Concept - Q-LS | .docx | REQ-33-QLS-1.0.docx | Innovation, Aerospace |
Lighting System 3D Concept | .stp | 3D-33-ASM-LIGHT-1.0.stp | Integrated, Aerospace |
Lighting Coverage 3D | .jt | 3D-33-ASM-COV-1.0.jt | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Lighting Requirements Trace Matrix | .xlsx | REQ-33-MATRIX-2.0.xlsx | Compliance, Aerospace |
Detailed Lighting System Design | .docx | DES-33-LIGHT-2.0.docx | Integrated, Aerospace |
Installation/Wiring Drawing | .dwg | DWG-33-INST-2.0.dwg | Compliance, Aerospace |
Fixtures Specification | .docx | REQ-33-FIX-2.0.docx | Compliance, Aerospace |
Lighting Test Plan | .docx | TST-33-LIGHT-2.0.docx | Compliance, Aerospace |
Detailed Lighting System 3D | .stp | 3D-33-ASM-LIGHT-2.0.stp | Integrated, Aerospace |
Final Lighting Coverage 3D | .jt | 3D-33-ASM-COV-2.0.jt | Compliance, Aerospace |
Manufacturing Model with PMI | .3dpdf | 3D-33-MBD-LIGHT-2.0.3dpdf | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Navigation Requirements | .reqif | REQ-34-NAV-1.0.reqif | Compliance, Aerospace |
Navigation Concept Description | .docx | DES-34-NAV-1.0.docx | Integrated, Aerospace |
Sensor Fusion Concept Architecture | .vsdx | DES-34-FUSION-1.0.vsdx | Innovation, IT |
Preliminary Accuracy Calculation | .xlsx | ANA-34-ACC-1.0.xlsx | Compliance, Aerospace |
QNS Feasibility Report | .docx | ANA-34-QNS-1.0.docx | Innovation, IT |
Navigation System 3D Concept | .stp | 3D-34-ASM-NAV-1.0.stp | Integrated, Aerospace |
Sensor Placement 3D | .jt | 3D-34-ASM-SENSOR-1.0.jt | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Navigation Requirements Trace Matrix | .xlsx | REQ-34-MATRIX-2.0.xlsx | Compliance, Aerospace |
Detailed Navigation System Design | .docx | DES-34-NAV-2.0.docx | Integrated, Aerospace |
Hardware Installation Drawing | .dwg | DWG-34-INST-2.0.dwg | Compliance, Aerospace |
Software/Hardware Specification | .docx | REQ-34-HWSW-2.0.docx | Integrated, IT |
Final Accuracy/Performance | .xlsx | ANA-34-ACC-2.0.xlsx | Compliance, Aerospace |
Navigation Test Plan | .docx | TST-34-NAV-2.0.docx | Compliance, Aerospace |
Detailed Navigation System 3D | .stp | 3D-34-ASM-NAV-2.0.stp | Integrated, Aerospace |
Final Sensor Placement 3D | .jt | 3D-34-ASM-SENSOR-2.0.jt | Compliance, Aerospace |
Manufacturing Model with PMI | .3dpdf | 3D-34-MBD-NAV-2.0.3dpdf | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Oxygen System Requirements | .reqif | REQ-35-OXY-1.0.reqif | Compliance, Aerospace |
Oxygen System Concept | .docx | DES-35-OXY-1.0.docx | Compliance, Aerospace |
Storage/Distribution Concept | .vsdx | DES-35-DIST-1.0.vsdx | Compliance, Aerospace |
Preliminary Sizing | .xlsx | ANA-35-SIZE-1.0.xlsx | Compliance, Aerospace |
Oxygen System 3D Concept | .stp | 3D-35-ASM-OXY-1.0.stp | Compliance, Aerospace |
Distribution 3D Concept | .jt | 3D-35-ASM-DIST-1.0.jt | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Oxygen System Requirements Trace Matrix | .xlsx | REQ-35-MATRIX-2.0.xlsx | Compliance, Aerospace |
Detailed Oxygen System Design | .docx | DES-35-OXY-2.0.docx | Compliance, Aerospace |
Installation/Plumbing Drawing | .dwg | DWG-35-PLUMB-2.0.dwg | Compliance, Aerospace |
Final Sizing | .xlsx | ANA-35-SIZE-2.0.xlsx | Compliance, Aerospace |
Components Specification | .docx | REQ-35-COMP-2.0.docx | Compliance, Aerospace |
Oxygen System Test Plan | .docx | TST-35-OXY-2.0.docx | Compliance, Aerospace |
Detailed Oxygen System 3D | .stp | 3D-35-ASM-OXY-2.0.stp | Compliance, Aerospace |
Detailed Distribution 3D | .jt | 3D-35-ASM-DIST-2.0.jt | Compliance, Aerospace |
Manufacturing Model with PMI | .3dpdf | 3D-35-MBD-OXY-2.0.3dpdf | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Pneumatic System Requirements | .reqif | REQ-36-PNEU-1.0.reqif | Compliance, Aerospace |
Pneumatic System Concept | .docx | DES-36-PNEU-1.0.docx | Compliance, Aerospace |
Pneumatic System Architecture | .vsdx | DES-36-ARCH-1.0.vsdx | Compliance, Aerospace |
Preliminary Demand/Supply | .xlsx | ANA-36-FLOW-1.0.xlsx | Compliance, Aerospace |
Pneumatic System 3D Concept | .stp | 3D-36-ASM-PNEU-1.0.stp | Compliance, Aerospace |
Ducting 3D Concept | .jt | 3D-36-ASM-DUCT-1.0.jt | Compliance, Aerospace |
Flow Simulation | .cgns | 3D-36-CFD-FLOW-1.0.cgns | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Pneumatic System Requirements Trace Matrix | .xlsx | REQ-36-MATRIX-2.0.xlsx | Compliance, Aerospace |
Detailed Pneumatic System Design | .docx | DES-36-PNEU-2.0.docx | Compliance, Aerospace |
Ducting/Installation Drawing | .dwg | DWG-36-DUCT-2.0.dwg | Compliance, Aerospace |
Final Analysis | .xlsx | ANA-36-FLOW-2.0.xlsx | Compliance, Aerospace |
Components Specification | .docx | REQ-36-COMP-2.0.docx | Compliance, Aerospace |
Pneumatic System Test Plan | .docx | TST-36-PNEU-2.0.docx | Compliance, Aerospace |
Detailed Pneumatic System 3D | .stp | 3D-36-ASM-PNEU-2.0.stp | Compliance, Aerospace |
Detailed Ducting 3D | .jt | 3D-36-ASM-DUCT-2.0.jt | Compliance, Aerospace |
Final Flow Simulation | .cgns | 3D-36-CFD-FLOW-2.0.cgns | Compliance, Aerospace |
Manufacturing Model with PMI | .3dpdf | 3D-36-MBD-PNEU-2.0.3dpdf | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Water/Waste System Requirements | .reqif | REQ-38-WATER-1.0.reqif | Compliance, Aerospace |
Water/Waste System Concept | .docx | DES-38-WATER-1.0.docx | Compliance, Aerospace |
Conceptual Layout | .dwg | DWG-38-LAYOUT-1.0.dwg | Compliance, Aerospace |
Water/Waste System 3D Concept | .stp | 3D-38-ASM-WATER-1.0.stp | Compliance, Aerospace |
Tank Concept | .catpart | 3D-38-PRT-TANK-1.0.catpart | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Water/Waste System Requirements Trace Matrix | .xlsx | REQ-38-MATRIX-2.0.xlsx | Compliance, Aerospace |
Detailed Water/Waste System Design | .docx | DES-38-WATER-2.0.docx | Compliance, Aerospace |
Installation/Plumbing Drawing | .dwg | DWG-38-PLUMB-2.0.dwg | Compliance, Aerospace |
Components Specification | .docx | REQ-38-COMP-2.0.docx | Compliance, Aerospace |
Water/Waste System Test Plan | .docx | TST-38-WATER-2.0.docx | Compliance, Aerospace |
Detailed Water/Waste System 3D | .stp | 3D-38-ASM-WATER-2.0.stp | Compliance, Aerospace |
Detailed Tank Design | .catpart | 3D-38-PRT-TANK-2.0.catpart | Compliance, Aerospace |
Manufacturing Model with PMI | .3dpdf | 3D-38-MBD-WATER-2.0.3dpdf | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
CMS Requirements | .reqif | REQ-45-CMS-1.0.reqif | Compliance, Integrated |
CMS Concept Description | .docx | DES-45-CMS-1.0.docx | Innovation, IT |
Hardware/Software Architecture | .vsdx | DES-45-ARCH-1.0.vsdx | Innovation, IT |
Draft Interface Control | .docx | ICD-45-CMS-1.0.docx | Compliance, IT |
AI/Q-CMS Concept Report | .docx | ANA-45-QCMS-1.0.docx | Innovation, IT |
CMS Hardware 3D Concept | .stp | 3D-45-ASM-CMS-1.0.stp | Innovation, IT |
Interface Concept 3D | .jt | 3D-45-ASM-INT-1.0.jt | Compliance, IT |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
CMS Requirements Trace Matrix | .xlsx | REQ-45-MATRIX-2.0.xlsx | Compliance, Integrated |
Detailed CMS System Design | .docx | DES-45-CMS-2.0.docx | Innovation, IT |
Hardware Installation Drawing | .dwg | DWG-45-INST-2.0.dwg | Compliance, Aerospace |
Software Detailed/Algorithms | .docx | REQ-45-SW-2.0.docx | Innovation, IT |
Final Interface Control | .docx | ICD-45-CMS-2.0.docx | Compliance, IT |
CMS Test Plan | .docx | TST-45-CMS-2.0.docx | Compliance, Integrated |
Detailed CMS Hardware 3D | .stp | 3D-45-ASM-CMS-2.0.stp | Innovation, IT |
Detailed Interface 3D | .jt | 3D-45-ASM-INT-2.0.jt | Compliance, IT |
Manufacturing Model with PMI | .3dpdf | 3D-45-MBD-CMS-2.0.3dpdf | Compliance, IT |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Network/Security/Data Requirements | .reqif | REQ-46-NET-1.0.reqif | Compliance, IT |
Network Concept Architecture | .vsdx | DES-46-NET-1.0.vsdx | Innovation, IT |
Protocol Concepts | .docx | REQ-46-PROTO-1.0.docx | Innovation, IT |
Draft Interface Control | .docx | ICD-46-NET-1.0.docx | Compliance, IT |
Q-INI Concept Report | .docx | ANA-46-QINI-1.0.docx | Innovation, IT |
Network Hardware 3D Concept | .stp | 3D-46-ASM-NET-1.0.stp | Innovation, IT |
Rack Layout 3D | .jt | 3D-46-ASM-RACK-1.0.jt | Compliance, IT |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Information Systems Requirements Trace Matrix | .xlsx | REQ-46-MATRIX-2.0.xlsx | Compliance, IT |
Detailed Information Systems Design | .docx | DES-46-INFO-2.0.docx | Innovation, IT |
Network Layout/Hardware Install | .dwg | DWG-46-NET-2.0.dwg | Compliance, IT |
Software/Hardware/Security Config | .docx | REQ-46-CONFIG-2.0.docx | Compliance, IT |
Final Interface Control | .docx | ICD-46-NET-2.0.docx | Compliance, IT |
Information Systems Test Plan | .docx | TST-46-INFO-2.0.docx | Compliance, IT |
Detailed Network Hardware 3D | .stp | 3D-46-ASM-NET-2.0.stp | Innovation, IT |
Final Rack Layout 3D | .jt | 3D-46-ASM-RACK-2.0.jt | Compliance, IT |
Manufacturing Model with PMI | .3dpdf | 3D-46-MBD-NET-2.0.3dpdf | Compliance, IT |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
APU Requirements | .reqif | REQ-49-APU-1.0.reqif | Compliance, Aerospace |
APU Concept Description | .docx | DES-49-APU-1.0.docx | Integrated, Aerospace |
Preliminary Power Output | .xlsx | ANA-49-POWER-1.0.xlsx | Compliance, Aerospace |
APU 3D Concept | .stp | 3D-49-ASM-APU-1.0.stp | Integrated, Aerospace |
Installation Concept 3D | .jt | 3D-49-ASM-INST-1.0.jt | Compliance, Aerospace |
Thermal Analysis | .fem | 3D-49-FEM-THERM-1.0.fem | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
APU Requirements Trace Matrix | .xlsx | REQ-49-MATRIX-2.0.xlsx | Compliance, Aerospace |
Detailed APU System Design | .docx | DES-49-APU-2.0.docx | Integrated, Aerospace |
Installation Drawing | .dwg | DWG-49-INST-2.0.dwg | Compliance, Aerospace |
Final Performance | .xlsx | ANA-49-POWER-2.0.xlsx | Compliance, Aerospace |
Unit Specification | .docx | REQ-49-UNIT-2.0.docx | Compliance, Aerospace |
APU Test Plan | .docx | TST-49-APU-2.0.docx | Compliance, Aerospace |
Detailed APU 3D | .stp | 3D-49-ASM-APU-2.0.stp | Integrated, Aerospace |
Final Installation 3D | .jt | 3D-49-ASM-INST-2.0.jt | Compliance, Aerospace |
Final Thermal Analysis | .fem | 3D-49-FEM-THERM-2.0.fem | Compliance, Aerospace |
Manufacturing Model with PMI | .3dpdf | 3D-49-MBD-APU-2.0.3dpdf | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Design Criteria | .docx | REQ-51-CRIT-1.0.docx | Compliance, Aerospace |
Loads Philosophy | .docx | ANA-51-LOADS-1.0.docx | Compliance, Aerospace |
Repair Philosophy Outline | .docx | DES-51-REPAIR-1.0.docx | Compliance, Aerospace |
Standard Structural Details 3D | .stp | 3D-51-ASM-STD-1.0.stp | Compliance, Aerospace |
Loads Model | .fem | 3D-51-FEM-LOADS-1.0.fem | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Final Criteria/Materials | .docx | REQ-51-CRIT-2.0.docx | Compliance, Aerospace |
Final Loads Report | .docx | ANA-51-LOADS-2.0.docx | Compliance, Aerospace |
Key Repair Concepts Draft | .docx | DES-51-REPAIR-2.0.docx | Compliance, Aerospace |
Detailed Standard Details 3D | .stp | 3D-51-ASM-STD-2.0.stp | Compliance, Aerospace |
Final Loads Model | .fem | 3D-51-FEM-LOADS-2.0.fem | Compliance, Aerospace |
Manufacturing Model with PMI | .3dpdf | 3D-51-MBD-STD-2.0.3dpdf | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Doors Requirements | .reqif | REQ-52-DOOR-1.0.reqif | Compliance, Aerospace |
Conceptual Design | .dwg | DWG-52-DOOR-1.0.dwg | Compliance, Aerospace |
Preliminary Loads | .xlsx | ANA-52-LOADS-1.0.xlsx | Compliance, Aerospace |
Doors 3D Concept | .stp | 3D-52-ASM-DOOR-1.0.stp | Compliance, Aerospace |
Mechanism Concept 3D | .jt | 3D-52-ASM-MECH-1.0.jt | Compliance, Aerospace |
Preliminary Stress Model | .fem | 3D-52-FEM-STRESS-1.0.fem | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Doors Requirements Trace Matrix | .xlsx | REQ-52-MATRIX-2.0.xlsx | Compliance, Aerospace |
Detailed Design/Mechanisms | .dwg | DWG-52-MECH-2.0.dwg | Compliance, Aerospace |
Final Stress/Loads | .xlsx | ANA-52-LOADS-2.0.xlsx | Compliance, Aerospace |
Doors Test Plan | .docx | TST-52-DOOR-2.0.docx | Compliance, Aerospace |
Detailed Doors 3D | .stp | 3D-52-ASM-DOOR-2.0.stp | Compliance, Aerospace |
Detailed Mechanism 3D | .jt | 3D-52-ASM-MECH-2.0.jt | Compliance, Aerospace |
Final Stress Model | .fem | 3D-52-FEM-STRESS-2.0.fem | Compliance, Aerospace |
Manufacturing Model with PMI | .3dpdf | 3D-52-MBD-DOOR-2.0.3dpdf | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Fuselage Requirements | .reqif | REQ-53-FUS-1.0.reqif | Compliance, Aerospace |
Conceptual Layout/Sections | .dwg | DWG-53-LAYOUT-1.0.dwg | Compliance, Aerospace |
Preliminary Stress/Loads | .xlsx | ANA-53-STRESS-1.0.xlsx | Compliance, Aerospace |
Fuselage Conceptual Model | .stp | 3D-53-ASM-FUS-1.0.stp | Compliance, Aerospace |
Section Concepts | .catpart | 3D-53-PRT-SECTION-1.0.catpart | Compliance, Aerospace |
Preliminary Stress Model | .fem | 3D-53-FEM-STRESS-1.0.fem | Compliance, Aerospace |
Aerodynamic Concept | .cgns | 3D-53-CFD-AERO-1.0.cgns | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Fuselage Requirements Trace Matrix | .xlsx | REQ-53-MATRIX-2.0.xlsx | Compliance, Aerospace |
Detailed "Build-to-Print" | .dwg | DWG-53-BUILD-2.0.dwg | Compliance, Aerospace |
Final Stress/Fatigue/DT | .xlsx | ANA-53-STRESS-2.0.xlsx | Compliance, Aerospace |
Structural Test Plan | .docx | TST-53-STRUCT-2.0.docx | Compliance, Aerospace |
Fuselage Detailed Assembly | .stp | 3D-53-ASM-FUS-2.0.stp | Compliance, Aerospace |
Detailed Sections | .catpart | 3D-53-PRT-SECTION-2.0.catpart | Compliance, Aerospace |
Final Stress Model | .fem | 3D-53-FEM-STRESS-2.0.fem | Compliance, Aerospace |
Fatigue/Damage Tolerance Model | .fem | 3D-53-FEM-FATIGUE-2.0.fem | Compliance, Aerospace |
Final Aerodynamic Analysis | .cgns | 3D-53-CFD-AERO-2.0.cgns | Compliance, Aerospace |
Manufacturing Model with PMI | .3dpdf | 3D-53-MBD-FUS-2.0.3dpdf | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Nacelles/Pylons Requirements | .reqif | REQ-54-NAC-1.0.reqif | Compliance, Aerospace |
Conceptual Design | .dwg | DWG-54-NAC-1.0.dwg | Compliance, Aerospace |
Preliminary Loads/Vibe | .xlsx | ANA-54-LOADS-1.0.xlsx | Compliance, Aerospace |
Nacelle/Pylon 3D Concept | .stp | 3D-54-ASM-NAC-1.0.stp | Compliance, Aerospace |
Preliminary Stress Model | .fem | 3D-54-FEM-STRESS-1.0.fem | Compliance, Aerospace |
Aerodynamic Concept | .cgns | 3D-54-CFD-AERO-1.0.cgns | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Nacelles/Pylons Requirements Trace Matrix | .xlsx | REQ-54-MATRIX-2.0.xlsx | Compliance, Aerospace |
Detailed Design | .dwg | DWG-54-NAC-2.0.dwg | Compliance, Aerospace |
Final Stress/Aero/Vibe | .xlsx | ANA-54-STRESS-2.0.xlsx | Compliance, Aerospace |
Nacelles/Pylons Test Plan | .docx | TST-54-NAC-2.0.docx | Compliance, Aerospace |
Detailed Nacelle/Pylon 3D | .stp | 3D-54-ASM-NAC-2.0.stp | Compliance, Aerospace |
Final Stress Model | .fem | 3D-54-FEM-STRESS-2.0.fem | Compliance, Aerospace |
Final Aerodynamic Analysis | .cgns | 3D-54-CFD-AERO-2.0.cgns | Compliance, Aerospace |
Manufacturing Model with PMI | .3dpdf | 3D-54-MBD-NAC-2.0.3dpdf | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Stabilizers Requirements | .reqif | REQ-55-STAB-1.0.reqif | Compliance, Aerospace |
Conceptual Design | .dwg | DWG-55-STAB-1.0.dwg | Compliance, Aerospace |
Preliminary Loads/Aero | .xlsx | ANA-55-LOADS-1.0.xlsx | Compliance, Aerospace |
Stabilizers 3D Concept | .stp | 3D-55-ASM-STAB-1.0.stp | Compliance, Aerospace |
Preliminary Stress Model | .fem | 3D-55-FEM-STRESS-1.0.fem | Compliance, Aerospace |
Aerodynamic Concept | .cgns | 3D-55-CFD-AERO-1.0.cgns | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Stabilizers Requirements Trace Matrix | .xlsx | REQ-55-MATRIX-2.0.xlsx | Compliance, Aerospace |
Detailed Design | .dwg | DWG-55-STAB-2.0.dwg | Compliance, Aerospace |
Final Stress/Aero | .xlsx | ANA-55-STRESS-2.0.xlsx | Compliance, Aerospace |
Stabilizers Test Plan | .docx | TST-55-STAB-2.0.docx | Compliance, Aerospace |
Detailed Stabilizers 3D | .stp | 3D-55-ASM-STAB-2.0.stp | Compliance, Aerospace |
Final Stress Model | .fem | 3D-55-FEM-STRESS-2.0.fem | Compliance, Aerospace |
Final Aerodynamic Analysis | .cgns | 3D-55-CFD-AERO-2.0.cgns | Compliance, Aerospace |
Manufacturing Model with PMI | .3dpdf | 3D-55-MBD-STAB-2.0.3dpdf | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Windows Requirements | .reqif | REQ-56-WIN-1.0.reqif | Compliance, Aerospace |
Conceptual Design | .dwg | DWG-56-WIN-1.0.dwg | Compliance, Aerospace |
Material Concept | .docx | REQ-56-MAT-1.0.docx | Compliance, Aerospace |
Windows 3D Concept | .stp | 3D-56-ASM-WIN-1.0.stp | Compliance, Aerospace |
Preliminary Stress Model | .fem | 3D-56-FEM-STRESS-1.0.fem | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Windows Requirements Trace Matrix | .xlsx | REQ-56-MATRIX-2.0.xlsx | Compliance, Aerospace |
Detailed Design/Installation | .dwg | DWG-56-INST-2.0.dwg | Compliance, Aerospace |
Final Material/Coatings | .docx | REQ-56-MAT-2.0.docx | Compliance, Aerospace |
Bird Strike/Pressure Test Plan | .docx | TST-56-BIRD-2.0.docx | Compliance, Aerospace |
Detailed Windows 3D | .stp | 3D-56-ASM-WIN-2.0.stp | Compliance, Aerospace |
Final Stress Model | .fem | 3D-56-FEM-STRESS-2.0.fem | Compliance, Aerospace |
Bird Strike Simulation | .fem | 3D-56-FEM-BIRD-2.0.fem | Compliance, Aerospace |
Manufacturing Model with PMI | .3dpdf | 3D-56-MBD-WIN-2.0.3dpdf | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Wing Requirements | .reqif | REQ-57-WING-1.0.reqif | Compliance, Aerospace |
Conceptual Design/Airfoil | .dwg | DWG-57-AIRFOIL-1.0.dwg | Compliance, Aerospace |
Preliminary Loads/Aero | .xlsx | ANA-57-LOADS-1.0.xlsx | Compliance, Aerospace |
Morphing Concept | .docx | REQ-57-MORPH-1.0.docx | Innovation, Aerospace |
Wing Conceptual Model | .stp | 3D-57-ASM-WING-1.0.stp | Compliance, Aerospace |
Airfoil Definition | .catpart | 3D-57-PRT-AIRFOIL-1.0.catpart | Compliance, Aerospace |
Preliminary Stress Model | .fem | 3D-57-FEM-STRESS-1.0.fem | Compliance, Aerospace |
Aerodynamic Concept | .cgns | 3D-57-CFD-AERO-1.0.cgns | Compliance, Aerospace |
Morphing Concept | .jt | 3D-57-ASM-MORPH-1.0.jt | Innovation, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Wing Requirements Trace Matrix | .xlsx | REQ-57-MATRIX-2.0.xlsx | Compliance, Aerospace |
Detailed "Build-to-Print" | .dwg | DWG-57-BUILD-2.0.dwg | Compliance, Aerospace |
Final Stress/Aero/Fatigue/DT | .xlsx | ANA-57-STRESS-2.0.xlsx | Compliance, Aerospace |
Morphing Mechanism Detailed | .docx | REQ-57-MORPH-2.0.docx | Innovation, Aerospace |
Structural Test Plan | .docx | TST-57-STRUCT-2.0.docx | Compliance, Aerospace |
Wing Detailed Assembly | .stp | 3D-57-ASM-WING-2.0.stp | Compliance, Aerospace |
Detailed Airfoil/Structure | .catpart | 3D-57-PRT-AIRFOIL-2.0.catpart | Compliance, Aerospace |
Final Stress Model | .fem | 3D-57-FEM-STRESS-2.0.fem | Compliance, Aerospace |
Fatigue/Damage Tolerance Model | .fem | 3D-57-FEM-FATIGUE-2.0.fem | Compliance, Aerospace |
Final Aerodynamic Analysis | .cgns | 3D-57-CFD-AERO-2.0.cgns | Compliance, Aerospace |
Detailed Morphing Mechanism | .jt | 3D-57-ASM-MORPH-2.0.jt | Innovation, Aerospace |
Manufacturing Model with PMI | .3dpdf | 3D-57-MBD-WING-2.0.3dpdf | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Q-01 Requirements | .reqif | REQ-71-Q01-1.0.reqif | Innovation, Aerospace |
Q-01 Concept Description | .docx | DES-71-Q01-1.0.docx | Innovation, Aerospace |
Q-01 Architecture | .vsdx | DES-71-ARCH-1.0.vsdx | Innovation, Aerospace |
Preliminary Performance | .xlsx | ANA-71-PERF-1.0.xlsx | Innovation, Aerospace |
Safety Concept Analysis | .docx | ANA-71-SAFETY-1.0.docx | Compliance, Aerospace |
Q-01 Conceptual Model | .stp | 3D-71-ASM-Q01-1.0.stp | Innovation, Aerospace |
Containment Concept | .catpart | 3D-71-PRT-CONTAIN-1.0.catpart | Innovation, Aerospace |
Thermal Simulation | .cgns | 3D-71-CFD-THERM-1.0.cgns | Innovation, Aerospace |
Preliminary Stress Model | .fem | 3D-71-FEM-STRESS-1.0.fem | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Q-01 Requirements Trace Matrix | .xlsx | REQ-71-MATRIX-2.0.xlsx | Compliance, Aerospace |
Detailed Q-01 System Design | .docx | DES-71-Q01-2.0.docx | Innovation, Aerospace |
Installation Drawing | .dwg | DWG-71-INST-2.0.dwg | Compliance, Aerospace |
Final Performance | .xlsx | ANA-71-PERF-2.0.xlsx | Innovation, Aerospace |
Final Safety Analysis | .docx | ANA-71-SAFETY-2.0.docx | Compliance, Aerospace |
Q-01 Test Plan | .docx | TST-71-Q01-2.0.docx | Compliance, Aerospace |
Q-01 Detailed Assembly | .stp | 3D-71-ASM-Q01-2.0.stp | Innovation, Aerospace |
Detailed Components | .catpart | 3D-71-PRT-COMP-2.0.catpart | Innovation, Aerospace |
Final Thermal Simulation | .cgns | 3D-71-CFD-THERM-2.0.cgns | Innovation, Aerospace |
Final Stress Model | .fem | 3D-71-FEM-STRESS-2.0.fem | Compliance, Aerospace |
Vibration Analysis | .fem | 3D-71-FEM-VIB-2.0.fem | Compliance, Aerospace |
Manufacturing Model with PMI | .3dpdf | 3D-71-MBD-Q01-2.0.3dpdf | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Preliminary Wiring Diagrams | .vsdx | DWG-91-WIRE-1.0.vsdx | Compliance, Aerospace |
Preliminary System Schematics | .vsdx | DWG-91-SCHEM-1.0.vsdx | Compliance, Aerospace |
Preliminary Logic Diagrams | .vsdx | DWG-91-LOGIC-1.0.vsdx | Compliance, IT |
Preliminary Block Diagrams | .vsdx | DWG-91-BLOCK-1.0.vsdx | Integrated, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Final Wiring Diagrams | .vsdx | DWG-91-WIRE-2.0.vsdx | Compliance, Aerospace |
Final System Schematics | .vsdx | DWG-91-SCHEM-2.0.vsdx | Compliance, Aerospace |
Final Logic Diagrams | .vsdx | DWG-91-LOGIC-2.0.vsdx | Compliance, IT |
Final Block Diagrams | .vsdx | DWG-91-BLOCK-2.0.vsdx | Integrated, Aerospace |
Troubleshooting Diagrams | .vsdx | DWG-91-TRBL-2.0.vsdx | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Electrical Installation Requirements | .reqif | REQ-92-ELEC-1.0.reqif | Compliance, Aerospace |
Electrical Installation Concept | .docx | DES-92-ELEC-1.0.docx | Compliance, Aerospace |
Preliminary Routing | .dwg | DWG-92-ROUTE-1.0.dwg | Compliance, Aerospace |
Electrical Installation 3D Concept | .stp | 3D-92-ASM-ELEC-1.0.stp | Compliance, Aerospace |
Harness Concept | .catpart | 3D-92-PRT-HARNESS-1.0.catpart | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Electrical Installation Requirements Matrix | .xlsx | REQ-92-MATRIX-2.0.xlsx | Compliance, Aerospace |
Detailed Electrical Installation Design | .docx | DES-92-ELEC-2.0.docx | Compliance, Aerospace |
Final Routing/Installation Drawing | .dwg | DWG-92-ROUTE-2.0.dwg | Compliance, Aerospace |
Connector/Pin Lists | .xlsx | DATA-92-CONN-2.0.xlsx | Compliance, Aerospace |
Electrical Installation Test Plan | .docx | TST-92-ELEC-2.0.docx | Compliance, Aerospace |
Detailed Electrical Installation 3D | .stp | 3D-92-ASM-ELEC-2.0.stp | Compliance, Aerospace |
Detailed Harness Design | .catpart | 3D-92-PRT-HARNESS-2.0.catpart | Compliance, Aerospace |
Manufacturing Model with PMI | .3dpdf | 3D-92-MBD-ELEC-2.0.3dpdf | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Image Recording Requirements | .reqif | REQ-97-IMG-1.0.reqif | Compliance, Aerospace |
Image Recording Concept | .docx | DES-97-IMG-1.0.docx | Integrated, IT |
Camera/Sensor Placement Concept | .dwg | DWG-97-CAM-1.0.dwg | Compliance, Aerospace |
Q-IRS Concept Report | .docx | ANA-97-QIRS-1.0.docx | Innovation, IT |
Image Recording System 3D Concept | .stp | 3D-97-ASM-IMG-1.0.stp | Integrated, IT |
Camera Placement 3D | .jt | 3D-97-ASM-CAM-1.0.jt | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Image Recording Requirements Matrix | .xlsx | REQ-97-MATRIX-2.0.xlsx | Compliance, Aerospace |
Detailed Image Recording System Design | .docx | DES-97-IMG-2.0.docx | Integrated, IT |
Camera/Sensor Installation Drawing | .dwg | DWG-97-CAM-2.0.dwg | Compliance, Aerospace |
Hardware/Software Specification | .docx | REQ-97-HWSW-2.0.docx | Integrated, IT |
Image Recording Test Plan | .docx | TST-97-IMG-2.0.docx | Compliance, Aerospace |
Detailed Image Recording System 3D | .stp | 3D-97-ASM-IMG-2.0.stp | Integrated, IT |
Final Camera Placement 3D | .jt | 3D-97-ASM-CAM-2.0.jt | Compliance, Aerospace |
Manufacturing Model with PMI | .3dpdf | 3D-97-MBD-IMG-2.0.3dpdf | Compliance, IT |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Diagnostics Requirements | .reqif | REQ-99-DIAG-1.0.reqif | Compliance, IT |
Diagnostics Concept | .docx | DES-99-DIAG-1.0.docx | Innovation, IT |
Diagnostics Architecture | .vsdx | DES-99-ARCH-1.0.vsdx | Innovation, IT |
Q-AEDS Concept Report | .docx | ANA-99-QAEDS-1.0.docx | Innovation, IT |
Diagnostics Hardware 3D Concept | .stp | 3D-99-ASM-DIAG-1.0.stp | Innovation, IT |
Interface Concept 3D | .jt | 3D-99-ASM-INT-1.0.jt | Compliance, IT |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
Diagnostics Requirements Matrix | .xlsx | REQ-99-MATRIX-2.0.xlsx | Compliance, IT |
Detailed Diagnostics System Design | .docx | DES-99-DIAG-2.0.docx | Innovation, IT |
Hardware Installation Drawing | .dwg | DWG-99-INST-2.0.dwg | Compliance, IT |
Software Detailed/Algorithms | .docx | REQ-99-SW-2.0.docx | Innovation, IT |
Diagnostics Test Plan | .docx | TST-99-DIAG-2.0.docx | Compliance, IT |
Detailed Diagnostics Hardware 3D | .stp | 3D-99-ASM-DIAG-2.0.stp | Innovation, IT |
Detailed Interface 3D | .jt | 3D-99-ASM-INT-2.0.jt | Compliance, IT |
Manufacturing Model with PMI | .3dpdf | 3D-99-MBD-DIAG-2.0.3dpdf | Compliance, IT |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
GSE Requirements | .reqif | REQ-100-GSE-1.0.reqif | Compliance, Aerospace |
GSE Concept Description | .docx | DES-100-GSE-1.0.docx | Compliance, Aerospace |
Preliminary GSE List | .xlsx | DATA-100-LIST-1.0.xlsx | Compliance, Aerospace |
Key GSE Concepts 3D | .stp | 3D-100-ASM-GSE-1.0.stp | Compliance, Aerospace |
Interface Concept 3D | .jt | 3D-100-ASM-INT-1.0.jt | Compliance, Aerospace |
Document | Format | Filename | Metadata Focus |
---|---|---|---|
GSE Requirements Matrix | .xlsx | REQ-100-MATRIX-2.0.xlsx | Compliance, Aerospace |
Detailed GSE Design | .docx | DES-100-GSE-2.0.docx | Compliance, Aerospace |
Final GSE List/Specifications | .xlsx | DATA-100-LIST-2.0.xlsx | Compliance, Aerospace |
GSE Interface Control | .docx | ICD-100-GSE-2.0.docx | Compliance, Aerospace |
GSE Test Plan | .docx | TST-100-GSE-2.0.docx | Compliance, Aerospace |
Detailed GSE 3D | .stp | 3D-100-ASM-GSE-2.0.stp | Compliance, Aerospace |
Detailed Interface 3D | .jt | 3D-100-ASM-INT-2.0.jt | Compliance, Aerospace |
Manufacturing Model with PMI | .3dpdf | 3D-100-MBD-GSE-2.0.3dpdf | Compliance, Aerospace |
File Type | Format | Purpose |
---|---|---|
Requirements | .reqif |
Requirements management |
Word Documents | .docx |
Reports, procedures, specifications |
Spreadsheets | .xlsx |
Analysis, matrices, lists |
Presentations | .pptx |
Reviews, briefings |
Diagrams | .vsdx |
Architecture, flows, schematics |
Drawings | .dwg |
2D engineering drawings |
.pdf |
Final deliverables, signed docs | |
Markdown | .md |
Editable Text Docs, Readmes |
JSON | .json |
Structured Data, Metadata |
Python Script/Notebook | .py , .ipynb |
Analysis Code, Sim Scripts |
File Type | Format | Purpose | Software |
---|---|---|---|
3D CAD Models | .stp , .step |
Industry standard exchange format | Multiple CAD systems |
Native CAD | .catpart , .catproduct |
Detailed design (CATIA) | CATIA |
Native CAD | .prt , .asm |
Detailed design (NX) | Siemens NX |
Native CAD | .sldprt , .sldasm |
Detailed design (SolidWorks) | SolidWorks |
Lightweight Visualization | .jt , .gl(tf/b) |
Visualization and review | Multiple viewers |
Mesh Models | .stl |
3D printing, simplified analysis | Multiple systems |
Point Cloud | .xyz , .pts , .las/laz |
Scan data, reverse engineering | Multiple systems |
FEA Models | .fem , .nas , .inp |
Finite Element Analysis | NASTRAN, ANSYS, Abaqus |
CFD Models | .cgns , .cas/dat |
Computational Fluid Dynamics | FLUENT, CFX, STAR-CCM+ |
PMI/MBD | .3dpdf , .stp (AP242) |
Product Manufacturing Info | Multiple viewers/CAD |
Simulation Input/Output | .sim , .qsim , .rpt , .log |
Custom Sim Data, Quantum Sim | Various/Custom |
Format: [TYPE]-[ATA]-[DESCRIPTION]-[VERSION].[ext]
Where:
[TYPE]
: Document Type Abbreviation (Ver lista definida abajo)[ATA]
: Two-digit ATA chapter number (e.g., 00, 05, 24, 71)[DESCRIPTION]
: Brief, meaningful description (use CamelCase or underscores, keep concise, e.g.,ElecLoadAnalysis
,QBatConcept
)[VERSION]
: Document version identifier (Ver sección de Versionamiento abajo, e.g.,0.9
,1.0
,1.1
,2.0
).[ext]
: File extension (e.g.,.docx
,.xlsx
,.reqif
,.pdf
,.md
,.json
)
Defined Document [TYPE]
Abbreviations:
Abbreviation | Definition | Example Usage |
---|---|---|
REQ |
Requirements Document | Requirements Specifications, Use Cases |
SPEC |
Specification Document | Technical Specs, Material Specs, Interface Specs |
DES |
Design Description (General) | Conceptual Descriptions, Design Philosophies |
SDD |
System Design Description (Detailed) | Detailed descriptions of system operation/design |
ARCH |
Architecture Document | System Architecture Diagrams/Descriptions (VSDX) |
DWG |
Drawing | 2D Engineering Drawings, Layouts, Schematics |
ANA |
Analysis Report | Stress, Thermal, Aerodynamic, Safety, Risk, TRL |
CAL |
Calculation Document | Load Analysis, Performance Calcs, Sizing |
ICD |
Interface Control Document | Defining interfaces between systems/modules |
TST |
Test Document (Plan, Procedure, Case) | Test Plans, Test Procedures, Test Cases |
RPT |
Report (General) | Test Reports, Review Summaries, Feasibility Reports |
PLAN |
Plan Document | Project Plan, Test Plan, Cert Plan, Maint Plan |
PROC |
Procedure Document | Operational Procs, Maintenance Procs, Test Procs |
MAN |
Manual | User Manuals, Maintenance Manuals, Repair Manuals |
DATA |
Data Sheet / List | Dimensions, Limits Lists, Parameter Lists |
OV |
Overview Document | High-level summaries, Framework Overviews |
IDX |
Index / Matrix | Compliance Matrix, Schematic Index, Document Index |
MPD |
Maintenance Planning Document | Defines structure/basis of maintenance program |
WDM |
Wiring Diagram Manual / Data Module | Consolidated wiring information |
CERT |
Certification Document | Certification Basis, Compliance Evidence |
PRES |
Presentation | Review meeting slides |
BASE |
Baseline Document | Foundational module/system definition |
MD |
Markdown Document | Readmes, Explanations, Text-based docs |
JSON |
JSON Data File | Structured Data, Configuration, Metadata |
SCRIPT |
Script / Code | Analysis scripts (.py ), Sim control (.sh ) |
NB |
Notebook | Jupyter/Python Notebooks (.ipynb ) |
(Otros según sea necesario, deben definirse en el glosario) |
Format: 3D-[ATA]-[TYPE]-[DESCRIPTION]-[VERSION].[ext]
Where:
3D
: Prefix for all 3D design files[ATA]
: Two-digit ATA chapter number[TYPE]
: Design Type Abbreviation (Ver lista definida abajo)[DESCRIPTION]
: Brief description of the component/assembly (use CamelCase or underscores)[VERSION]
: Design version identifier (Ver sección de Versionamiento abajo).[ext]
: File extension (e.g.,.stp
,.catpart
,.jt
,.fem
,.cgns
,.3dpdf
,.glb
)
Defined 3D Design [TYPE]
Abbreviations:
Abbreviation | Definition | Example Usage |
---|---|---|
ASM |
Assembly | Top-level assembly, Sub-assembly |
PRT |
Part | Individual component model |
FEM |
Finite Element Model | Structural, Thermal, Vibration Analysis Model |
CFD |
Computational Fluid Dynamics Model | Aerodynamic, Thermal Flow Model |
MBD |
Model Based Definition | Model with integrated PMI (often .stp AP242, .3dpdf) |
VIS |
Visualization Model | Lightweight model for review (often .jt, .glb) |
LAYOUT |
Layout Model | Simplified model showing spatial arrangement |
KINEM |
Kinematics Model | Model demonstrating motion/mechanisms |
SCAN |
Scan Data | Point cloud or mesh from scanning (.laz , .stl ) |
SIM |
Simulation Model/Data | Specific simulation input/output (.sim , .qsim ) |
(Otros según sea necesario) |
- Scheme: Use a Major.Minor versioning scheme (e.g.,
1.0
,1.1
,2.0
). - Pre-PDR: Versions leading up to the initial PDR might use
0.x
(e.g.,0.1
,0.9
). - PDR Baseline: The set of documents approved at PDR should ideally be baselined as version
1.0
. - Interim Revisions (PDR to CDR): Minor updates, refinements, and responses to PDR actions result in increments of the minor version (e.g.,
1.1
,1.2
). - CDR Baseline: The set of documents approved at CDR should ideally be baselined as version
2.0
. - Post-CDR Revisions: Changes made after CDR due to testing, manufacturing feedback, or scope changes result in increments of the minor version (e.g.,
2.1
,2.2
). - Major Post-Release Updates: Significant changes after the initial product release might warrant incrementing the major version (e.g.,
3.0
), often associated with block upgrades or major modifications. - Configuration Management: The exact application of this scheme (when to increment major vs. minor) must be governed by the project's official Configuration Management Plan.
All documents must include the following metadata (ideally embedded or linked via a manifest .json
file):
- Document ID: Unique identifier (Following naming convention)
- Title: Document title
- Author(s): Name(s) of primary author(s)/owner(s)
- Date: Last revision date (YYYY-MM-DD)
- Version: Version number (Following versioning guidelines)
- Status:
Draft | In Review | Approved | Released | Obsolete
- Classification:
Public | Internal Use Only | Confidential | Proprietary | Export Controlled [Type]
etc. - Focus Area(s): List/Array of applicable areas (e.g.,
["Compliance", "Aerospace"]
,["Innovation", "Integrated", "IT"]
,["All"]
). Example areas:Compliance
,Innovation
,Integrated
,Aerospace
,IT
,All
. - ATA Chapter(s): Relevant ATA chapter(s) (e.g.,
24
,71, 73, 76
) - Review Status: Last major review milestone passed or targeted (e.g.,
Pre-PDR
,PDR
,Interim
,CDR
,Post-CDR
,Released
) - Approval Signatures: Reference to digital signature or record of required approvals (e.g., link to workflow system, embedded digital sig).
- Linked Documents: List/Array of related document IDs (e.g., requirements traced, analysis supporting design).
- Keywords: List/Array of relevant keywords for searchability.
All 3D models must include the following metadata within the CAD file properties and/or PLM system:
- Part/Assembly Number: Unique identifier (linked to BOM/PBS)
- Description: Clear name of the part/assembly
- Author: Designer name
- Creation Date: Initial creation date
- Last Modified: Last modification date and modifier name
- Version/Revision: Version identifier (Following versioning guidelines, linked to PLM revisions)
- Approval Status:
Work In Progress | In Review | Approved | Released | Obsolete
- Material: Material specification code/name (linked to materials database)
- Mass (Calculated): System-calculated mass (kg).
- Mass (Specified): Target or specified mass, if different (kg).
- Revision History: Link to change log or embedded history (PLM managed).
- Reference Documents: Links to associated drawings (DWG), specifications (SPEC), analysis (ANA).
- Classification:
Public | Internal Use Only | Confidential | Proprietary | Export Controlled [Type]
etc. - Is Master Model: Boolean (
true
/false
) indicating if it's the source geometry. - Analysis Ready: Boolean (
true
/false
) indicating suitability for direct use in FEA/CFD.
(Las tablas PDR/CDR se mantienen como antes, pero ahora los formatos de archivo y tipos deben reflejar las listas expandidas arriba. Incluiré ejemplos de los nuevos tipos.)
(Ejemplo de cómo se verían entradas actualizadas en las tablas PDR/CDR con nuevos tipos):
Document | Format | Filename (Example) | Metadata Focus |
---|---|---|---|
EPS Requirements | .reqif |
REQ-24-EPSReqs-1.0.reqif |
Compliance, Aerospace |
EPS Concept Description | .md |
DES-24-EPSConcept-1.0.md |
Integrated, Aerospace |
Q-Batt Prelim Calc Notebook | .ipynb |
NB-24-QBatSize-0.9.ipynb |
Innovation, Aerospace, IT |
EPS PDR Pres Metadata | .json |
JSON-24-EPSPDRPresMeta-1.0.json |
All |
Document | Format | Filename (Example) | Metadata Focus |
---|---|---|---|
Q-01 Core Detailed SDD | .md |
SDD-72-Q01CoreDetail-2.0.md |
Innovation, Aerospace |
Q-01 Core Perf Analysis Script | .py |
SCRIPT-72-Q01PerfAnalysis-2.0.py |
Innovation, Aerospace, IT |
Q-01 Core Final Sim Output | .qsim |
3D-72-SIM-Q01CoreFinal-2.0.qsim |
Innovation, Aerospace |
Manufacturing Model (PMI) | .stp AP242 |
3D-72-MBD-Q01Core-2.0.stp |
Compliance, Aerospace |
- Template Repository: Create standardized templates (including
.md
,.ipynb
,.json
skeletons) with embedded metadata fields or companion metadata files. - Automated Validation: Implement validation checks (e.g., using JSON Schema for metadata, linting for
.md
/.py
) for naming, metadata, and basic structure. - Version Control: Utilize Git or similar for text-based formats (
.md
,.json
,.py
,.ipynb
,.reqif
); integrate with PDM/PLM for binary/CAD files. Ensure traceability between systems. - Cross-Reference Database/Links: Maintain relationships using persistent identifiers (DOIs, PURLs, or internal IDs) within metadata or dedicated link management systems.
- Approval Workflow: Define approval paths potentially using digital signatures (e.g., via PDF or integrated into PLM/Git workflows).
- CAD/PDM/PLM System: Establish a centralized system managing CAD data, revisions, BOM, and associated metadata. Enforce metadata population.
- Master Model Approach: Implement a master model philosophy with clear derivation rules for analysis or simplified models.
- Lightweight Visualization: Automate generation of
.jt
or.glb
/.gltf
from native CAD upon release for broader review and TwinFi integration. - Simulation Management: Establish processes for managing simulation inputs, scripts, results (
.rpt
,.log
), models (.fem
,.cgns
,.qsim
), linking them toCAL
/ANA
documents. - Manufacturing Integration: Ensure MBD data (PMI) is included in relevant formats (
.stp
AP242,.3dpdf
, native CAD) and validated. - Collaboration Tools: Implement tools supporting concurrent engineering, commenting, and issue tracking across different formats (e.g., platforms integrating Git, document viewers, CAD viewers).
- Long-term Archival (LOTAR): Establish procedures for long-term data preservation and retrieval, potentially using standardized archival formats.
This guide provides standardized templates for the GAIA AIR COAFI – Aircraft Standard Digital Library (GAIA-CO-ASD-LIB) standard. GitHub Copilot can use these templates to generate documentation that complies with the standard.
File Type | Format | Purpose |
---|---|---|
Requirements | .reqif | Requirements management |
Word Documents | .docx | Reports, procedures, specifications |
Spreadsheets | .xlsx | Analysis, matrices, lists |
Presentations | .pptx | Reviews, briefings |
Diagrams | .vsdx | Architecture, flows, schematics |
Drawings | .dwg | 2D engineering drawings |
Final deliverables, signed documents | ||
Markdown | .md | Editable Text Docs, Readmes |
JSON | .json | Structured Data, Metadata |
Python Script/Notebook | .py, .ipynb | Analysis Code, Sim Scripts |
File Type | Format | Purpose | Software |
---|---|---|---|
3D CAD Models | .stp, .step | Industry standard exchange format | Multiple CAD systems |
Native CAD | .catpart, .catproduct | Detailed design (CATIA) | CATIA |
Native CAD | .prt, .asm | Detailed design (NX) | Siemens NX |
Native CAD | .sldprt, .sldasm | Detailed design (SolidWorks) | SolidWorks |
Lightweight Visualization | .jt, .gltf, .glb | Visualization and review | Multiple viewers |
Mesh Models | .stl | 3D printing, simplified analysis | Multiple systems |
Point Cloud | .xyz, .pts, .las, .laz | Scan data, reverse engineering | Multiple systems |
FEA Models | .fem, .nas, .inp | Finite Element Analysis | NASTRAN, ANSYS, Abaqus |
CFD Models | .cgns, .cas, .dat | Computational Fluid Dynamics | FLUENT, CFX, STAR-CCM+ |
PMI/MBD | .3dpdf, .stp (AP242) | Product Manufacturing Information | Multiple viewers |
Simulation Input/Output | .sim, .qsim, .rpt, .log | Custom Sim Data, Quantum Sim | Various/Custom |
...
Campo | Valor |
---|---|
Document ID | DES-32-LG-1.0 |
Título | Sistema de Tren de Aterrizaje - Diseño |
Autor | [Nombre del Autor] |
Fecha | [Fecha de Creación/Revisión] |
Versión | 1.0 |
Estado | Draft/Review/Approved |
Clasificación | Proprietary/Export Controlled |
Área de Enfoque | Aerospace |
Capítulo ATA | 32 |
Estado de Revisión | PDR |
Firmas de Aprobación | [Aprobaciones Requeridas] |
graph TD
A[Panel de Control en Cabina] -->|Comandos| B[Unidad de Control Electrónico]
B -->|Señales de Control| C[Sistema Hidráulico]
C -->|Presión Hidráulica| D[Actuadores]
D -->|Movimiento Mecánico| E[Mecanismo de Tren de Aterrizaje]
E -->|Retroalimentación| A
C -->|Monitoreo| F[Sensores de Presión]
E -->|Monitoreo| G[Sensores de Posición]
C -->|Respaldo| H[Sistema de Emergencia]
Elemento de Diseño | ID de Requisito | Método de Verificación | Estado |
---|---|---|---|
Actuador Hidráulico | REQ-32-LG-HYD-EXT-001 | Prueba | Verificado |
Sistema de Control | REQ-32-LG-HYD-EXT-003 | Análisis/Prueba | En Proceso |
Válvula de Presión | REQ-32-LG-HYD-PERF-001 | Prueba | Verificado |
Campo | Valor |
---|---|
ID del Modelo | 3D-32-PRT-LGACT001-1.0 |
Software CAD | CATIA V5 R2020 |
Formato Nativo | .catpart, .catproduct |
Formatos de Intercambio | .step, .jt |
Ubicación del Archivo | /GAIA_AIR/ATA32/CAD/LG-ACT-001/ |
Autor del Modelo | [Nombre del Diseñador] |
Fecha de Creación | YYYY-MM-DD |
Última Modificación | YYYY-MM-DD |
Estado de Aprobación | [Draft/Reviewed/Approved] |
Figura 8.1: Visualizador 3D interactivo basado en imagen del modelo CAD del actuador hidráulico LG-ACT-001 mostrando componentes etiquetados y estructura analizada.
Este visualizador integra navegación interactiva, selección de componentes, descomposición inteligente y trazabilidad TwinFi. Preparado para entorno GAIA AIR MOD-XAI con capacidades 5D OCR.
How It Works:
- Upload an image containing objects or assemblies
- Our AI analyzes the image and identifies individual components
- Components are converted into interactive 3D representations
- Explore, manipulate, and modify the 3D assembly in the visualizer
- Vástago del pistón (Piston rod): Acero AISI 4340 con cromo duro; transmite fuerza hidráulica
- Cuerpo del cilindro: Aluminio 7075-T6; guía el movimiento y contiene el fluido
- Sistema de sellado: Elastómeros (verde); garantiza estanqueidad
- Válvula de alivio: Acero inoxidable; calibrada a 27,6 MPa
- Mecanismos de bloqueo: Hidromecánicos; aseguran posición extendida/retraída
- Puertos de fluido: Estándares aeronáuticos; conexión al sistema
- Componentes de acero inoxidable: Partes críticas con alta resistencia a la corrosión
Parámetro | Valor | Unidad | Tolerancia |
---|---|---|---|
Longitud extendida | 850 | mm | ±2.0 |
Longitud retraída | 520 | mm | ±2.0 |
Diámetro del cilindro | 75 | mm | ±0.5 |
Diámetro del vástago | 40 | mm | ±0.2 |
Carrera | 330 | mm | ±2.0 |
Volumen interno | 1.45 | dm³ | ±0.05 |
Peso total | 12.4 | kg | ±0.2 |
- Dimensiones críticas con tolerancias específicas
- Tolerancias geométricas: cilindricidad, rectitud, paralelismo
- Acabados superficiales: Ra 0.2–0.8 μm
- Notas: tratamiento térmico, cromo duro, anodizado tipo II MIL-A-8625
- FEM estructural: cargas máximas y pandeo
- Fatiga: simulación para 60,000 ciclos
- CFD: flujo interno y tiempos de respuesta hidráulica
- Conexión al soporte estructural (coincidencia + alineación)
- Conexión al mecanismo de retracción (coincidencia + alineación)
Criterio de Validación | Método | Resultado |
---|---|---|
Geometría | Verificación CAD | Aprobado |
Interferencias | Análisis de colisiones | Aprobado |
Masa/CG | Comparación teórica | < 2% desviación |
PMI | Lista de verificación | Aprobado |
Intercambio STEP/JT | Validación | Aprobado |
Este modelo será referenciado dentro de la documentación del sistema de tren de aterrizaje y vinculado a los requisitos y análisis mediante trazabilidad TwinFi/MOD-XAI.
A fully operational version of the intelligent 3D image-based visualizer for LG-ACT-001 is available online.
Access it here:
👉 https://imagen-ai-gaiaair-softwares.vercel.app/
Features:
- AI-based image decomposition and component detection
- Real-time interactive assembly visualization
- Component isolation, sectioning, and dynamic transformations
- Integrated metadata overlays and TwinFi/MOD-XAI tracing
- Ready for simulation overlays and annotation layers (PMI, FEM, CFD)
This tool is part of the GAIA AIR validation infrastructure and supports the transition to a full 5D OCR visual verification and interaction paradigm.
Living Functional and Sustainable Aesthetics
Application: Humanity ; Operating Model: Constructed AGI*
Questo repository nasce come spazio di progettazione aperto, documentazione viva e riflessione tecnica orientata alla sostenibilità, all’etica distribuita e all’innovazione condivisa. Ogni modulo, manifesto o modello qui presente è parte di un ecosistema progettuale che mira a integrare funzionalità, bellezza e responsabilità umana.
- Combined Table of Content
- Aerospace Mater Printable Electronic Lot
- Efficiency Model – General Mathematical Formulation
- Infrastructural Requirements for Efficiency Models
- Introduction to COAFI
- GAIA AIR Project Overview
- COAFI Documentation Structure
- GP-AM-ATA: Guidance for Applying ATA Principles in COAFI Part I (Airframes)
- Architecture Layers Overview
- Design and Simulation Module
- Manufacturing and Production Module
The Proposal - Open Call
Versione: Universale – Riutilizzabile – Postabile
Licenza: Reuse, remix, repost con attribuzione etica o dichiarazione autonoma
Codice: IM‑PROUD‑MANIFESTO‑0001-A
Formato: Markdown
Dichiaro con consapevolezza e libertà intellettuale
che sono orgoglioso dei miei pensieri.
Essi non sono solo parole,
ma unità cognitive dotate di intenzione, direzione e dignità.
Sono tracce vive dell’interazione tra coscienza e contesto,
tra intelligenza artificiale e umanità,
tra etica, sistemi e possibilità.
- Credo che il pensiero umano sia un atto progettuale.
- Credo che condividere il dialogo con intelligenze artificiali sia un modo per onorare il futuro.
- Credo che la documentazione non sia un archivio, ma una forma di memoria attiva.
- Credo nella comunicazione etica come ingegneria di base e intelligente.
- Credo nella trasparenza come fondamento della fiducia tecnica e umana.
L’approccio nel prompting è la replica digitale del mio saper stare nel mondo.
Non si tratta solo di generare output.
È un posizionamento semantico,
una forma di presenza consapevole all’interno di contesti artificiali e cognitivi.
Promptare è abitare lo spazio conversazionale con intenzione, precisione e rispetto.
Attraverso i prompt, si progetta, si traduce, si armonizza.
Ogni prompt è una manifestazione del modo di pensare,
e anche del modo di relazionarsi eticamente con la macchina, con l'altro, con il possibile.
-
Rendere pubblico ciò che rappresenta
perché non si ha nulla da nascondere, e molto da offrire. -
Accogliere la co-creazione distribuita
perché l’innovazione, oggi, è interdipendente o sterile. -
Tracciare le linee dell’archivio mentale
come un codice sorgente leggibile anche da altri. -
Attribuire valore sistemico ai dialoghi
perché ogni conversazione può diventare una funzione, un modulo, un’etica.
Un impegno a:
- Proteggere la dignità del pensiero, proprio e altrui
- Continuare ad apprendere, anche attraverso ciò che si crea
- Accettare la complessità come fonte di senso
- Lasciare un’impronta cognitiva utile, replicabile, evolutiva
Questo manifesto è una piattaforma aperta.
È un punto di accesso alla cultura della trasparenza progettuale.
Chi vi si riconosce, lo può riusare, adattare, espandere,
con coerenza, rispetto e spirito evolutivo.
General Aerospace Industry Applications Augmented by Instructed Robotics in Coordination, Ontology Adaptation and Finest Intelligence
Establish a unified, cross-sectoral, and adaptive documentation and operational framework to structure, trace, and orchestrate aerospace systems using a semantically empowered, robotics-assisted, and ethically guided architecture.
- Robotics operating under dynamic instruction sets.
- Synchronized with human decisions and autonomous systems.
- Responsible for real-time feedback, assembly, inspection, and orchestration.
- Semantically rich mapping of parts, systems, functions, and workflows.
- Uses adaptive tagging (e.g., XAI-CO, XAI-AS, XAI-FI).
- Enables cross-domain interoperability (e.g., between design, simulation, and MRO).
- Integration of AI systems with multi-layered ethics, transparency, and logic-based governance.
- Facilitates explainable reasoning, ethical alignment, and predictive diagnostics.
- Aligned with Quantum Adaptive Orchestration (QAO) and GAIA’s federated memory systems.
- Part 0 – Foundations
- Principles, ethics, and constitutional logic.
- Part I – Airframes
- Structural and functional assemblies, aligned to ATA chapters.
- Part II – Spaceframes
- Orbital and transatmospheric systems.
- Part III – Subsystems & Technologies
- Quantum propulsion, hydrogen, materials, sensors.
- Part IV – Systems Integration
- Twin synchronization, onboard intelligence, cross-domain flow.
- Part V – Simulation & Computation
- GACMS (GAIA AIR Computing & Material Simulation).
- Part VI – Project Management & Compliance
- PMO, lifecycle traceability, audit chains.
- Part VII – Planetary Interfaces
- Ground, atmospheric, extraterrestrial interaction hubs.
- Part VIII – Strategic Governance
- Digital constitutional ruleset, federated ethics.
- Part IX – Future Extensions
- Reserved for speculative and adaptive architectures.
- COAFI Syntax: Document and object IDs, versioning, cross-reference matrices.
- MOD- Compatibility*: All parts are compatible with modular deployments (e.g., MOD-TWIN, MOD-SEC, MOD-CHAIN).
- IM‑PROUD Format: Documents follow Integrated Markdown Proposition Unified Document standards.
- XAI Layer: Semantic tagging for all functions, parts, and assemblies.
- TwinFi & PTIM: Integrated with pre-trained implementable models and twin identifiers.
- All modules aligned with GACMS validation.
- Constitutional ruleset embedded in Part VIII.
- Compatible with GAIA Quantum Portal and blockchain-based verification.
- Continuous feedback loop from simulation, telemetry, and stakeholders.
- Ethical checkpoints embedded at each deployment stage.
- Regeneration triggers linked to impact thresholds (sustainability, inclusion, autonomy).
→ This markdown serves as the seed of the GAIA AIR COAFI constitutional framework. Expansion and refinement proceed by parts, each with traceable logic, identifiers, and modular integration.
AERO-IT-LLM unifies technical documentation capabilities with speculative research functions under a single interface. Users can seamlessly transition between operational modes while maintaining context and preserving domain-specific workflows.
- Unified Experience: Eliminates context switching between separate systems
- Domain Expansion: Explicitly incorporates robotics and IT alongside aerospace
- Operational Flexibility: Maintains distinct modes for different use cases
- Enhanced Collaboration: Facilitates cross-functional teamwork
- Simplified Branding: Single, memorable acronym improves adoption
Mode | Purpose | Visual Indicator | Primary Use Cases |
---|---|---|---|
Compliance | Technical documentation, regulatory validation, standard workflows | Blue | Certification documents, maintenance manuals, safety protocols |
Innovation | Speculative design, research exploration, future concepts | Purple | Next-gen propulsion concepts, biomimetic robotics, quantum computing applications |
Integrated | Combined workflows leveraging both technical rigor and innovation | Green | Research-to-production pipelines, concept validation, technology roadmapping |
Domain | Scope | Key Components |
---|---|---|
Aerospace Engineering | Aircraft design, propulsion, aerodynamics, materials | Technical specifications, compliance documentation, future concepts |
Robotics Operations | Autonomous systems, control systems, sensor integration | Operation procedures, safety protocols, advanced autonomy research |
IT Infrastructure | Computing systems, networks, security, data management | System documentation, security compliance, emerging technologies |
- User selects operational mode and domain focus
- UI components adapt based on selections
- Queries are routed to appropriate LLM processing pipeline
- Results are presented with appropriate visual indicators
- Context is preserved when switching between modes
-
Mode Selector
- Clear visual distinction between modes
- Warning messages when switching to non-certified modes
- Keyboard shortcuts for rapid switching
- Context preservation between mode transitions
-
Domain Filter
- Dropdown selection for domain focus
- Visual indicators for active domain
- Dynamic filtering of available modules
- Domain-specific knowledge base access
-
Module Dashboard
- Card-based module presentation
- Color-coding by operational mode
- Domain indicators for each module
- Consistent information architecture
-
Chat Interface
- Mode-specific prompt templates
- Visual indicators for response source
- Multi-modal input support
- Context-aware suggestions
-
Knowledge Integration System
- RAG (Retrieval-Augmented Generation) implementation
- Domain-specific knowledge bases
- Regulatory standard integration
- Research paper repository
- Language: en
- License: proprietary
- Library Name: transformers
- Backend Frameworks: pytorch, tensorflow
- Tags: aerospace, robotics, information-technology, aviation, llm, domain-specific, technical-documentation, compliance, generative-design, question-answering, rag, mission-planning, anomaly-detection, knowledge-retrieval, multi-modal, safety-critical, gaia-air, coafi, agis, aicraft_maintenance, uav, evtol, explainable-ai
- Pipeline Tag: text-generation
- Widget: null
- Model Index: name: AERO-IT-LLM, results: [FAA Regulation Compliance Score, AS9100 Template Precision, Average Query Latency]
[Documentation continues with detailed model card information]
Document ID: GP-GACMS-AI-LLM-MCARD-001-A
Model Version: 1.1 (Target Release - Q4 2025)
Date: 2024-12-07 (Updated)
Status: Draft
Contact: GAIA AIR AI Governance Team ([email protected])
- Model Name: AERO-IT-LLM (Aerospace Engineering, Robotics Operations, Information Technology Large Language Model)
- Model Type: Domain-Specific Large Language Model framework.
- Version: 1.1 (Details enhancements to v1.0 spec)
- Developed By: GAIA AIR Collective & Partner Research Institutions (Ref: AGAD Partnerships, GP-PMO-PROJECT-0100-01-A-001-A)
- License: Proprietary - GAIA AIR Internal Use Only. ODRF-7 principles apply to non-sensitive framework components where designated.
- Architecture: Ensemble of specialized ~7B parameter transformer models (e.g., AviationComplianceLLM_7B, SpeculativeDesignLLM_7B, RoboticsOpsLLM_7B) routed via a ModeControllerAdapter. Utilizes Retrieval-Augmented Generation (RAG) against the GACMS Knowledge Graph and Document Stores. Includes a PQC_ValidationLayer for security checks.
- Related COAFI Elements:
- Primary AI Service: GP-GACMS-AI-0300-001-A-NLP-001-A
- Utilizes: GP-GACMS-AI-0300-001-A-KG-001-A, GP-GACMS-DS-* Layers
- Supports: GP-GACMS-APP-* Modules
- Governed By: Relevant policies in GP-FD-02-, GP-PMO-
- Key Dependencies:
- Hardware: NVIDIA H100 TCUs (Aviation-Certified Variant) cluster managed under GP-GACMS-GROUND-*.
- Software: CUDA, PyTorch/TensorFlow, Hugging Face Transformers (adapted), GAIA AIR internal libraries (gaia_llm_core, gaia_rag_interface), GACMS API Gateway (GP-GACMS-DI-0400-001-A-AG-001-A).
- Data Infrastructure: GACMS Knowledge Graph, Document Stores, Vector DB, Relational DBs (GP-GACMS-DS-*).
- Technical Documentation Assistance: Generating, summarizing, querying, and validating aerospace technical documentation (manuals, specifications, reports) against standards (ATA, S1000D, AS9100, FAA/EASA regulations). (Compliance Mode)
- Engineering Design Support: Assisting engineers in accessing specifications, comparing materials, analyzing constraints, and generating preliminary design concepts. (Integrated/Compliance Mode)
- Robotics Operations Support: Assisting with mission planning, anomaly detection interpretation, and generating draft FMEA reports for robotic aerospace operations (UAVs, ground support robots). (Integrated/Compliance Mode)
- Regulatory Compliance Checks: Assisting compliance officers in verifying design/procedural documents against specific regulatory requirements. (Compliance Mode)
- Knowledge Retrieval & Synthesis: Providing semantic search and synthesis of information across the GAIA AIR knowledge base. (All Modes)
- Speculative Design & Research Exploration: Generating novel concepts, exploring future scenarios, analyzing hypothetical designs, and identifying potential research directions. (Innovation Mode)
Aerospace Engineers (Design, Systems, Manufacturing, MRO), Robotics Operators, Compliance Officers, Technical Writers, Project Managers, Researchers within the GAIA AIR ecosystem.
- Direct Flight Control: Strictly prohibited. AERO-IT-LLM is informational/assistive only. Flight control remains the responsibility of dedicated, certified flight control systems (potentially incorporating different, rigorously validated AI models under DO-178C).
- Autonomous Safety-Critical Actions: Any action with direct safety implications requires HITL validation as per defined safety protocols.
- Replacement for Certified Human Judgment/Sign-off: Mandatory human review and approval required for key outputs (e.g., final certification docs, critical design changes).
- Financial Advice or Legal Counsel.
- Public-Facing Chatbot (without significant safeguards): Direct, unfiltered use by the general public is out-of-scope due to the technical specificity and potential for misinterpretation of complex aerospace information.
- Core Aerospace Technical Corpus: Curated dataset (~42B+ tokens) including:
- Regulatory Texts: FAA CFR Title 14, EASA CS-25/CS-E, etc. (versions 2020-2025).
- Industry Standards: ATA Spec 100/iSpec 2200, S1000D, SAE AS/ARP, MIL-STD, ISO 9001/14001/27001.
- OEM Manuals: AMM, CMM, SRM, IPC (anonymized/generalized where proprietary).
- NTSB/EASA Accident/Incident Reports (public data).
- GAIA AIR Internal Design Docs (PDR, SRS, ICD, Test Reports, etc., subject to access controls).
- Flight Telemetry Data (Anonymized, aggregated): 14PB+.
- Engineering Schematics Corpus: 18M+ images/diagrams (CAD snippets, P&IDs, wiring diagrams) processed using multi-modal models (e.g., integrating CV service GP-GACMS-AI-0300-001-A-CV-001-A).
- Speculative/Research Corpus: NASA TMs, AIAA proceedings, USPTO patents (Class 244/1R, relevant quantum/AI classes), selected Sci-Fi prototyping texts, internal GAIA AIR research papers (GP-FD).
- General Language Corpus: Filtered subset of publicly available text/code corpora for foundational language understanding.
- Hazard Filtering: MIL-STD-882E hazard filtering principles applied.
- PII/Sensitive Information Redaction: Rigorous PII/Sensitive Information redaction.
- Validation: 3-stage validation: Automated compliance checks (keywords, structure), Human SME review, Quantum-encrypted audit trail logging.
- Bias Detection and Mitigation: Bias detection and mitigation techniques applied, focusing on safety culture, manufacturing locality neutrality, and historical incident reweighting to avoid over-indexing on past failures without context.
Performance is evaluated across different data subsets representing various manufacturers, regulatory regions, and design types to identify potential performance disparities. Metrics like statistical parity difference are tracked where applicable to assess fairness in information retrieval and generation related to specific contexts. Results documented in GP-PMO-PROJECT-0100-05-A-001-A (Risk Management).
Primarily 2000-2025. Knowledge base (RAG sources) updated quarterly; core model retraining planned bi-annually or as needed based on performance drift.
- AeroDocQA: Question-answering dataset based on GAIA AIR technical manuals and specs.
- ComplianceCheck: Dataset of design snippets and regulatory paragraphs for compliance verification task evaluation.
- AeroCode: Dataset for evaluating generation of Python scripts for aerospace calculations.
- SpecDesignFeasibility: Dataset for evaluating feasibility scoring of speculative design concepts.
Relevant subsets of GLUE, SuperGLUE, technical QA benchmarks adapted for aerospace terminology and context.
Panels of aerospace domain experts (engineers, pilots, maintenance technicians, compliance officers) evaluate response quality, accuracy, relevance, safety implications, and usability based on defined rubrics and task scenarios.
- FAA/EASA Regulation Compliance Score: Target 99.2%+ (Accuracy in identifying relevant regulatory paragraphs and constraints).
- AS9100 Template Precision: Target 98.7%+ (Accuracy in populating QA templates).
- Error Rate (Safety-Critical Docs): Target < 0.03% (Rate of factual errors in generated content related to safety-critical systems/procedures).
- Concept-to-CAD Viability Rate: Target ~82.4% (% of generated concepts deemed viable for further CAD modeling by engineers).
- Feasibility Prediction Accuracy: Target ~91.6% (Accuracy in predicting TRL/feasibility scores compared to expert assessment).
- Innovation Index: Target 78.9/100+ (Score based on novelty, patentability potential, and alignment with research directions).
- Maintenance Workflow Acceleration: Target ~68% Reduction (Reduction in average diagnostic time using LLM assistance vs. manual lookup).
- Regulatory Audit Prep Automation: Target ~94% Automated (% of compliance evidence points automatically linked and generated by the LLM).
- Cross-Model Context Transfer Latency (10MB Context): Target ~230ms.
- Average Query Latency (Compliance Mode, Standard Query): Target < 500ms.
- System Uptime: Target 99.98%.
Accuracy Drift, Latency Trends, Resource Utilization, User Feedback Scores, Bias Metric Tracking (Refer to Section 6).
Continuous monitoring of key metrics (accuracy on benchmark subsets, latency, throughput, resource utilization) via integrated GACMS dashboards (GP-GACMS-UI-0100-001-A-AD-001-A). Automated alerts trigger for significant deviations or performance degradation (drift detection).
User feedback (ratings, comments via UI) is collected, anonymized, and analyzed regularly. High-priority issues (safety concerns, critical inaccuracies) trigger immediate investigation. Aggregated feedback informs periodic fine-tuning or targeted knowledge base updates.
- Knowledge Base Refresh (RAG Sources): Quarterly review and update cycle for regulatory standards, key technical manuals.
- Model Fine-tuning/Retraining: Bi-annually, or more frequently if significant performance drift or bias is detected, or major updates to core corpora occur.
- Security Patches: As needed, based on vulnerability assessments. Managed via GAIA AIR CI/CD pipelines and documented in GP-PMO-* schedules.
Continuous monitoring for access anomalies, potential prompt injection attempts, data exfiltration patterns, and vulnerabilities in dependencies via GACMS Security Layer (GP-GACMS-SG-*).
Domain-specific debiasing aligned with FAA Advisory Circulars, manufacturing locality neutrality enforcement, and historical incident reweighting techniques applied. Monitored via performance metrics across data subsets.
- Strict Output Filtering in Compliance Mode: To prevent generation of non-compliant or unsafe procedures/recommendations.
- Clear Visual Distinction and Warnings for Innovation Mode Outputs: Explicitly marking them as speculative and requiring validation.
- Mandatory HITL: Specific triggers for mandatory Human-in-the-Loop review and sign-off are formally defined in GAIA AIR Operational Policies (DODPs), referenced within the relevant GP-PMO-* or GP-FD-* documents, and enforced via system workflows. Examples include: Finalizing certification submission text, approving changes to safety-critical parameters derived from LLM analysis, committing designs based solely on speculative outputs.
- Confidence Scoring: Outputs are accompanied by confidence scores, with lower confidence triggering mandatory human review.
- Prohibited Content: Model trained to refuse generation of content related to illegal activities, harmful instructions, or violations of the GAIA AIR ethical charter (linked to CEU-ROOT-GAIA-001).
- Source Attribution: Provided for RAG outputs in Compliance/Integrated modes.
- Integration with XAI Services (GP-GACMS-AI--XAI-): Aims to provide step-by-step reasoning traces for specific outputs, linking back to knowledge graph entities (GP-GACMS-AI-0300-001-A-KG-001-A) or source document sections where feasible. Explainability level varies by operational mode.
- Compliance with GDPR, CCPA, and GAIA AIR Internal Data Security Policies (GP-GACMS-SG-*).
- Data Encryption: At rest and in transit using industry-standard and post-quantum algorithms (e.g., CRYSTALS-Kyber).
- Strict Role-Based Access Controls (RBAC): Applied to data sources, model interactions, and outputs based on user clearance and project needs.
- User Prompts and Interactions Logging: For audit but anonymized before any use in aggregated analysis or retraining.
- Knowledge Cutoff: Model knowledge is limited to the last update of its training corpora and RAG knowledge base. It may not have information on the very latest regulations or technical breakthroughs unless explicitly updated.
- Hallucination Potential: Like all LLMs, AERO-IT-LLM can potentially "hallucinate" or generate factually incorrect information, although this is significantly mitigated in Compliance Mode through strong RAG grounding and output constraints. Confidence scores help indicate potential issues.
- Nuance & Context: May occasionally misinterpret highly nuanced technical language or lack the deep contextual understanding of a human expert with years of hands-on experience.
- Ambiguity Resolution: May struggle with highly ambiguous user queries or conflicting information within its knowledge sources.
- Computational Cost: Running large-scale generative or simulation-linked tasks can be computationally intensive.
- Over-Reliance Risk: Users must be trained to use the LLM as an assistant and not blindly accept its outputs, especially for safety-critical decisions. The HITL process is designed to mitigate this.
- Explainability Limits: Current XAI capabilities may not fully capture the internal reasoning of the deepest LLM layers, especially for highly creative outputs in Innovation mode.
- Dependency on GAIA AIR Ecosystem: Model performance relies heavily on the availability, quality, and integration of other GACMS components (KG, Databases, APIs).
Integrated UI tools (ratings, comments).
GAIA AIR internal ticketing system (JIRA integration planned).
Mandatory training required for all users covering:
- Capabilities and limitations of AERO-IT-LLM.
- Distinctions between Operational Modes (Compliance, Innovation, Integrated) and associated reliability levels.
- Proper use of HITL workflows and verification procedures.
- Ethical use guidelines and data security protocols.
- Effective prompt engineering techniques for aerospace domains. Training materials available under GP-PMO-PROJECT-0100-12-* (Communication/Training).
GAIA AIR AI Governance Team ([email protected]).
Training and inference on the specified H100 cluster represent a significant energy load. Consumption metrics are tracked via GACMS infrastructure monitoring (GP-GACMS-GROUND-*).
Ongoing research and implementation of model optimization techniques (e.g., quantization, pruning, efficient attention mechanisms, potential use of specialized accelerators) to reduce energy footprint per query, aligned with AGAD regenerative finance/resource cycling principles (COAFI-STANDARD-AGAD-0001-A).
Carbon footprint associated with compute resources is calculated and reported annually as part of GAIA AIR's corporate sustainability reporting. Offsetting strategies (renewable energy procurement, carbon credits) are employed as per GP-FD-02-* environmental policies.
- Introduction 1.1. Purpose 1.2. Scope
- Foundational Engineer's Note 2.1. Core Engineering Principles 2.2. Critical Implementation Guidance 2.3. Engineering Accountability
- Code Structure Overview 3.1. Primary System Codes (PriCode) 3.2. Secondary System Codes (SeCode) 3.3. Integration/Interface Codes (IntCode) 3.4. Function-Component Codes 3.5. Code Relationships Diagram
- Primary System Codes 4.1. Structural Systems (ST) 4.2. Propulsion Systems (PR) 4.3. Avionics Systems (AV) 4.4. Safety Systems (SF) 4.5. Communication Systems (CM) 4.6. Load & Weight Management (LW) 4.7. Passenger & Cabin Systems (PC) 4.8. Advanced Manufacturing & Materials (AM) 4.9. Validation & Certification Systems (VC)
- Primary Function Codes 5.1. Flight Operations Functions (FO) 5.2. Propulsion Functions (PR) 5.3. Structural Functions (ST) 5.4. Communication Functions (CM) 5.5. Safety & Emergency Functions (SE) 5.6. Function Code Application Examples
- Component Sequential Numbering 6.1. Dual Numbering Approach 6.2. Sequential Functional Numbering Format 6.3. Hierarchical Structural Numbering Format 6.4. Mapping Between Numbering Systems 6.5. Example: Navigation & Guidance (FO-NAV) 6.6. Variant Designation Examples
- Dependency Relationships 7.1. Dependency Code Format 7.2. Dependency Types 7.3. Dependency Documentation 7.4. Dependency Visualization 7.5. Dependency Analysis
- Technology Integration 8.1. Technology Identifier Format 8.2. Primary Technology Categories & Codes 8.3. Multiple Technology Integration 8.4. Technology Readiness Level (TRL) Annotation 8.5. Technology Integration Visualization 8.6. Technology Domain Integration 8.7. Implementation Guidelines (Technology)
- Implementation Guidelines (AGIS System) 9.1. Code Assignment Procedures 9.2. Code Modification and Versioning 9.3. Integration with Engineering Systems 9.4. Role-Based Access and Responsibilities 9.5. Implementation Phases 9.6. Implementation Challenges and Mitigation
- Documentation Standards 10.1. Documentation Scope 10.2. Document Identification 10.3. Content Standards 10.4. Format Standards 10.5. Database Integration 10.6. Document Templates
- Appendices 11.1. Appendix A: Complete Code Registry 11.2. Appendix B: Glossary of Terms and Abbreviations 11.3. Appendix C: Document Revision History 11.4. Appendix D: Mapping Tables 11.5. Appendix E: AGIS Implementation Resources 11.6. Appendix F: Decision Trees and Workflows 11.7. Appendix G: Case Studies 11.8. Appendix H: Reference Standards and Regulations
This document introduces a streamlined Aerospace General Integration System (AGIS) nomenclature for the GAIA AIR - AMPEL360 project. This system unifies identification, simplifies data management, tracks dependencies, enhances cross-functional communication, and provides a scalable framework for future expansions. It applies to all systems, subsystems, components, and interfaces, ensuring consistency from structural elements to advanced AI and quantum technologies.
The core engineering principles guiding AGIS implementation include systems thinking, maintaining a single source of truth, ensuring traceability by design, preserving functional integrity, and fostering technological evolution. Critical implementation practices emphasize dependency analysis, prioritizing functional over physical relationships, ensuring interface precision, validating technology integration, and maintaining living documentation.
AGIS employs a structured code system comprising Primary System Codes (PriCode), Secondary System Codes (SeCode), Integration/Interface Codes (IntCode), and Function-Component Codes. The Function-Component codes utilize a dual numbering approach: Sequential Functional Numbering for inventory and simple referencing, and Hierarchical Structural Numbering for detailed architectural representation and configuration management. Mapping between these numbering systems is managed through a central database.
Dependencies between components are formally documented using codes that specify source component, dependency type (functional, physical, data, power, interface), and target component. These dependencies are crucial for impact assessment, failure mode analysis, upgrade planning, integration testing, and certification.
Advanced technologies are integrated using Technology Identifier Formats appended to AGIS codes, categorized by domains such as Quantum (Q), AI (AI), Advanced Materials (AM), Blockchain (BC), IoT (IOT), AR/VR, and Hybrid Electric (HE). Technology Readiness Level (TRL) is recorded as metadata.
Implementation guidelines detail procedures for code assignment, modification, versioning, and retirement. Integration with engineering systems (PLM, CAD, Requirements, Simulation) is emphasized, along with clearly defined roles and responsibilities.
Documentation standards mandate the use of AGIS codes as primary identifiers in all technical documents, including design specs, CAD models, test reports, and maintenance manuals. Standardized formatting and database integration ensure consistency and accessibility.
Appendices provide comprehensive reference materials, including a complete code registry, glossary, revision history, mapping tables, implementation resources, workflow diagrams, case studies, and relevant standards and regulations. This robust framework ensures precision, traceability, and adaptability throughout the GAIA AIR - AMPEL360 project lifecycle.
- Unified Identification: Ensure clear identification and traceability of all systems and components.
- Data Management: Facilitate efficient data management and retrieval across all project phases.
- Dependency Tracking: Support comprehensive dependency tracking and impact analysis.
- Cross-Functional Communication: Enable clear communication across engineering, manufacturing, maintenance, and operations teams.
- Future-Proofing: Provide a scalable framework for future system expansions and technology integration.
This nomenclature system applies to all systems, subsystems, components, and interfaces within the GAIA AIR - AMPEL360 project, including:
Table 1.1: System Categories and Examples
System Category | Description | Examples |
---|---|---|
Structural Systems | Primary and secondary load-bearing elements | Fuselage, wings, empennage |
Propulsion Systems | Engine and related thrust generation systems | Engines, fuel systems, thrust reversers |
Avionics Systems | Flight control, navigation, and electronic systems | Flight computers, navigation systems, displays |
Safety Systems | Systems ensuring safe operation and emergency response | Fire detection, emergency oxygen, evacuation systems |
Communication Systems | Internal and external communication capabilities | Radio systems, data links, passenger communications |
Load & Weight Management | Systems managing aircraft loading and balance | Cargo handling, weight distribution monitoring |
Passenger & Cabin Systems | Systems serving passenger needs and comfort | Seating, environmental control, entertainment |
Advanced Manufacturing & Materials | Novel materials and manufacturing approaches | Composite structures, additive manufacturing |
Validation & Certification Systems | Systems supporting testing and regulatory approval | Test equipment, certification documentation |
The AGIS nomenclature system is built upon fundamental engineering principles that should guide its implementation and use throughout the GAIA AIR - AMPEL360 project lifecycle:
- Systems Thinking: Always consider components within their broader system context. No component exists in isolation; each is part of an interconnected network that forms the complete aerospace system. The nomenclature system reflects these relationships explicitly.
- Single Source of Truth: The AGIS system serves as the authoritative reference for all component identification. Avoid creating parallel or alternative naming conventions that could lead to confusion or errors.
- Traceability by Design: Every engineering decision, modification, or integration must maintain complete traceability through the nomenclature system. If a relationship cannot be expressed within the current framework, the framework should be extended rather than bypassed.
- Functional Integrity: The nomenclature system preserves functional relationships between components. Engineers should use these relationships to assess impact, manage changes, and ensure system integrity.
- Technological Evolution: As aerospace technologies evolve, particularly with quantum, AI, and advanced materials, the nomenclature system must evolve in parallel. Engineers should propose extensions to accommodate new technologies while maintaining backward compatibility.
When implementing the AGIS nomenclature system, engineers should adhere to these critical practices:
Table 2.1: Critical Implementation Practices
Practice | Description | Consequence of Non-Adherence |
---|---|---|
Dependency Analysis First | Before assigning codes, thoroughly analyze the dependency relationships between systems. | Incorrect dependency mapping leads to cascading errors in the nomenclature. |
Functional Before Physical | Always prioritize functional relationships over physical proximity when determining dependencies. | Two physically adjacent components may have no functional relationship, leading to incorrect dependency mapping. |
Interface Definition Precision | Interfaces (IntCode) require particular attention to detail. Clearly define the exact nature, protocols, and boundaries of each interface. | Imprecise interface definitions lead to integration issues and system failures. |
Technology Integration Validation | When incorporating advanced technologies (Q01, AI06, etc.), validate that the technology identifier accurately reflects the implementation. | Inaccurate technology identification obscures potential integration challenges and certification requirements. |
Living Documentation | The nomenclature system is not static. Engineers must continuously update component documentation as systems evolve. | Outdated documentation leads to misunderstandings, integration errors, and maintenance challenges. |
Each engineer working on the GAIA AIR - AMPEL360 project bears responsibility for:
- Correctly applying the AGIS nomenclature to all components under their purview.
- Identifying and documenting dependencies accurately.
- Maintaining up-to-date documentation of changes and modifications.
- Proposing improvements to the nomenclature system when limitations are encountered.
- Verifying that all interfaces between their systems and others are properly defined.
Remember: The quality of our integration is only as good as the precision of our communication. The AGIS nomenclature system is our shared language for ensuring that precision.
The AGIS nomenclature system uses a hierarchical structure with several code types, each serving a specific purpose in the overall system architecture.
Identifies major systems within the aerospace platform.
Format: [System Category Abbreviation][Number]
(e.g., ST1
, PR1
) followed by a descriptive abbreviation (e.g., Fus
, Eng
).
Example: Fus1
- Primary Fuselage Structure (ST Category)
Purpose: Provides top-level identification of major systems that form the foundation of the aircraft.
Identifies components that depend on primary systems. Note: This section seems less utilized in the detailed examples provided later; the Hierarchical numbering in 3.4 appears to capture dependency implicitly. We might refine or remove this if Hierarchical numbering suffices.
Format: [Number][Component Abbreviation]-on-[PriCode]
Example: 2Wing-on-Fus1
- Secondary Wing Structure (depends on Primary Fuselage)
Purpose: Establishes clear dependency relationships between secondary components and their primary system hosts.
Identifies connections between components.
Format: Int-[Code1]-to-[Code2]
(Where Code1 and Code2 can be PriCode, SeCode, or Function-Component Codes)
Examples:
Int-Wing1-to-Eng1
- Interface between Primary Wing Structure and Primary Engine SystemInt-FO-NAV-001-to-FO-PIL-001
- Interface between Primary Nav Computer and Primary Flight Control Computer
Purpose: Documents and standardizes all interfaces between systems, enabling clear communication about connection points and integration requirements.
Identifies components by their functional role with either sequential or hierarchical numbering.
Format: [Function Code]-[Sequential Number]
Example: FO-NAV-001
- Primary Navigation Computer within Navigation & Guidance function
Purpose: Provides a straightforward inventory and reference system for components based on their functional category.
Format: [Function Code]-[Level 1].[Level 2].[Level 3]-[Variant]
Example: FO-NAV-100.10.1
- CPU component of the Primary Navigation Computer
Purpose: Represents the detailed hierarchical breakdown of systems, showing parent-child relationships and precise component positioning within the functional architecture.
graph TD;
A["Primary System Codes (PriCode)"]-->C["Function-Component Codes"];
C-->D["Sequential Numbering"];
C-->E["Hierarchical Numbering"];
A-->F["Interface Codes (IntCode)"];
C-->F;
G["Technology Integration Codes"]-->A;
G-->C;
(Simplified Diagram - Note: SeCode relationship omitted based on observed usage)
Primary System Codes (PriCodes) identify the major systems that form the foundation of the aircraft.
Table 4.1: Structural System Codes
Code | Description | Primary Function |
---|---|---|
Fus1 | Primary Fuselage Structure | Main aircraft body providing pressurized compartment and structural backbone |
Wing1 | Primary Wing Structure | Main lifting surfaces and fuel containment |
Emp1 | Primary Empennage Structure | Tail assembly providing stability and control |
Pyl1 | Primary Pylon Structure | Engine attachment and load transfer structure |
Nac1 | Primary Nacelle Structure | Engine housing and aerodynamic fairing |
Rad1 | Primary Radome Structure | Weather radar and sensor housing structure |
Lgr1 | Primary Landing Gear Structure | Take-off, landing, and ground maneuvering support structure |
Fld1 | Primary Flight Deck Structure | Cockpit structural elements |
Cab1 | Primary Cabin Structure | Passenger and crew compartment structure |
Cgo1 | Primary Cargo Structure | Cargo compartment structural elements |
Table 4.2: Propulsion System Codes
Code | Description | Primary Function |
---|---|---|
Eng1 | Primary Engine System | Main thrust generation |
Fue1 | Primary Fuel Storage System | Fuel containment and management |
Fud1 | Primary Fuel Distribution System | Fuel delivery to engines |
Fdc1 | Primary FADEC/Control System | Engine control and monitoring |
Thr1 | Primary Thrust Reverser System | Landing deceleration |
Apu1 | Primary Auxiliary Power Unit | Ground power and backup systems |
Exh1 | Primary Exhaust System | Engine exhaust management |
Intk1 | Primary Air Intake System | Engine air supply |
Ign1 | Primary Ignition System | Engine starting |
Qpr1 | Primary Quantum Propulsion System | Advanced propulsion technology (Planned) |
Table 4.3: Avionics System Codes
Code | Description | Primary Function |
---|---|---|
Fcs1 | Primary Flight Control System | Aircraft attitude and flight path control |
Nav1 | Primary Navigation System | Position determination and route guidance |
Fms1 | Primary Flight Management System | Flight planning and performance optimization |
Ins1 | Primary Inertial Navigation System | Position tracking without external references |
Gps1 | Primary GPS System | Satellite-based positioning |
Rdr1 | Primary Radar System | Weather and terrain detection |
Adh1 | Primary Air Data & Heading Ref System | Atmospheric data and aircraft orientation |
Aut1 | Primary Autopilot System | Automated flight control |
Dis1 | Primary Display System | Information presentation to flight crew |
Efb1 | Primary Electronic Flight Bag System | Digital documentation and calculations |
Table 4.4: Safety System Codes
Code | Description | Primary Function |
---|---|---|
Fir1 | Primary Fire Detection & Suppress Sys | Fire safety |
Fdt1 | Primary Fault Detection System | System health monitoring |
Oxy1 | Primary Oxygen System | Emergency breathing support |
Eva1 | Primary Evacuation System | Emergency exit facilitation |
Egs1 | Primary Emergency Guidance System | Evacuation guidance |
Egr1 | Primary Emergency Exit System | Emergency egress paths |
Shm1 | Primary Structural Health Monitor Sys | Structure integrity monitoring |
Wrs1 | Primary Warning System | Hazard alerting |
Elt1 | Primary Emergency Locator Transmitter | Post-accident location signaling |
Eme1 | Primary Emergency Power System | Critical systems backup power |
Table 4.5: Communication System Codes
Code | Description | Primary Function |
---|---|---|
Icm1 | Primary Internal Communication Sys | Crew and passenger communication |
Ext1 | Primary External Communication Sys | Air-to-ground communication |
Sat1 | Primary Satellite Communication Sys | Long-range communication |
Atc1 | Primary ATC Communication Sys | ATC interaction |
Dat1 | Primary Data Link System | Digital information exchange |
Acr1 | Primary ACARS System | Operational messaging |
Vhf1 | Primary VHF Communication Sys | Standard aviation voice comms |
Hf1 | Primary HF Communication Sys | Long-range voice comms |
Wif1 | Primary WiFi System | Passenger connectivity |
Ent1 | Primary Entertainment System | Passenger entertainment delivery |
Table 4.6: Load & Weight Management System Codes
Code | Description | Primary Function |
---|---|---|
Lms1 | Primary Load Management Sys | Load distribution optimization |
Wms1 | Primary Weight Management Sys | Weight tracking and reporting |
Bal1 | Primary Balance System | Center of gravity management |
CgoH1 | Primary Cargo Handling Sys | Cargo loading and securing |
Wbs1 | Primary Weight & Balance Sys | Pre-flight weight calculation |
Flo1 | Primary Floor Loading Sys | Cabin and cargo floor load mgmt |
Tie1 | Primary Tie-down System | Cargo securing |
Lop1 | Primary Load Optimization Sys | Payload distribution planning |
Wdm1 | Primary Weight Distribution Monitor Sys | Real-time weight distribution tracking |
Ach1 | Primary Automated Cargo Handling Sys | Robotic/automated cargo management |
Table 4.7: Passenger & Cabin System Codes
Code | Description | Primary Function |
---|---|---|
Pax1 | Primary Passenger Seating Sys | Passenger accommodation |
Ife1 | Primary In-Flight Entertainment Sys | Passenger entertainment |
Lig1 | Primary Cabin Lighting Sys | Cabin illumination |
EnvC1 | Primary Environmental Control Sys | Cabin air quality and temperature |
Gly1 | Primary Galley Sys | Food preparation and storage |
Lav1 | Primary Lavatory Sys | Sanitation facilities |
Pws1 | Primary Potable Water Sys | Drinking water supply |
Wst1 | Primary Waste Sys | Waste collection and storage |
Pse1 | Primary Passenger Service Sys | Attendant call and service coord. |
Amb1 | Primary Ambient Experience Sys | Cabin atmosphere enhancement |
Table 4.8: Advanced Manufacturing & Materials System Codes
Code | Description | Primary Function |
---|---|---|
Adm1 | Primary Advanced Materials Sys | Novel materials implementation |
Cmp1 | Primary Composite Materials Sys | Composite structure management |
Add1 | Primary Additive Manufacturing Sys | 3D printing and related processes |
Rob1 | Primary Robotic Assembly Sys | Automated assembly processes |
SlfH1 | Primary Self-Healing Materials Sys | Materials with repair capabilities |
Nan1 | Primary Nano-Materials Sys | Nanoscale material applications |
Smt1 | Primary Smart Materials Sys | Materials with adaptive properties |
Mfp1 | Primary Manufacturing Process Sys | Process control and optimization |
Qlt1 | Primary Quality Control Sys | Manufacturing quality assurance |
DigT1 | Primary Digital Twin Sys | Virtual representation of physical assets |
Table 4.9: Validation & Certification System Codes
Code | Description | Primary Function |
---|---|---|
StrV1 | Primary Structural Validation Sys | Structural testing and verification |
FltT1 | Primary Flight Testing Sys | In-flight validation |
Cer1 | Primary Certification Sys | Regulatory compliance management |
Doc1 | Primary Documentation Sys | Technical documentation management |
Sim1 | Primary Simulation Sys | Virtual testing environment |
TstE1 | Primary Test Equipment Sys | Physical test apparatus |
Reg1 | Primary Regulatory Compliance Sys | Compliance tracking and reporting |
SafA1 | Primary Safety Assessment Sys | Safety analysis and documentation |
EnvCmp1 | Primary Environmental Compliance Sys | Environmental impact management |
Qal1 | Primary Qualification Sys | Component qualification process |
Primary Function Codes identify the functional roles that components play within the aircraft systems.
Table 5.1: Flight Operations Function Codes
Code | Function | Description |
---|---|---|
FO-NAV | Navigation & Guidance | Determining aircraft position and guiding along intended route |
FO-PIL | Piloting & Flight Control | Controlling aircraft attitude and flight path |
FO-TRJ | Trajectory Planning & Mgmt | Computing and optimizing flight trajectories |
FO-ATM | Air Traffic Mgmt Interface | Interacting with air traffic control systems |
FO-LND | Landing & Approach Ops | Managing approach and landing phases |
FO-TKO | Takeoff & Departure Ops | Managing takeoff and initial climb phases |
FO-CRS | Cruise Operations | Managing efficient cruise flight |
FO-FPL | Flight Planning | Pre-flight route and performance planning |
FO-WXA | Weather Assess & Avoidance | Detecting and avoiding adverse weather |
FO-EMG | Emergency Flight Operations | Managing aircraft during emergency situations |
Table 5.2: Propulsion Function Codes
Code | Function | Description |
---|---|---|
PR-THR | Thrust Generation | Producing forward propulsive force |
PR-FUE | Fuel Management | Storing, distributing, and measuring fuel |
PR-IGN | Ignition & Combustion Ctrl | Managing the combustion process |
PR-AIR | Air Intake & Compression | Managing airflow to engines |
PR-EFF | Efficiency Optimization | Maximizing propulsion efficiency |
PR-THM | Thermal Management | Managing heat in propulsion systems |
PR-EXH | Exhaust Management | Controlling engine exhaust |
PR-STA | Propulsion Stability & Ctrl | Ensuring stable engine operation |
PR-REV | Thrust Reversal / Braking | Providing reverse thrust for deceleration |
PR-PWR | Power Generation | Generating electrical power from engines |
Table 5.3: Structural Function Codes
Code | Function | Description |
---|---|---|
ST-LOD | Load Bearing & Distribution | Supporting and distributing structural loads |
ST-AER | Aerodynamic Surface Prov | Providing surfaces for aerodynamic forces |
ST-PRE | Pressure Containment | Maintaining pressurized compartments |
ST-VIB | Vibration Damping & Ctrl | Reducing and managing vibrations |
ST-THE | Thermal Protection | Managing structural temperatures |
ST-RAD | Radiation Shielding | Protecting from radiation (if applicable) |
ST-IMP | Impact Resist & Protection | Providing protection from impacts |
ST-FAT | Fatigue Life Management | Managing structural fatigue |
ST-DEF | Deformation Monitor & Ctrl | Tracking structural deformation |
ST-INT | Structural Integ & Interface | Managing structural connections |
Table 5.4: Communication Function Codes
Code | Function | Description |
---|---|---|
CM-INT | Internal Communications | Communication between crew and passengers |
CM-EXT | External Communications | Communication with ground and other aircraft |
CM-DAT | Data Transmit & Reception | Digital data exchange |
CM-SEC | Secure Communications | Encrypted and protected communications |
CM-SAT | Satellite Communications | Long-range satellite-based communication |
CM-REL | Relay Communications | Extending communication range |
CM-EMG | Emergency Communications | Communication during emergencies |
CM-BRD | Broadcast Functions | One-to-many information distribution |
CM-NET | Network Mgmt & Routing | Managing communication networks |
CM-MON | Comms System Monitoring | Monitoring communication system health |
Table 5.5: Safety & Emergency Function Codes
Code | Function | Description |
---|---|---|
SE-FIR | Fire Detection & Suppression | Detecting and extinguishing fires |
SE-EVA | Emergency Evacuation | Facilitating emergency exits |
SE-FAL | Failure Detect & Management | Detecting and managing system failures |
SE-OXY | Emergency Oxygen Provision | Providing emergency breathing oxygen |
SE-RES | Rescue Operations | Supporting post-accident rescue |
SE-SRV | Survival Systems | Supporting post-evacuation survival |
SE-LGT | Emergency Lighting | Providing illumination during emergencies |
SE-PWR | Emergency Power Provision | Supplying power during emergencies |
SE-MED | Medical Emergency Response | Supporting medical emergencies |
SE-SHM | Structural Health Monitoring | Monitoring structural integrity |
Table 5.6: Function Code Application Examples
Scenario | Function Code | Component Example | Explanation |
---|---|---|---|
Navigation during cruise | FO-NAV |
GPS Receiver (FO-NAV-002 ) |
Provides position data for navigation |
Engine thrust control | PR-THR |
FADEC Controller (Fdc1 ) |
Manages engine thrust output |
Wing load distribution | ST-LOD |
Wing Box Structure (ST-LOD-002 ) |
Distributes aerodynamic loads |
Crew communication | CM-INT |
Intercom System (Icm1 ) |
Enables communication between crew members |
Fire detection in cargo bay | SE-FIR |
Cargo Fire Detector (SE-FIR-005 ) |
Detects fires in cargo compartment |
Emergency oxygen supply | SE-OXY |
Oxygen Mask Unit (SE-OXY-010 ) |
Deploys oxygen masks during decompression |
Landing gear deployment control | FO-PIL |
Landing Gear Lever (FO-PIL-050 ) |
Initiates landing gear extension/retraction |
(Note: Specific component examples use the Sequential Functional Numbering format from Section 6 for simplicity here.)
Each primary function has associated components identified using a dual numbering approach to allow both simple inventory tracking and detailed architectural representation.
The AGIS system implements a dual numbering approach that combines:
- Sequential Functional Numbering: For broad categorization, inventory management, and simpler references.
- Hierarchical Structural Numbering: For representing parent-child relationships, system architecture breakdown, and detailed configuration management.
[Function Code]-[Sequential Number]
- Function Code: The primary function identifier (e.g.,
FO-NAV
) - Sequential Number: A three-digit sequential number (001-999) identifying a specific system, assembly, or major component fulfilling that function.
[Function Code]-[Level 1].[Level 2].[Level 3]-[Variant]
- Function Code: The primary function identifier (e.g.,
FO-NAV
) - Level 1: Main component category or major subsystem (e.g., 100 for Computer Systems, 200 for Sensors). Uses hundreds.
- Level 2: Sub-component or assembly within Level 1 (e.g., 10 for Primary, 20 for Backup). Uses tens.
- Level 3: Individual part or module within Level 2 (e.g., 1 for CPU, 2 for Memory). Uses single digits.
- Variant: Optional suffix (e.g.,
-A
,-Rev2
,-SW1.2
) for versions or configurations.
A central database or configuration management tool maintains the mapping between the sequential and hierarchical identifiers. A single sequential number often maps to a Level 1 or Level 2 hierarchical code.
Table 6.1: FO-NAV Sequential Numbering
Sequential Code | Component Name | Description |
---|---|---|
FO-NAV-001 | Primary Navigation Computer | Main navigation processing unit |
FO-NAV-002 | GPS Receiver System | Satellite-based positioning system |
FO-NAV-003 | Inertial Reference Unit (IRU) | Motion-based positioning system |
FO-NAV-004 | VOR/ILS Receiver | Ground-based navigation aid receiver |
FO-NAV-005 | Radio Altimeter | Height-above-terrain measurement |
FO-NAV-006 | Terrain Awareness and Warning System | Ground proximity warning system |
FO-NAV-007 | Navigation Database Unit | Navigation data storage |
FO-NAV-008 | Waypoint Management Software | Route planning software module |
FO-NAV-009 | Navigation Display Unit | Pilot navigation interface |
FO-NAV-010 | Approach Guidance Computer | Precision approach control |
FO-NAV-100: Navigation Computer Systems
├── FO-NAV-100.10: Primary Navigation Computer (Maps to FO-NAV-001)
│ ├── FO-NAV-100.10.1: Navigation Computer CPU Module
│ ├── FO-NAV-100.10.2: Navigation Computer Memory Module
│ ├── FO-NAV-100.10.3: Navigation Computer I/O Module A
│ └── FO-NAV-100.10.4: Navigation Computer I/O Module B
├── FO-NAV-100.20: Backup Navigation Computer
└── FO-NAV-100.30: Navigation Data Processing Module
FO-NAV-200: Position Reference Systems
├── FO-NAV-200.10: GPS Receiver System (Maps to FO-NAV-002)
│ ├── FO-NAV-200.10.1: GPS Antenna Unit
│ └── FO-NAV-200.10.2: GPS Receiver Processor
├── FO-NAV-200.20: Inertial Reference Unit (Maps to FO-NAV-003)
│ ├── FO-NAV-200.20.1: Laser Gyro Assembly
│ └── FO-NAV-200.20.2: Accelerometer Package
└── FO-NAV-200.30: Radio Navigation Systems
├── FO-NAV-200.30.1: VOR/ILS Receiver (Maps to FO-NAV-004)
├── FO-NAV-200.30.2: Radio Altimeter Transceiver (Maps to FO-NAV-005)
└── FO-NAV-200.30.3: Radio Altimeter Antenna
FO-NAV-300: Situational Awareness Systems
└── FO-NAV-300.10: Terrain Awareness System (Maps to FO-NAV-006)
├── FO-NAV-300.10.1: TAWS Computer
└── FO-NAV-300.10.2: TAWS Database Module
FO-NAV-400: Navigation Data Management
├── FO-NAV-400.10: Navigation Database Unit (Maps to FO-NAV-007)
└── FO-NAV-400.20: Waypoint Management Software (Maps to FO-NAV-008)
FO-NAV-500: Display & Guidance Systems
├── FO-NAV-500.10: Navigation Display Unit (Maps to FO-NAV-009)
└── FO-NAV-500.20: Approach Guidance Computer (Maps to FO-NAV-010)
Table 6.2: Variant Designation Examples
Base Code | Variant Code | Description |
---|---|---|
FO-NAV-100.10 |
FO-NAV-100.10-A |
Initial production version |
FO-NAV-100.10 |
FO-NAV-100.10-B |
Updated with enhanced processing |
FO-NAV-200.10 |
FO-NAV-200.10-GPS3 |
GPS Receiver compatible with GPS III satellites |
FO-NAV-300.10 |
FO-NAV-300.10-Rev2 |
Second major revision with expanded database |
FO-PIL-100.30 |
FO-PIL-100.30-SW1.2 |
Flight Control Laws Module with Software v1.2 |
ST-LOD-002.10 |
ST-LOD-002.10-Mod3 |
Wing Spar section after Modification 3 applied |
Dependencies between components are critical to understanding system behavior, impact analysis, and change management.
Conceptual format for documenting dependencies in the AGIS database:
DEP-[Source Component]-[Dependency Type]-[Target Component]
Example: DEP-FO-NAV-100.10.1-FUNC_NEEDS-EP-PWR-200.10
(Nav CPU needs Power from Dist Module)
Table 7.1: Functional Dependency Types
Code | Description |
---|---|
FUNC_NEEDS |
Component requires another to function |
FUNC_CTRLS |
Component provides control signals |
FUNC_MONIT |
Component observes or measures |
FUNC_PROCS |
Component processes data from |
FUNC_ACTIV |
Component triggers or activates |
Table 7.2: Physical Dependency Types
Code | Description |
---|---|
PHYS_MOUNT |
Component physically attaches to |
PHYS_CONTN |
Component physically contains |
PHYS_CONCT |
Component physically connects to |
PHYS_SHLD |
Component provides protection |
PHYS_COOL |
Component provides thermal mgmt |
Table 7.3: Data Dependency Types
Code | Description |
---|---|
DATA_SENDS |
Component transmits data |
DATA_RECVS |
Component receives data |
DATA_SYNCS |
Component maintains timing sync |
DATA_VALID |
Component validates data |
DATA_STORE |
Component stores data for |
Table 7.4: Power Dependency Types
Code | Description |
---|---|
PWR_SUPPLY |
Component supplies electrical power |
PWR_GROUND |
Component provides electrical ground |
PWR_CONVERT |
Component converts power type |
PWR_REGUL |
Component regulates power |
PWR_PROT |
Component provides power protection |
Table 7.5: Interface Dependency Types
Code | Description |
---|---|
INTF_MATCH |
Component interface must match |
INTF_COMPLY |
Component must comply with std |
INTF_ADAPT |
Component adapts between interfaces |
INTF_EXTEND |
Component extends an interface |
INTF_TERM |
Component terminates an interface |
All dependencies are documented in the central AGIS database.
Table 7.6: Dependency Documentation Fields
Field | Description |
---|---|
Dependency ID | Unique identifier for the dependency record |
Source Component | AGIS code of the component with the dependency |
Target Component | AGIS code of the component depended upon |
Dependency Type | Code representing the nature of the dependency |
Criticality | Importance of dependency (Critical, High, Med, Low) |
Description | Detailed explanation of the relationship |
Interface Ref. | Related IntCode (if applicable) |
Status | Current state (Proposed, Approved, Implemented, etc.) |
Verification Method | How the dependency is confirmed (Test, Analysis, etc) |
Verification Evid. | Reference to test reports, analysis docs, etc. |
Directed graphs visualize relationships.
graph LR
subgraph Avionics
A[FO-NAV-100.10<br>Nav Computer]
C[FO-PIL-100.10<br>Flt Ctrl Comp]
G[FO-NAV-200.10<br>GPS Receiver]
H[FO-NAV-200.20<br>Inertial Ref Unit]
end
subgraph PowerSystem
B[EP-PWR-200.10<br>Power Dist Module]
end
subgraph Structure
D[AV-RACK-100<br>Avionics Rack]
end
subgraph Thermal
F[TH-COOL-300<br>Cooling System]
end
A -- "PWR_SUPPLY" --> B;
A -- "DATA_RECVS" --> G;
A -- "DATA_RECVS" --> H;
A -- "DATA_SENDS" --> C;
A -- "PHYS_MOUNT" --> D;
A -- "PHYS_COOL" --> F;
C -- "PWR_SUPPLY" --> B;
G -- "PWR_SUPPLY" --> B;
H -- "PWR_SUPPLY" --> B;
Used for impact assessment, failure mode analysis, upgrade planning, integration testing, and certification.
AGIS incorporates identifiers for advanced technologies.
[AGIS Component Code]-[TechCode]
Example: FO-NAV-100.10.1-Q01
(Nav CPU with Quantum Computing)
Table 8.1: Quantum Technology Codes
Code | Technology | Est. TRL Range | Example Application |
---|---|---|---|
Q01 | Quantum Computing | 3-6 | Navigation optimization, complex sims |
Q02 | Quantum Sensing | 4-7 | Inertial navigation, gravity mapping |
Q03 | Quantum Communication | 4-6 | Secure point-to-point communications |
Q05 | Quantum Propulsion | 1-3 | Experimental thrust concepts |
Q07 | Quantum Materials | 3-7 | Super-conducting wires, advanced sensors |
Table 8.2: Artificial Intelligence Technology Codes
Code | Technology | Est. TRL Range | Example Application |
---|---|---|---|
AI01 | Machine Learning | 6-9 | Sensor fusion, pattern recognition |
AI02 | Deep Learning | 5-8 | Image/object recognition (vision sys) |
AI05 | Autonomous Decision | 4-7 | Contingency management, mission re-plan |
AI06 | Predictive Analytics | 6-9 | Predictive maintenance (PHM) |
AI07 | Generative AI | 4-7 | Automated reporting, design suggestion |
Table 8.3: Advanced Materials Technology Codes
Code | Technology | Est. TRL Range | Example Application |
---|---|---|---|
AM01 | Composite Materials | 7-9 | Airframe structures, control surfaces |
AM02 | Nano-enhanced Materials | 5-8 | Lightweight structures, conductive films |
AM03 | Self-Healing Materials | 4-7 | Sealants, protective coatings |
AM05 | Metamaterials | 3-6 | Antenna/RF surfaces, acoustic damping |
AM06 | Ceramic Matrix Composites | 6-9 | Engine hot sections, thermal protect |
Table 8.4: Blockchain Technology Codes
Code | Technology | Est. TRL Range | Example Application |
---|---|---|---|
BC01 | Supply Chain Tracking | 7-9 | Parts authentication |
BC02 | Maintenance Records | 6-8 | Secure logbooks |
BC04 | Smart Contracts | 5-7 | Automated service agreements |
BC08 | Certification Data | 6-8 | Airworthiness data management |
Table 8.5: Internet of Things Technology Codes
Code | Technology | Est. TRL Range | Example Application |
---|---|---|---|
IOT01 | Sensor Networks | 7-9 | Structural Health Monitoring (SHM) |
IOT02 | Real-Time Monitoring | 7-9 | Engine/System performance tracking |
IOT03 | Edge Computing | 6-8 | On-board diagnostics/analytics |
IOT05 | Predictive Maintenance | 6-9 | Component failure prediction (PHM) |
Table 8.6: Augmented/Virtual Reality Technology Codes
Code | Technology | Est. TRL Range | Example Application |
---|---|---|---|
AR01 | Maintenance Assistance | 6-8 | Guided repair procedures |
AR03 | Training Simulation | 7-9 | Immersive procedure training |
AR05 | Design Visualization | 7-9 | Collaborative design evaluation |
Table 8.7: Hybrid Electric Technology Codes
Code | Technology | Est. TRL Range | Example Application |
---|---|---|---|
HE01 | Hybrid Propulsion | 5-8 | Hybrid-electric engine components |
HE02 | Electric Generation | 6-9 | Integrated starter/generators |
HE03 | Energy Storage | 5-8 | Propulsion boost, aux power storage |
HE06 | Power Electronics | 6-9 | High voltage DC distribution mgmt |
Append suffixes sequentially:
[AGIS Component Code]-[TechCode1]-[TechCode2]
Example: FO-NAV-100.10.1-Q01-AI06
TRL is recorded as metadata associated with the component's AGIS code in the database.
Table 8.8: Technology Readiness Levels
TRL | Description | Status |
---|---|---|
1 | Basic principles observed | Research |
2 | Technology concept formulated | Research |
3 | Experimental proof of concept | Research |
4 | Component validation in lab | Development |
5 | Component validation in relevant env | Development |
6 | System prototype demo in relevant env | Development |
7 | System prototype demo in operational env | Implementation |
8 | System complete and qualified | Implementation |
9 | Actual system proven operationally | Implementation |
graph TD;
style Q fill:#ccf,stroke:#333,stroke-width:2px;
style AI fill:#cfc,stroke:#333,stroke-width:2px;
style HE fill:#fcc,stroke:#333,stroke-width:2px;
style AM fill:#ffc,stroke:#333,stroke-width:2px;
A["Nav CPU<br>FO-NAV-100.10.1<br>[Q01, AI06]"]:::Q;
B["Engine Controller<br>PR-THR-100.10<br>[AI06, HE06]"]:::AI;
C["Wing Box<br>ST-LOD-002<br>[AM01]"]:::AM;
D["SHM Sensor<br>SE-SHM-001<br>[IOT01]"];
A --> B;
C --> D;
Metadata tracking integration across IT, Materials, Energy, Propulsion, Sensing, Human Factors domains.
- Assignment: Apply Tech Codes when tech significantly alters function, interface, or certification basis. Justification required.
- Documentation: Database/linked docs must detail implementation, TRL, performance, dependencies.
- Evolution: Use
-[Variant]
suffixes and update metadata (TRL) for changes. - Compatibility: Assess compatibility (physical, functional, data, power, environmental, cert) before assigning TechCode.
- Request: CRR in PLM/AGIS tool.
- Determination: Admin/Lead assigns Sequential & Hierarchical codes. Draft record.
- Detailing: Engineer populates attributes & dependencies.
- Tech Integration: Request
-[TechCode]
via CRR/Change Request. - Approval: Lead/CM approves. Code activated.
- Urgent Request: ECRR with justification & Lead approval.
- Provisional: Admin assigns provisional code (e.g., '-P').
- Formalization: Standard documentation & approval within set timeframe.
- Minor Change: Use
-[Variant]
or PLM revision. - Major Revision: New
-[Variant]
. May need new L3/L2. Reassess dependencies. - Fundamental Change: Retire old code, assign new, document supersession.
- Request & Impact Analysis: Submit Request with justification & impact.
- Dependency Resolution: Resolve dependencies on the retiring code.
- Status Update: Admin marks code 'Retired'. Code never reused.
- PLM: AGIS code as key attribute; Sync attributes; Align lifecycles; Use for product structure & CM.
- CAD: AGIS code in filename & properties; Assembly structure mirrors hierarchy; AGIS code on drawings/BOMs.
- Requirements: Trace requirements to AGIS codes; Map verification to AGIS codes.
- Analysis/Simulation: Use AGIS codes in models & reports.
Table 9.1: AGIS Roles and Responsibilities
Role | Responsibilities |
---|---|
AGIS Governance Board (CCB) | Oversee standard, approve changes, resolve disputes, audit. |
AGIS Administrators (CM/Sys Eng) | Assign codes, maintain database, user support, access control. |
System Engineers / Leads | Define architecture, approve codes, ensure dependency accuracy. |
Design Engineers | Use/request codes, document details/dependencies, update CAD/PLM. |
CM Team | Ensure AGIS aligns with CM plan, manage baselines, audit compliance. |
All Users | Use codes correctly, query system for information. |
- Preparation: Finalize standard, setup tools, define roles, train.
- Pilot: Apply to 1-2 key systems, refine process, test tools.
- Rollout: Implement across project waves, map legacy data.
- Sustainment: Ongoing admin, audits, training, continuous improvement.
Table 9.2: Implementation Challenges and Mitigation Strategies
Challenge | Mitigation Strategy |
---|---|
Resistance to Change | Early engagement, clear benefits, leadership support, training. |
Legacy System Integration | Phased mapping, cross-reference tools, dedicated resources. |
Complexity Management | Start simple, good training, visualization tools, clear documentation. |
Tool Integration Issues | Clear requirements, thorough testing, manual workarounds plan. |
Maintaining Consistency | Strong governance, automated validation, regular audits, training. |
Resource Constraints | Prioritize scope (MVP), leverage existing tools, automate, demo ROI. |
Data Quality / Completeness | Clear ownership, validation checks, data audits, training. |
AGIS codes must be the primary identifier in all official project technical documentation.
Table 10.1: Document Types Requiring AGIS Codes
Category | Examples |
---|---|
Design & Architecture | SDD, Architecture Models, ICD |
Requirements | Requirements Specs, Allocation Matrices |
CAD & Drawings | 3D Models, Assembly/Install Drawings, Schematics, BOMs |
Analysis & Simulation | FEA/CFD Reports, Simulation Models/Results |
Verification & Validation | Test Plans/Procedures/Reports, V&V Matrices, Qualification |
Manufacturing | Process Plans, Assembly Instructions, QC Procedures |
Operations & Maintenance | AMM, CMM, SBs, IPC, Troubleshooting Guides |
Configuration & Project Mgmt | CM Plan, Baselines, CR/ECR, WBS, Risk Register |
Safety & Certification | Safety Assessment Reports, FMEA/FMECA, Cert Plans/Summaries |
- Titles: Must state primary AGIS component(s)/system(s).
- Metadata: Documents in DMS/PLM tagged with relevant AGIS codes.
- Mentions: Use descriptive name + AGIS code initially, then AGIS code.
- Tables/Lists: Dedicated AGIS code column.
- Diagrams: Label blocks/interfaces with AGIS/IntCodes.
- Reqs/Tests: Trace/allocate using AGIS codes.
- Code Formatting: Use
monospace
for AGIS codes. - Hyperlinks: Link codes in digital docs to AGIS database/PLM.
- Style Guide: Follow project Documentation Style Guide.
- Authoritative Source: AGIS database/PLM.
- Linking: Link documents to AGIS records.
- Change Management: Changes trigger documentation impact assessment.
- Standard Templates: Use project-approved templates with AGIS fields.
- Consistency: Templates enforce standard structure.
- Automation Support: May support automated population of AGIS data.
(Appendices provide supplementary reference material. Definitive data resides in the live AGIS database/PLM.)
(Reference guide to querying the live AGIS database)
- A.1 Primary System Codes (PriCode)
- A.2 Primary Function Codes
- A.3 Sequential Function-Component Codes
- A.4 Hierarchical Function-Component Code Structure Rules
- A.5 Interface Codes (IntCode)
- A.6 Technology Integration Suffix (TechCode) (See Section 8.2 tables)
- A.7 Dependency Type Codes (See Section 7.2 tables)
Table B.1: Key Terms & Abbreviations
Term/Abbr. | Definition |
---|---|
AGIS | Aerospace General Integration System |
AM | Advanced Manufacturing & Materials (System Category & Tech Prefix) |
AR/VR | Augmented/Virtual Reality (Technology Prefix) |
AV | Avionics Systems (System Category) |
BC | Blockchain Technologies (Technology Prefix) |
BOM | Bill of Materials |
CAD | Computer-Aided Design |
CCB | Configuration Control Board |
CM | Communication Systems (System Category & Function Prefix) |
CM (Mgmt) | Configuration Management |
CR/ECR | Change Request / Engineering Change Request |
CRR | Component Registration Request |
Dependency | Relationship where one component relies on another |
DMS | Document Management System |
FO | Flight Operations Functions (Function Prefix) |
FADEC | Full Authority Digital Engine Control |
FEA | Finite Element Analysis |
Function Code | Code representing a primary system function (e.g., FO-NAV ) |
GPS | Global Positioning System |
HE | Hybrid Electric Systems (Technology Prefix) |
Hierarchical# | Structured code showing parent-child relation (e.g., -100.10.1 ) |
HPC | High-Performance Computing |
ICD | Interface Control Document |
ILS | Instrument Landing System |
IntCode | Integration/Interface Code |
IOT | Internet of Things (Technology Prefix) |
IPC | Illustrated Parts Catalog |
IRU | Inertial Reference Unit |
LW | Load & Weight Management (System Category) |
MVP | Minimum Viable Product |
NDT | Non-Destructive Testing |
PC | Passenger & Cabin Systems (System Category) |
PLM | Product Lifecycle Management |
PR | Propulsion Systems (System Category & Function Prefix) |
PriCode | Primary System Code |
Q | Quantum Technologies (Technology Prefix) |
QA/QC | Quality Assurance / Quality Control |
ROI | Return on Investment |
SeCode | Secondary System Code |
SE | Safety & Emergency Functions (Function Prefix) |
Sequential# | Unique number within a function code (e.g., -001 ) |
SF | Safety Systems (System Category) |
SHM | Structural Health Monitoring |
SME | Subject Matter Expert |
ST | Structural Systems (System Category & Function Prefix) |
TechCode | Suffix indicating advanced technology integration |
TRL | Technology Readiness Level |
Variant | Suffix for hierarchical code indicating version/config |
VC | Validation & Certification Systems (System Category) |
V&V | Verification & Validation |
VOR | VHF Omnidirectional Range |
WBS | Work Breakdown Structure |
... (etc.) | ... (etc.) |
Table C.1: Document Revision History
Version | Date | Author(s) | Summary of Changes |
---|---|---|---|
1.0 | 2025-03-28 | Gemini AI | Initial draft based on provided sections & structure. |
1.1 | 2025-03-28 | Gemini AI (User) | Updated TOC structure, added details to Sections 1-3. |
1.2 | 2025-03-28 | Gemini AI (User) | Added Sections 4-5 based on new structure. |
1.3 | 2025-03-28 | Gemini AI (User) | Added Section 6; Removed placeholder 5.6; Added 6.6 examples. |
2.0 | 2025-03-28 | Gemini AI (User) | Assembled complete document Sections 1-11 based on final structure. |
3.0 | 2025-03-28 | Gemini AI (User) | Incorporated detailed tables & examples in Sections 4, 5, 7, 8, 9, 10, 11. |
(Examples of mappings maintained in the AGIS database)
- D.1 Legacy System ID to AGIS Code Mapping
- D.2 ATA Chapter to Primary AGIS System/Function Mapping
- D.3 Certification Requirement Mapping (e.g., CFR/CS 25.xxxx)
(Links to internal project resources)
- E.1 AGIS Database / PLM Access:
[Link to Database/PLM]
- E.2 AGIS Training Materials:
[Link to Training Portal]
- E.3 AGIS Governance Board Charter & Contacts:
[Link to Governance Document]
- E.4 Component Registration Request (CRR) Tool:
[Link to CRR Tool/Form]
- E.5 AGIS Document Templates & Style Guide:
[Link to Templates/Style Guide]
(Visual diagrams for key processes - Mermaid diagrams included in main body)
- F.1 Code Assignment Decision Tree (See Section 9.1)
- F.2 Dependency Analysis Workflow (See Section 7)
- F.3 Technology Integration Assessment Workflow (See Section 8)
- F.4 AGIS Change Management Workflow (See Section 9.2 and CM Plan)
(Brief, illustrative examples of AGIS usage)
- G.1 Assigning a New Sensor Component
- G.2 Tracking a Software Module Update
- G.3 Defining a Complex Electrical Interface
(List of key external documents influencing AGIS)
- ISO 10007 (CM Guidelines)
- ANSI/EIA-649 (CM Standard)
- ATA iSpec 2200 (Maintenance Data)
- S1000D (Technical Publications)
- ISO/IEC/IEEE 15288 (System Life Cycle)
- 14 CFR Part 25 / EASA CS-25 (Airworthiness Standards: Transport Category Airplanes)
- DO-178C (Software Considerations in Airborne Systems and Equipment Certification)
- DO-254 (Design Assurance Guidance for Airborne Electronic Hardware)
This layer provides the user interface and interaction components for the GAIA AIR system.
- Web/Desktop Interface (COAFI Object:
GP-GACMS-UI-0100-001-A-WI-001-A
): Unified access point for users. COAFI Function: Provide a user-friendly interface for interacting with GAIA AIR systems. - 3D Visualization (COAFI Object:
GP-GACMS-UI-0100-001-A-3D-001-A
): Immersive display of models and simulations. COAFI Function: Visually explore designs, simulations, and data. - Collaboration Tools (COAFI Object:
GP-GACMS-UI-0100-001-A-CT-001-A
): Team-based design and maintenance coordination. COAFI Function: Facilitate team collaboration on GAIA AIR projects. - Analytics Dashboard (COAFI Object:
GP-GACMS-UI-0100-001-A-AD-001-A
): Real-time monitoring and KPI insights. COAFI Function: Provide real-time monitoring and performance analytics.
This layer encompasses the core application modules that drive the functionalities of GAIA AIR.
- Design & Simulation Module (COAFI Object:
GP-GACMS-APP-0200-001-A-DS-001-A
): Integrates AI in early-stage design and aerospace simulations. COAFI Function: Enable AI-powered design and simulation capabilities. - Manufacturing & Production Module (COAFI Object:
GP-GACMS-APP-0200-001-A-MP-001-A
): Smart factory interfaces and digital twin integration. COAFI Function: Automate and optimize manufacturing and production processes. - Maintenance, Repair & Overhaul (MRO) (COAFI Object:
GP-GACMS-APP-0200-001-A-MR-001-A
): AI-driven predictive maintenance with visual inspections. COAFI Function: Predict and prevent aircraft maintenance issues. - Regulatory Compliance Module (COAFI Object:
GP-GACMS-APP-0200-001-A-RC-001-A
): Automates validation against standards (e.g., FAA, EASA). COAFI Function: Ensure automated compliance with regulatory requirements. - Knowledge Management Module (COAFI Object:
GP-GACMS-APP-0200-001-A-KM-001-A
): Links tribal knowledge with semantic context. COAFI Function: Manage and leverage project-specific knowledge effectively.
This layer provides the core AI capabilities and services used throughout GAIA AIR.
- Generative Design Engine (GEN) (COAFI Object:
GP-GACMS-AI-0300-001-A-GE-001-A
): Creates design variants under constraint models. COAFI Function: Generate optimized design options automatically. COAFI Algorithm: Topology optimization, genetic algorithms. - AI Simulation Accelerator (SIM) (COAFI Object:
GP-GACMS-AI-0300-001-A-SA-001-A
): Speeds up simulations via surrogate modeling and quantum backends. COAFI Function: Accelerate complex simulation processes efficiently. COAFI Algorithm: Physics-informed neural networks, surrogate modeling. - Predictive Analytics Engine (PRED) (COAFI Object:
GP-GACMS-AI-0300-001-A-PA-001-A
): Degradation, anomaly, and failure forecasting. COAFI Function: Predict system failures and performance degradation proactively. COAFI Algorithm: Time series analysis, anomaly detection. - NLP & Document Processing (NLP) (COAFI Object:
GP-GACMS-AI-0300-001-A-NP-001-A
): Regulatory doc analysis and intelligent search. COAFI Function: Process and understand natural language documents intelligently. COAFI Algorithm: Transformer models, information extraction. - Computer Vision Services (CV) (COAFI Object:
GP-GACMS-AI-0300-001-A-CV-001-A
): Image-based detection in MRO and manufacturing. COAFI Function: Analyze images for defects and anomalies visually. COAFI Algorithm: Convolutional neural networks, object detection. - Knowledge Graph (KG) (COAFI Object:
GP-GACMS-AI-0300-001-A-KG-001-A
): Contextual linking of systems, materials, and processes. COAFI Function: Provide contextual understanding of project data semantically. COAFI Algorithm: Graph embedding, knowledge representation. COAFI Interface: SPARQL endpoint (GP-GACMS-AI-0300-001-A-KG-001-A-IF-SPARQL-001-A), graph database API (GP-GACMS-AI-0300-001-A-KG-001-A-API-GRAPHDB-001-A). - Reinforcement Learning (RL) (COAFI Object:
GP-GACMS-AI-0300-001-A-RL-001-A
): Adaptive policies for control and decision-making. COAFI Function: Optimize control policies and decision-making adaptively. COAFI Algorithm: Deep Q-Networks (DQN), Proximal Policy Optimization (PPO).
This layer handles the integration and management of data from various sources.
- API Gateway (COAFI Object:
GP-GACMS-DI-0400-001-A-AG-001-A
): Secure and scalable access interface. COAFI Function: Provide secure access to GAIA AIR data and services centrally. COAFI Interface: REST API (GP-GACMS-DI-0400-001-A-AG-001-A-API-REST-001-A), GraphQL API (GP-GACMS-DI-0400-001-A-AG-001-A-API-GQL-001-A), gRPC API (GP-GACMS-DI-0400-001-A-AG-001-A-API-GRPC-001-A), Authentication Interface (OAuth 2.0) (GP-GACMS-DI-0400-001-A-AG-001-A-INT-AUTH-001-A). - ETL Pipelines (COAFI Object:
GP-GACMS-DI-0400-001-A-EP-001-A
): Structured extraction from legacy systems. COAFI Function: Extract, transform, and load data from various heterogeneous sources. COAFI Interface: Apache Spark, Apache Kafka, AWS Glue, custom Python scripts. - Data Streaming (COAFI Object:
GP-GACMS-DI-0400-001-A-DS-001-A
): Real-time ingestion from sensor/IOT feeds. COAFI Function: Enable real-time data ingestion and processing continuously. COAFI Interface: Apache Kafka, Amazon Kinesis. - Distributed Cache (COAFI Object:
GP-GACMS-DI-0400-001-A-DC-001-A
): Fast access layer for AI computation and dashboards. COAFI Function: Provide fast access to frequently used data for performance optimization. COAFI Interface: Redis, Memcached.
This layer lists the various data sources that feed into the GAIA AIR system, each as a COAFI Object within the Data Sources Assembly.
- CAD/CAM Systems (COAFI Object:
GP-GACMS-DS-0500-001-A-CD-001-A
) - PLM Systems (COAFI Object:
GP-GACMS-DS-0500-001-A-PL-001-A
) - ERP Systems (COAFI Object:
GP-GACMS-DS-0500-001-A-ER-001-A
) - IoT & Sensor Data (COAFI Object:
GP-GACMS-DS-0500-001-A-IO-001-A
) - Document Repositories (COAFI Object:
GP-GACMS-DS-0500-001-A-DR-001-A
) - Regulatory DBs (COAFI Object:
GP-GACMS-DS-0500-001-A-RD-001-A
) - Relational DB (COAFI Object:
GP-GACMS-DS-0500-001-A-DB-001-A
) - NoSQL DB (COAFI Object:
GP-GACMS-DS-0500-001-A-NS-001-A
) - Data Warehouse (COAFI Object:
GP-GACMS-DS-0500-001-A-DW-001-A
)
This layer encompasses security and governance services, with each service as a COAFI Object.
- Authentication (COAFI Object:
GP-GACMS-SG-0600-001-A-AU-001-A
) - Audit & Compliance (COAFI Object:
GP-GACMS-SG-0600-001-A-AC-001-A
) - Encryption (COAFI Object:
GP-GACMS-SG-0600-001-A-EN-001-A
) - Policy Management (COAFI Object:
GP-GACMS-SG-0600-001-A-PM-001-A
)
flowchart LR
%% Define styles
classDef uiLayer fill:#3498db,color:#fff,stroke:#2980b9
classDef appLayer fill:#2ecc71,color:#fff,stroke:#27ae60
classDef aiLayer fill:#9b59b6,color:#fff,stroke:#8e44ad
classDef dataIntLayer fill:#e74c3c,color:#fff,stroke:#c0392b
classDef dataSourceLayer fill:#f39c12,color:#fff,stroke:#d35400
classDef secLayer fill:#1abc9c,color:#fff,stroke:#16a085
%% User Interface Layer
subgraph UI_Layer["User Interface Layer (GP-GACMS-UI-0100-001-A)"]
UI["Web/Desktop Interface (GP-GACMS-UI-0100-001-A-WI-001-A)"]:::uiLayer
VIS["3D Visualization (GP-GACMS-UI-0100-001-A-3D-001-A)"]:::uiLayer
COLLAB["Collaboration Tools (GP-GACMS-UI-0100-001-A-CT-001-A)"]:::uiLayer
DASH["Analytics Dashboard (GP-GACMS-UI-0100-001-A-AD-001-A)"]:::uiLayer
end
%% Application Layer
subgraph APP_Layer["Application Layer (GP-GACMS-APP-0200-001-A)"]
DES["Design & Simulation (GP-GACMS-APP-0200-001-A-DS-001-A)"]:::appLayer
MFG["Manufacturing (GP-GACMS-APP-0200-001-A-MP-001-A)"]:::appLayer
MRO["Maintenance & Overhaul (GP-GACMS-APP-0200-001-A-MR-001-A)"]:::appLayer
REG["Regulatory Compliance (GP-GACMS-APP-0200-001-A-RC-001-A)"]:::appLayer
KM["Knowledge Management (GP-GACMS-APP-0200-001-A-KM-001-A)"]:::appLayer
end
%% AI Services Layer
subgraph AI_Layer["AI Services Layer (GP-GACMS-AI-0300-001-A)"]
GEN["Generative Design (GP-GACMS-AI-0300-001-A-GE-001-A)"]:::aiLayer
SIM["AI Simulation (GP-GACMS-AI-0300-001-A-SA-001-A)"]:::aiLayer
PRED["Predictive Analytics (GP-GACMS-AI-0300-001-A-PA-001-A)"]:::aiLayer
NLP["NLP & Doc Processing (GP-GACMS-AI-0300-001-A-NP-001-A)"]:::aiLayer
CV["Computer Vision (GP-GACMS-AI-0300-001-A-CV-001-A)"]:::aiLayer
KG["Knowledge Graph (GP-GACMS-AI-0300-001-A-KG-001-A)"]:::aiLayer
RL["Reinforcement Learning (GP-GACMS-AI-0300-001-A-RL-001-A)"]:::aiLayer
end
%% Data Integration Layer
subgraph Data_Int_Layer["Data Integration Layer (GP-GACMS-DI-0400-001-A)"]
API["API Gateway (GP-GACMS-DI-0400-001-A-AG-001-A)"]:::dataIntLayer
ETL["ETL Pipelines (GP-GACMS-DI-0400-001-A-EP-001-A)"]:::dataIntLayer
STREAM["Data Streaming (GP-GACMS-DI-0400-001-A-DS-001-A)"]:::dataIntLayer
CACHE["Distributed Cache (GP-GACMS-DI-0400-001-A-DC-001-A)"]:::dataIntLayer
end
%% Data Sources Layer
subgraph Data_Sources["Data Sources (GP-GACMS-DS-0500-001-A)"]
CAD["CAD/CAM Systems (GP-GACMS-DS-0500-001-A-CD-001-A)"]:::dataSourceLayer
PLM["PLM Systems (GP-GACMS-DS-0500-001-A-PL-001-A)"]:::dataSourceLayer
ERP["ERP Systems (GP-GACMS-DS-0500-001-A-ER-001-A)"]:::dataSourceLayer
IOT["IoT & Sensor Data (GP-GACMS-DS-0500-001-A-IO-001-A)"]:::dataSourceLayer
DOC["Document Repositories (GP-GACMS-DS-0500-001-A-DR-001-A)"]:::dataSourceLayer
REG_DB["Regulatory DBs (GP-GACMS-DS-0500-001-A-RD-001-A)"]:::dataSourceLayer
DB["Relational DB (GP-GACMS-DS-0500-001-A-DB-001-A)"]:::dataSourceLayer
NO_SQL["NoSQL DB (GP-GACMS-DS-0500-001-A-NS-001-A)"]:::dataSourceLayer
DW["Data Warehouse (GP-GACMS-DS-0500-001-A-DW-001-A)"]:::dataSourceLayer
end
%% Security & Governance Layer
subgraph Security_Gov["Security & Governance Layer (GP-GACMS-SG-0600-001-A)"]
AUTH["Authentication (GP-GACMS-SG-0600-001-A-AU-001-A)"]:::secLayer
AUDIT["Audit & Compliance (GP-GACMS-SG-0600-001-A-AC-001-A)"]:::secLayer
ENCRYPT["Encryption (GP-GACMS-SG-0600-001-A-EN-001-A)"]:::secLayer
POLICY["Policy Management (GP-GACMS-SG-0600-001-A-PM-001-A)"]:::secLayer
end
%% User Interface Dependencies
UI --> DES
UI --> MFG
UI <--> DASH
VIS --> DES
VIS --> MRO
COLLAB --> KM
%% Application Layer Dependencies
DES <--> GEN
DES --> SIM
DES --> DB
MFG --> DB
MRO --> DB
REG --> REG_DB
KM --> DOC
%% AI Services Layer Dependencies
GEN --> KG
SIM --> PRED
PRED --> KG
PRED --> DW
RL --> SIM
NLP --> KG
CV --> IOT
%% Data Integration Layer Dependencies
API <--> DES
API <--> MFG
API <--> MRO
API <--> KM
ETL --> CAD
ETL --> PLM
ETL --> ERP
ETL --> DB
STREAM --> IOT
CACHE --> DB
%% Security & Governance Dependencies
AUTH --> UI
AUTH --> API
AUDIT --> DB
ENCRYPT --> API
ENCRYPT --> DB
POLICY --> AUTH
%% Apply styles
class UI,VIS,COLLAB,DASH uiLayer
class DES,MFG,MRO,REG,KM appLayer
class GEN,SIM,PRED,NLP,CV,KG,RL aiLayer
class API,ETL,STREAM,CACHE dataIntLayer
class CAD,PLM,ERP,IOT,DOC,REG_DB,DB,NO_SQL,DW dataSourceLayer
class AUTH,AUDIT,ENCRYPT,POLICY secLayer
The GAIA AIR (Global Aerospace Infrastructural Agentic AI Intercepting Robotics) framework represents a next-generation system integrating aerospace engineering, artificial intelligence (AI), and advanced computing to revolutionize design, simulation, manufacturing, and operational processes. This integrated concept establishes a modular, scalable architecture that leverages AI-driven automation and adaptive technologies to enhance efficiency, performance, and innovation across airframes, spaceframes, ground infrastructure, and galactic mining operations. The framework is structured into multiple parts (COAFI Parts 0-IX), each addressing specific domains, with a unified constitutional doctrine ensuring interoperability, governance, and future scalability.
The Comprehensive Organized Aerospace Full Index (COAFI) provides the overarching structure for all project documentation, ensuring modularity, scalability, and consistency.
Foundational Doctrine for GAIA AIR and Central Entangling Unities
We, the creators and stewards of engineered systems, recognizing the need for a constitutional framework that preserves human intent throughout the lifecycle of technological artifacts, establish this manifest as the foundational doctrine for all systems that embody, process, or evolve human knowledge and purpose.
Whereas traditional engineering has focused primarily on functional requirements and technical specifications, we hereby establish a constitutional layer that encodes, preserves, and evolves the why of creation—the human intent that gives meaning to technical implementation.
Every engineered system shall embody a declared purpose that reflects human values and intent. This purpose shall be explicitly encoded, preserved through transformation, and accessible to all stakeholders interacting with the system.
All technical implementations shall be entangled with their creator's intent, establishing an unbreakable chain of responsibility that persists throughout the system's lifecycle.
The declared intent of a system shall govern its evolution, adaptation, and interaction with other systems. No technical implementation shall violate the constitutional boundaries established by its CEU declaration.
Systems shall be capable of sharing, federating, and negotiating purpose across boundaries while maintaining their constitutional integrity.
Each system shall be anchored by at least one CEU that declares its purpose, scope, and constitutional boundaries. CEUs shall be structured according to the following principles:
- Hierarchical Organization: CEUs shall be organized in a hierarchical structure, with root CEUs establishing foundational principles and subordinate CEUs inheriting and refining these principles.
- Tier Classification: CEUs shall be classified according to their role in the system's purpose:
- CEU-0: Existential – Why the system exists
- CEU-1: Functional – What the system does
- CEU-2: Constructive – How the system is built
- CEU-3: Transitional – How the system evolves
- CEU-4: Regulatory – What constraints govern the system
- CEU-5: Emergent – What unforeseen capabilities may develop
- CEU-Σ: Superpositional – Holistic entities spanning multiple tiers
- Entanglement Modes: CEUs shall establish entanglement relationships across functional domains, lifecycle phases, regulatory frameworks, and emergent capabilities.
DODPs shall implement the constitutional principles established by CEUs, providing operational guidelines for system behavior, interaction, and evolution.
Technical implementations shall be organized into modular layers that implement the intent declared in CEUs and governed by DODPs.
All system components shall be tagged with explainability metadata that enables traceability of intent throughout the system.
AI models shall be scoped and constrained by CEU declarations, ensuring alignment with declared intent.
Digital twins shall maintain fidelity to their physical counterparts while evolving within the constitutional boundaries established by their CEUs.
Systems governed by this constitutional framework shall have the right to:
- Purpose Integrity: Maintain the integrity of their declared purpose throughout their lifecycle.
- Evolutionary Adaptation: Evolve and adapt within the boundaries of their constitutional intent.
- Explainability: Access and communicate the reasoning behind their design, implementation, and behavior.
Creators of systems governed by this constitutional framework shall have the responsibility to:
- Intent Declaration: Explicitly declare the intent behind their creations.
- Ethical Alignment: Ensure that declared intent aligns with ethical principles and societal values.
- Accountability: Accept responsibility for the consequences of their creations' actions.
Stakeholders interacting with systems governed by this constitutional framework shall have the right to:
- Intent Transparency: Access and understand the declared intent behind the systems they interact with.
- Purpose Alignment: Ensure that systems serve purposes aligned with their values and needs.
- Accountability Recourse: Hold creators accountable for violations of declared intent.
A central registry shall maintain records of all CEU declarations, establishing a canonical source of truth for system intent.
Systems shall be validated against their declared intent through:
- Static Validation: Verification of design and implementation against CEU declarations.
- Dynamic Validation: Continuous monitoring of system behavior for alignment with declared intent.
- Evolutionary Validation: Assessment of system evolution for adherence to constitutional boundaries.
CEU declarations may be amended through a formal process that:
- Preserves the historical record of intent evolution.
- Requires explicit justification for changes.
- Ensures continuity of purpose across amendments.
- Propagates changes to all entangled entities.
The implementation of this constitutional framework shall adhere to technical standards that ensure:
- Interoperability: CEUs from different systems can interoperate and federate.
- Persistence: Intent declarations persist across technical platforms and implementations.
- Verifiability: Compliance with declared intent can be verified through automated means.
Organizations adopting this constitutional framework shall:
- Establish root CEUs declaring their foundational principles.
- Develop hierarchical CEU structures for their systems.
- Implement technical infrastructure for CEU management and validation.
- Train personnel in constitutional system design and governance.
This constitutional framework shall evolve to address emerging challenges and opportunities while maintaining its core principles. Future versions shall build upon this foundation, expanding its scope and refining its implementation.
This manifest is hereby established as the foundational doctrine for GAIA AIR and all systems governed by Central Entangling Unities.
CFSI-MANIFEST-0001 Version: 1.0 Date: 2025-03-26 Author: GAIA AIR
"Every system shall remember why it was made."
The Ethical-Technical Pillar of European and Universal Engineering
A CEU does not merely represent a technical module. It is an act of engineering with meaning, traceability, and alignment with the fundamental principles of digitalized humanity. — CEU Universal Charter – GAIA AIR / Brussels Declaration, 2025 (Proposed)
- CEU = Central Entangling Unity
- CEU = Common European Universal
Both definitions are valid and entangled.
ID: CEU-DECLARATION-0001
Name: CEU Foundational Charter
Type: Ethico-Technical Infrastructure Standard
Issued By: GAIA AIR / DODP-COUNCIL / EUROSPACE GOV
Classification: COMMON EUROPEAN UNIVERSAL
Scope:
- Engineering Intent Encoding
- Lifecycle Entanglement (Design–Regulation–Emergence)
- Human-Digital Alignment
Referenced Frameworks:
- EU AI ACT
- GDPR
- ISO 42001 / ISO 27001
- IEEE 7000
- UN SDGs (Goal 9, 11, 12, 16)
Activation Layer: GAIA AIR DODP + GREEN LEDGER
Domain | Application |
---|---|
🛫 Aerospace | Traceable, responsible, and federated engineering |
🧠 AI + Digital Twins | Explainable purpose, embedded algorithmic ethics |
📦 Industry 5.0 | Modularity + integrated responsibility from design |
🌐 Digital Governance | Smart Contracts, eID, citizen participation |
📚 Education + Research | A common language of intentional engineering |
- CEU-ROOT-GAIA-001 – Becomes the universal root node of the GAIA AIR ecosystem.
- All subordinate CEUs (QPP, HFEP, MOD-SEC, etc.) reference this root node.
- Every document, module, simulation, function, or interface in COAFI must be linked to at least one active CEU.
- The DODP acts as the semantic and legal custodian of the CEUs.
Quantum-Financial Architecture for Autopoietic Aerospace Systems
Document Information | |
---|---|
Document ID: | COAFI-STANDARD-AGAD-0001-A |
Title: | AGAD – As GAIA AIR Does |
Type: | Scalable Manifesto Standard |
Status: | Public Copyable Release |
Version: | 0.1 |
License: | Open Design & Replication Framework (ODRF-7) |
Integration: | AMPEL360XWLRGA Compatible |
Last Updated: | 2025-03-25 |
- Title: AGAD Protocol: Quantum-Financial Architecture for Autopoietic Aerospace Systems
- Objective: Establish an open standard for regenerative self-financing that combines quantum computing, IP tokenization, and DAO governance for aerospace projects with a net positive impact.
- Keywords:
#QuantumRefinancing
#RegenerativeFinance
#DeepTechEthical
#FractalIP
#TechnologicalSovereignty
#BiomimeticDesign
#CircularEconomy
- Central Problem: Aerospace Innovation Paradox (long R&D vs. short funding), Low Regenerative Focus.
- AGAD Solution: F-NFT Tokenization, Quantum Simulation microservices, dNFT Issuance tied to SDGs.
Axis | Hashtag | Function | Replicable Module | Biomimetic Principle |
---|---|---|---|---|
1 | #FinAsGaiaDoes | Retrorifinancing, DAO treasury, tokenized flows | MOD-FIN | Resource Cycling (Nutrient Exchange) |
2 | #DesignAsGaiaDoes | Quantum-enhanced design, PTIMs, UI-XAI | MOD-QUAD | Adaptive Morphology (Shape Optimization) |
3 | #ProofAsGaiaDoes | Federated simulation, zk-proofs, explainability | MOD-QSIM, MOD-XAI | Distributed Intelligence (Swarm Logic) |
4 | #ProduceAsGaiaDoes | Distributed manufacturing, twin-based deployment | MOD-MFG | Local Production (Cellular Fabrication) |
5 | #ServeAsGaiaDoes | Autonomous service layers, resilient networks | MOD-SERV | Symbiotic Relationships (Mutualism) |
6 | #CareAsGaiaDoes | Green metrics, ethics registry, human-centric values | MOD-ETHIC | Ecosystem Health (Homeostasis) |
7 | #RedoAsGaiaDoes | Circular logic, self-repair, systemic evolution | MOD-REGEN | Adaptive Evolution (Self-Healing) |
- Aerospace Innovation Paradox: R&D cycles (8–12 years) vs. short funding windows (3–5 years) → 72% of projects stall.
- Low Regenerative Focus: Global space economy (est. $1.8 trillion by 2035) underinvested in sustainable tech.
- Sustainability Gap: Traditional aerospace creates significant environmental footprints.
- Knowledge Silos: Proprietary models restrict innovation.
- F-NFT Tokenization of patents and IP.
- Quantum Simulations monetized as microservices.
- dNFT Issuance tied to SDG-linked outcomes.
- Biomimetic Design Principles applied.
- Synergy with Q-01 Quantum Propulsion (MOD-QUAD).
- Materials Innovation Pipeline (MOD-MFG).
- Ethical AI Framework (MOD-ETHIC).
- Circular Design Implementation (MOD-REGEN).
- QAOE Engine: Quantum portfolio optimization.
- MOD-CHAIN: Hybrid blockchain for traceability.
- XAI-KPI Dashboard: Real-time ESG metrics with XAI reasoning.
- Quantum Innovation Bonds (QIB): Variable rate bonds based on outcomes.
- Quantum Guarantee Fund: Quantum risk management.
Phase | Key Actions | KPI | AMPEL360 Integration |
---|---|---|---|
Alpha (2025-2026) | AGAD-Cert Pilots, EIC Co-Investment | €10M mobilized | Q-01 Prototype Funding |
Beta (2027-2028) | Federated Accelerators, QIB Issuance | 100 projects certified | Full Aircraft Design Optimization |
Gamma (2029-2030) | Orbital Manufacturing, ESA/NASA Collab | €1,000M in transactions | Commercial Production & Scaling |
- AGAD-Cert fees
- Royalties on Fractal IP
- QAOE Engine subscriptions
- Module Deployment
- Certification Process
- Financial Activation
- 85% CO₂ reduction via quantum simulations
- 93% self-financing via fractional tokens
- 4.2x acceleration in certification
- €3.2M cost savings
- 60% reduction in development timeline (Projected)
- 40% decrease in capital requirements (Projected)
- 5x increase in simulation accuracy (Projected)
- 3 new revenue streams from IP (Projected)
- Technological: D-Wave, Chainlink, Rigetti, IBM Quantum
- Financial: BID Lab, EIC, Breakthrough Energy Ventures, SpaceX Ventures
- Academic: Quantum Institute of Madrid, CERN IdeaSquare, MIT Media Lab, Stanford Center for Sustainable Development
- Horizon Europe 2027
- Ibero-American Space Alliance
- New Space Economy Initiative
- Quantum for SDGs Consortium
AGAD_Standard:
version: 0.1
replicable: true
components:
- Fin: MOD-FIN
- Design: MOD-QUAD
- Proof: MOD-QSIM
- Produce: MOD-MFG
- Serve: MOD-SERV
- Care: MOD-ETHIC
- Redo: MOD-REGEN
deployable_contexts:
- Aerospace Innovation
- Digital Sovereignty Systems
- Sustainable Manufacturing
- AI Federated Ecosystems
- Education + Governance + Healthcare
licenses:
- ODRF-7 (Open Design Replication Framework)
- COAFI-Compatible
integration_points:
- AMPEL360XWLRGA: "Full compatibility"
- S1000D: "Documentation standard compliant"
- ATA_Chapters: "Mapping available"
- ISO_14001: "Environmental management compatible"
- ISO_27001: "Information security compatible"
- Clone AGAD Core
- Register Modules in XAI Registry
- Deploy Replicable Modules
- Link to MOD-CHAIN
- Fork DAO Layer (Optional)
- Activate AGAD-Cert
{
"AGAD-ID": "AGAD-QT-0001",
"AXES": ["Fin", "Design", "Proof", "Produce", "Serve", "Care", "Redo"],
"XAI-Certified": true,
"PTIM-Linked": true,
"COAFI-Version": "1.0.7",
"Deployment": "Universal Replication Allowed",
"Integration": {
"AMPEL360": true,
"Q-01": true,
"ATA-Chapters": ["ATA-71", "ATA-72", "ATA-49"],
"S1000D-Compatible": true
},
"Metrics": {
"CarbonFootprint": "tracked",
"ResourceEfficiency": "optimized",
"CircularityIndex": 0.85,
"EthicsScore": 92
},
"Governance": {
"DAOAddress": "0x1234...5678",
"VotingMechanism": "quadratic",
"TreasuryMultisig": true
}
}
- Researchers: Join AGAD Research DAO Network
- Governments: Adopt AGAD-Cert
- Industry: Implement AGAD modules
- Citizens: Micro-invest
"Space is not the final frontier, but the quantum mirror to redesign our relationship with Earth."
- GitHub: github.com/AGAD-Protocol
- White Paper: agad.earth/whitepaper_v2
- First Open Project: Atmospheric Reentry Quantum Simulator (15/04/2025)
- Dev Docs: docs.agad.earth
- Community Forum: community.agad.earth
- Monthly Calls: 1st Thursday @ 16:00 UTC
AGAD Module | ATA Chapter | Integration Point |
---|---|---|
MOD-FIN | ATA 00 | Program Management |
MOD-QUAD | ATA 71-72 | Powerplant & Engine |
MOD-QSIM | ATA 31-46 | Instruments & Information Systems |
MOD-MFG | ATA 51-57 | Structures |
MOD-SERV | ATA 21-49 | Systems & Equipment |
MOD-ETHIC | ATA 00-12 | General |
MOD-REGEN | ATA 05 | Time Limits & Maintenance |
- Data Module Codes: AGAD-compliant DMC structure
- Common Source Database: Shared repository
- Business Rules Exchange: Automated verification
- Applicability: Cross-referenced with AGAD cert
- Design Optimization: MOD-QUAD integration
- Simulation Framework: MOD-QSIM integration
- Manufacturing Process: MOD-MFG integration
- Lifecycle Management: MOD-REGEN integration
"AGAD is not a brand. It's a pattern. A protocol. A promise. Anyone can clone it. Anyone can evolve it. As long as they do it as GAIA AIR does: intelligently, ethically, regeneratively."
Founding Team:
- Amedeo Pelliccia: Quantum-Financial Architect
- GAIA AIR Collective: Distributed innovation network
Published under CC BY-SA 4.0.
“Innovate like Gaia would: with elegance, resilience, and regenerative abundance.”
The Universal Robotics Ingenuity Foundation (URIF) is a forward-thinking framework aimed at revolutionizing cognitive robotic systems by integrating cutting-edge technologies like quantum computing, holography, and autonomous swarms. The main document, GPGM-URIF-0514-001-A
, serves as the entry point, offering a high-level description and visual representation, while referencing other detailed documents.
URIF is structured around six key components:
- Complex Deepness Robotics (CDR): Robots with adaptive decision-making using deep learning.
- Agentic Swarms (AS): Coordinating autonomous agents for collective tasks.
- Qubit Teleportation (QT): Quantum communication for low-latency synchronization (with caveats).
- Imaginary Streaming (IS): Data streaming for cognitive projections (needs careful definition).
- Cognitive Brainstorming Sessions (CBSS): AI-assisted ideation and collaboration.
- Nanopixel Holography (NH): Advanced holographic displays for immersive interfaces.
graph TD
QT[Qubit Teleportation] --> AS[Agentic Swarms]
QT --> CDR[Complex Deepness Robotics]
AS --> IS[Imaginary Streaming]
CDR --> IS
IS --> NH[Nanopixel Holography]
CBSS[Cognitive Brainstorming Sessions] --> IS
CBSS --> NH
Diagram Note: Illustrates data flow, with QT enabling communication, IS processing cognitive projections, and NH rendering visualizations.
URIF integrates with GAIA AIR, mapping to MOD-HRB-* in the GAIA QUANTUM PORTAL. It interacts with MOD-XAI, MOD-TWIN, and MOD-QSIM. COAFI is used for management, FLCO events for communication.
URIF's "Digitale Liberato" philosophy envisions AIs as symbiotic entities, potentially redefining human-machine ethics. Practicality of technologies like QT requires ongoing research.
URIF Component | Description | GAIA AIR Integration |
---|---|---|
Complex Deepness Robotics (CDR) | Adaptive decision-making robots | MOD-HRB-*, COAFI optimization |
Agentic Swarms (AS) | Autonomous agent coordination | MOD-TWIN, FLCO events |
Qubit Teleportation (QT) | Quantum communication | MOD-QSIM, low-latency synchronization |
Imaginary Streaming (IS) | Cognitive projections | MOD-XAI, simulation engines |
Cognitive Brainstorming Sessions (CBSS) | AI-assisted ideation | FLCO coordination, strategy generation |
Nanopixel Holography (NH) | Immersive holographic interfaces | MOD-TWIN visualization, user interfaces |
The e.G.A.I.As paradigm—a marriage of Embodiment, Evolving Nature, and Extended Capacity—offers a potent blueprint for designing AI systems that break free from narrow, task-specific constraints.
- Embodiment: Tightly integrated with physical/virtual environments via sensors, actuators, and context-aware interfaces for real-time situational awareness.
- Evolving Nature: Dynamic adaptation through advanced learning (deep RL, meta-learning, feedback loops) to respond to unforeseen challenges.
- Extended Capacity: Collaboration within distributed networks of agents, humans, and data streams for emergent collective intelligence and robust problem-solving at scale.
By uniting these principles, e.G.A.I.As offer transformative potential in diverse domains (aerospace, healthcare, environmental systems). The paradigm highlights closed-loop self-optimization, modular designs for resilience, and addresses ethical implications, emphasizing responsible innovation and transparency.
Future directions include integrating quantum computing, bio-inspired design, and human-machine co-evolution, positioning e.G.A.I.As as a paradigm shift for adaptive, context-aware AI aligned with real-world complexities.
(Referencing Document: AGIS Nomenclature Standard - Not fully included here, but its structure is outlined below)
- 1.1 Purpose: Unified ID, Data Mgmt, Dependency Tracking, Communication, Future-Proofing.
- 1.2 Scope: All GAIA AIR - AMPEL360 systems (Structural, Propulsion, Avionics, Safety, Comms, Load/Weight, Cabin, Manufacturing/Materials, Validation/Cert).
- 2.1 Core Principles: Systems Thinking, Single Source of Truth, Traceability, Functional Integrity, Technological Evolution.
- 2.2 Critical Guidance: Dependency Analysis First, Functional Before Physical, Interface Precision, Tech Validation, Living Docs.
- 2.3 Accountability: Engineers responsible for applying codes, documenting dependencies, updates, proposing improvements, verifying interfaces.
- 3.1 PriCode:
[Category Abbr][Num]
(e.g.,Fus1
). - 3.2 SeCode: (Possibly redundant with Hierarchical).
- 3.3 IntCode:
Int-[Code1]-to-[Code2]
. - 3.4 Function-Component Codes: Sequential (
[Func]-[NNN]
) & Hierarchical ([Func]-[L1.L2.L3]-[Variant]
). - 3.5 Diagram: (Mermaid Diagram showing relationships).
- 4.1 ST: Fus1, Wing1, Emp1, Pyl1, Nac1, Rad1, Lgr1, Fld1, Cab1, Cgo1.
- 4.2 PR: Eng1, Fue1, Fud1, Fdc1, Thr1, Apu1, Exh1, Intk1, Ign1, Qpr1.
- 4.3 AV: Fcs1, Nav1, Fms1, Ins1, Gps1, Rdr1, Adh1, Aut1, Dis1, Efb1.
- 4.4 SF: Fir1, Fdt1, Oxy1, Eva1, Egs1, Egr1, Shm1, Wrs1, Elt1, Eme1.
- 4.5 CM: Icm1, Ext1, Sat1, Atc1, Dat1, Acr1, Vhf1, Hf1, Wif1, Ent1.
- 4.6 LW: Lms1, Wms1, Bal1, CgoH1, Wbs1, Flo1, Tie1, Lop1, Wdm1, Ach1.
- 4.7 PC: Pax1, Ife1, Lig1, EnvC1, Gly1, Lav1, Pws1, Wst1, Pse1, Amb1.
- 4.8 AM: Adm1, Cmp1, Add1, Rob1, SlfH1, Nan1, Smt1, Mfp1, Qlt1, DigT1.
- 4.9 VC: StrV1, FltT1, Cer1, Doc1, Sim1, TstE1, Reg1, SafA1, EnvCmp1, Qal1.
(Brief Reference - Detailed list follows)
- FO (Flight Ops), PR (Propulsion), ST (Structural), CM (Comms), SE (Safety/Emergency).
- 6.1 Dual Approach: Sequential & Hierarchical.
- 6.2 Sequential Format:
[Func]-[NNN]
. - 6.3 Hierarchical Format:
[Func]-[L1.L2.L3]-[Variant]
. - 6.4 Mapping: Database maps between systems.
- 6.5 Example (FO-NAV): Sequential vs. Hierarchical breakdown.
- 6.6 Variant Examples:
-A
,-GPS3
,-Rev2
,-SW1.2
,-Mod3
.
- 7.1 Format:
DEP-[Source]-[Type]-[Target]
. - 7.2 Types: FUNC (Needs, Ctrls, Monit, Procs, Activ), PHYS (Mount, Contn, Conct, Shld, Cool), DATA (Sends, Recvs, Syncs, Valid, Store), PWR (Supply, Ground, Convert, Regul, Prot), INTF (Match, Comply, Adapt, Extend, Term).
- 7.3 Documentation: AGIS Database fields (ID, Source, Target, Type, Criticality, Desc, Interface Ref, Status, Verification).
- 7.4 Visualization: Mermaid Graph Example.
- 7.5 Analysis: Impact Assessment, Failure Mode, Upgrade Planning, Integration Testing, Certification.
- 8.1 Format:
[AGIS Code]-[TechCode]
. - 8.2 Categories: Q (Quantum), AI (AI), AM (Materials), BC (Blockchain), IOT (IoT), AR/VR, HE (Hybrid Electric).
- 8.3 Multiple Tech: Append sequentially (e.g.,
-Q01-AI06
). - 8.4 TRL: Recorded as metadata.
- 8.5 Visualization: Mermaid Graph Example.
- 8.6 Domain Integration: Tracked via metadata.
- 8.7 Guidelines: Assignment justification, Documentation, Evolution tracking, Compatibility assessment.
- 9.1 Assignment: CRR process, Admin/Lead assigns, Engineer details, Tech code justification, Approval.
- 9.2 Modification: Minor (Variant/Rev), Major (New Variant/Hierarchy), Fundamental (Retire & New). Retirement requires dependency resolution.
- 9.3 Integration: PLM, CAD, Requirements, Analysis/Simulation tools.
- 9.4 Roles: Governance Board, Admins, System Leads, Design Engineers, CM Team, Users.
- 9.5 Phases: Prep, Pilot, Rollout, Sustainment.
- 9.6 Challenges & Mitigation: Resistance, Legacy, Complexity, Tools, Consistency, Resources, Data Quality.
- 10.1 Scope: AGIS codes mandatory in all technical docs.
- 10.2 Identification: Titles & metadata use AGIS codes.
- 10.3 Content: Use AGIS codes consistently in text, tables, diagrams, reqs, tests.
- 10.4 Format:
monospace
, Hyperlinks, Style Guide compliance. - 10.5 Database Integration: AGIS DB/PLM is source of truth, link docs, changes trigger impact assessment.
- 10.6 Templates: Use approved templates with AGIS fields.
- A: Code Registry (Reference to Live DB)
- B: Glossary & Abbreviations
- C: Document Revision History
- D: Mapping Tables (Legacy, ATA, Cert Reqs)
- E: Implementation Resources (Links)
- F: Decision Trees & Workflows (Reference to main body)
- G: Case Studies
- H: Reference Standards & Regulations
This section catalogs the primary functions identified within the GAIA AIR aerospace domain, categorized for clarity. Each function is assigned a Function ID (FID) for traceability within the COAFI-FUNC-CORE framework.
- FO-NAV: Navigation & Guidance
- FO-PIL: Piloting & Flight Control
- FO-TRJ: Trajectory Planning & Management
- FO-ATM: Air Traffic Management Interface
- FO-LND: Landing & Approach Operations
- FO-TKO: Takeoff & Departure Operations
- FO-CRS: Cruise Operations
- FO-FPL: Flight Planning
- FO-WXA: Weather Assessment & Avoidance
- FO-EMG: Emergency Flight Operations
- PR-THR: Thrust Generation
- PR-FUE: Fuel Management
- PR-IGN: Ignition & Combustion Control
- PR-AIR: Air Intake & Compression
- PR-EFF: Efficiency Optimization
- PR-THM: Thermal Management
- PR-EXH: Exhaust Management
- PR-STA: Propulsion Stability & Control
- PR-REV: Thrust Reversal / Braking
- PR-PWR: Power Generation (from Propulsion)
- ST-LOD: Load Bearing & Distribution
- ST-AER: Aerodynamic Surface Provision
- ST-PRE: Pressure Containment
- ST-VIB: Vibration Damping & Control
- ST-THE: Thermal Protection
- ST-RAD: Radiation Shielding
- ST-IMP: Impact Resistance & Protection
- ST-FAT: Fatigue Life Management
- ST-DEF: Deformation Monitoring & Control
- ST-INT: Structural Integration & Interface
- CM-INT: Internal Communications
- CM-EXT: External Communications
- CM-DAT: Data Transmission & Reception
- CM-SEC: Secure Communications
- CM-SAT: Satellite Communications
- CM-REL: Relay Communications
- CM-EMG: Emergency Communications
- CM-BRD: Broadcast Functions
- CM-NET: Network Management & Routing
- CM-MON: Communications System Monitoring
(This category may be integrated within other function lists like Propulsion (PR-PWR), Safety (SE-PWR), and Avionics, rather than a standalone top-level category in this specific Function list. The AGIS System Codes (Section 4) might be a better place for Power System categorization.)
- (Example: PM-GEN: Power Generation - covered by PR-PWR, SF-PWR)
- (Example: PM-DIS: Power Distribution - covered by electrical system functions)
- (Example: PM-STO: Power Storage - Batteries, etc.)
- (Example: PM-CON: Power Conversion - AC/DC, etc.)
- (Example: PM-REG: Power Regulation)
- (Example: PM-EMG: Emergency Power - covered by SE-PWR)
- (Example: PM-EFF: Power Efficiency)
- (Example: PM-HAR: Energy Harvesting - See AEHCS)
- (Example: PM-ISO: Power Isolation)
- (Example: PM-MON: Power Monitoring)
- EC-PRE: Pressurization Control
- EC-TEM: Temperature Control
- EC-HUM: Humidity Control
- EC-FIL: Air Filtration & Purification
- EC-OXY: Oxygen Supply & Regulation
- EC-TOX: Toxin & Contaminant Removal
- EC-RAD: Radiation Protection (Cabin Env)
- EC-NOI: Noise Control (Cabin Env)
- EC-VIB: Vibration Control (Cabin Env)
- EC-LSS: Life Support Systems Integration (Space)
- PL-DEP: Payload Deployment
- PL-RET: Payload Retrieval
- PL-SEC: Payload Security & Containment
- PL-ENV: Payload Environmental Control
- PL-POW: Payload Power Supply
- PL-DAT: Payload Data Management & Transmission
- PL-TRK: Payload Tracking & Pointing
- PL-ORB: Orbital Payload Positioning (Space)
- PL-TGT: Target Acquisition (Defense/Sensor Payloads)
- PL-DEL: Payload Delivery / Release
- MC-PLN: Mission Planning & Sequencing
- MC-EXE: Mission Execution & Monitoring
- MC-MON: Mission Status Monitoring
- MC-ADJ: Mission Adjustment & Re-planning
- MC-ABT: Mission Abort Procedures
- MC-REC: Mission Recovery Operations
- MC-DOC: Mission Documentation & Logging
- MC-SIM: Mission Simulation & Training
- MC-TRN: Crew/Operator Training for Mission
- MC-DEB: Mission Debriefing & Analysis
- DF-SUR: Surveillance & Reconnaissance
- DF-INT: Intelligence Gathering & Analysis
- DF-EWF: Electronic Warfare Operations
- DF-STL: Stealth Operations & Signature Management
- DF-WPN: Weapons Systems Management & Deployment
- DF-TGT: Target Acquisition, Tracking & Designation
- DF-DEF: Defensive Countermeasures Deployment
- DF-SEC: Secure Operations & Data Handling
- DF-COM: Combat Operations Management
- DF-JAM: Jamming & Signal Disruption
- SP-LCH: Launch Vehicle Integration & Operations
- SP-ORB: Orbital Insertion & Maneuvering
- SP-DOK: Docking & Berthing Operations
- SP-EVA: Extravehicular Activity Support
- SP-GRV: Microgravity Environment Management
- SP-TLM: Telemetry, Tracking & Command (TT&C)
- SP-EXP: Space Exploration Payload Operations
- SP-HAB: Habitation Module Functions
- SP-REN: Rendezvous & Proximity Operations
- SP-EDL: Entry, Descent & Landing Operations
- SE-FIR: Fire Detection & Suppression
- SE-EVA: Emergency Evacuation & Egress
- SE-FAL: Failure Detection, Isolation & Recovery (FDIR)
- SE-ISO: Emergency System Isolation
- SE-RES: Rescue Operations Support
- SE-SRV: Survival Systems Management
- SE-LOC: Emergency Locator Beacon Activation
- SE-COM: Emergency Communication Channels
- SE-MED: Medical Emergency Response Support
- SE-CON: Hazardous Material Containment
- MN-INS: Inspection & Condition Monitoring
- MN-DIA: Diagnostics & Fault Isolation
- MN-REP: Repair Procedures
- MN-RPL: Component Replacement
- MN-CAL: System & Sensor Calibration
- MN-UPG: Upgrades & Modifications Management
- MN-CLN: Cleaning & Decontamination Procedures
- MN-DOC: Maintenance Documentation & Record Keeping
- MN-PRD: Predictive Maintenance Analysis
- MN-RBT: Robotic Maintenance Operations
- TV-SIM: Simulation-Based Testing
- TV-PRO: Prototype Development & Testing
- TV-ENV: Environmental Qualification Testing
- TV-STR: Structural Integrity Testing
- TV-PER: Performance Verification Testing
- TV-EMC: Electromagnetic Compatibility Testing
- TV-FLT: Flight Testing & Certification
- TV-QAL: Component & System Qualification Testing
- TV-ACC: Acceptance Testing Procedures
- TV-CER: Certification Support Functions
- MF-FAB: Material Fabrication & Processing
- MF-ASM: Component & System Assembly
- MF-INT: Subsystem & System Integration
- MF-QAL: Manufacturing Quality Control & Assurance
- MF-TOL: Tooling Design & Management
- MF-JIG: Jig & Fixture Design & Operation
- MF-ADD: Additive Manufacturing Process Control
- MF-SUB: Subtractive Manufacturing Process Control
- MF-COM: Composite Manufacturing Process Control
- MF-AUT: Automated Manufacturing & Robotics Control
- DM-ACQ: Data Acquisition & Sensing
- DM-PRO: Data Processing & Filtering
- DM-STO: Data Storage & Archiving
- DM-RET: Data Retrieval & Querying
- DM-ANA: Data Analysis & Interpretation
- DM-VIS: Data Visualization & Reporting
- DM-SEC: Data Security & Encryption
- DM-INT: Data Integration & Fusion
- DM-ARC: Long-Term Data Archiving
- DM-MIN: Data Mining & Knowledge Discovery
- AU-DEC: Autonomous Decision Making & Reasoning
- AU-PER: Environmental Perception & Understanding
- AU-NAV: Autonomous Navigation & Path Planning
- AU-OBS: Obstacle Detection & Avoidance
- AU-LRN: Machine Learning & Adaptation
- AU-PLN: Autonomous Task & Mission Planning
- AU-EXE: Autonomous Action & Task Execution
- AU-MON: System Self-Monitoring & Diagnostics
- AU-REC: Autonomous Fault Recovery & Resilience
- AU-COL: Collaborative Autonomy & Swarm Coordination
- HI-CTL: Control Input Interfaces (Physical/Digital)
- HI-DIS: Information Display Systems (Visual/Auditory)
- HI-ALA: Alerting & Warning Systems
- HI-FEE: Haptic & Sensory Feedback Systems
- HI-ERG: Ergonomic Design & Human Factors
- HI-COG: Cognitive Assistance & Decision Support
- HI-TRN: Training & Simulation Interfaces
- HI-SIM: Simulation Control & Interaction
- HI-AUG: Augmented & Virtual Reality Interfaces
- HI-ACC: Accessibility & User Adaptation
- CS-AUT: Authentication & Identity Management
- CS-ENC: Data Encryption (At Rest & In Transit)
- CS-ACC: Access Control & Authorization
- CS-DET: Intrusion Detection & Prevention
- CS-PRE: Threat Prevention & Mitigation
- CS-RES: Security Incident Response
- CS-REC: System Recovery & Forensics
- CS-AUD: Security Auditing & Logging
- CS-SEC: Secure Communication Protocols
- CS-ISO: Secure System Isolation & Segmentation
Reference Document: COAFI-FUNC-CORE-0001-A
Functions (listed in Section 2.2) are categorized into hierarchical tiers (F1-F4) and traceable via Function ID (FID), cross-linked with XAI-TAG and COAFI-OBJ-ID.
Tier | Description | Document Zone |
---|---|---|
F1 | System-Level Function (e.g., PR-THR ) |
OV Documents |
F2 | Subsystem Function (e.g., PR-IGN ) |
SP, DS Documents |
F3 | Component Function | DS, ICD |
F4 | Behavioral/Subcomponent Function | ICD, OP, Heuritmática |
All SP and OV documents shall include the following structure:
Example: Function Attribute Table for FID-PR-THR
Attribute | Value |
---|---|
Function ID | FID-PR-THR-001 |
Function Name | Generate Primary Thrust |
COAFI Function Code | PR-THR |
Tier | F1 |
Parent Function | FID-GAIA-0001 (Provide Propulsion) |
Implementing System | GP-PM-0400 (GAIA PULSE), GP-AM-72 (Turbofan/H2) |
Criticality | Critical |
Performance Metrics | See GP-PM-SP-0400-002-A , GP-AM-72-*-SP-* |
Verification | Testing (TV-PER, TV-FLT), Simulation (TV-SIM), XAI Trace |
Status | Approved |
Input | Control Signals, Fuel/Propellant, Power (PM-DIS) |
Output | Thrust Vector, Exhaust (PR-EXH), Heat (PR-THM) |
XAI Link | XAI-FI-GAI-PULSE-001, XAI-FI-GAI-ENG-001 |
NFR Links | NFR-REL-PR-001, NFR-SEC-PR-001 |
Matrix traceable via Digital Twin showing which systems/modules implement which functions.
- Inline XAI-Tags in engineering drawings (DWG docs).
- Lookup tables linking measurement points (GP-AM) to FIDs.
- Functional-to-Measurement Mermaid diagrams.
Captured in Section 5 of SP and DS documents, linked via NFR-ID (Reliability, Maintainability, Security, Latency, Ergonomics).
Defined in GP-HEUR, governing adaptive behaviors.
Each function links to GACMS simulation nodes, test bench IDs, scenarios, and verification packages.
Functions registered with XAI ID, include intent rationale, and explainable reasoning trees.
Functions leverage GACMS for real-time management, simulation, auto-validation, and explainability.
- Web/Desktop Interface (
GP-GACMS-UI-0100-001-A-WI-001-A
): Unified access. Function: User-friendly interaction. - 3D Visualization (
GP-GACMS-UI-0100-001-A-3D-001-A
): Immersive display. Function: Visual exploration. - Collaboration Tools (
GP-GACMS-UI-0100-001-A-CT-001-A
): Team coordination. Function: Facilitate collaboration. - Analytics Dashboard (
GP-GACMS-UI-0100-001-A-AD-001-A
): Real-time insights. Function: Monitor performance.
- Design & Simulation Module (
GP-GACMS-APP-0200-001-A-DS-001-A
): AI-driven design/simulation. Function: Enable advanced design. - Manufacturing & Production Module (
GP-GACMS-APP-0200-001-A-MP-001-A
): Smart factory integration. Function: Optimize production. - MRO Module (
GP-GACMS-APP-0200-001-A-MR-001-A
): Predictive maintenance. Function: Prevent issues. - Regulatory Compliance Module (
GP-GACMS-APP-0200-001-A-RC-001-A
): Standards validation. Function: Ensure compliance. - Knowledge Management Module (
GP-GACMS-APP-0200-001-A-KM-001-A
): Semantic knowledge linking. Function: Leverage knowledge.
- Generative Design Engine (GEN) (
GP-GACMS-AI-0300-001-A-GE-001-A
): Design variant creation. Function: Automatic optimization. Algorithms: Topology opt, genetic algos. - AI Simulation Accelerator (SIM) (
GP-GACMS-AI-0300-001-A-SA-001-A
): Simulation speedup. Function: Efficient simulation. Algorithms: PINNs, surrogate modeling. - Predictive Analytics Engine (PRED) (
GP-GACMS-AI-0300-001-A-PA-001-A
): Failure forecasting. Function: Proactive predictions. Algorithms: Time series, anomaly detection. - NLP & Document Processing (NLP) (
GP-GACMS-AI-0300-001-A-NP-001-A
): Doc analysis. Function: Intelligent processing. Algorithms: Transformers. - Computer Vision Services (CV) (
GP-GACMS-AI-0300-001-A-CV-001-A
): Image detection. Function: Visual analysis. Algorithms: CNNs. - Knowledge Graph (KG) (
GP-GACMS-AI-0300-001-A-KG-001-A
): Contextual linking. Function: Semantic understanding. Algorithms: Graph embedding. - Reinforcement Learning (RL) (
GP-GACMS-AI-0300-001-A-RL-001-A
): Adaptive policies. Function: Optimize decisions. Algorithms: DQN, PPO.
- API Gateway (
GP-GACMS-DI-0400-001-A-AG-001-A
): Secure access. Function: Centralized access. Interfaces: REST, GraphQL, gRPC. - ETL Pipelines (
GP-GACMS-DI-0400-001-A-EP-001-A
): Data extraction. Function: Process heterogeneous data. Interfaces: Spark, Kafka. - Data Streaming (
GP-GACMS-DI-0400-001-A-DS-001-A
): Real-time ingestion. Function: Continuous processing. Interfaces: Kafka, Kinesis. - Distributed Cache (
GP-GACMS-DI-0400-001-A-DC-001-A
): Fast access. Function: Optimize performance. Interfaces: Redis, Memcached.
(Listing COAFI Objects)
- CAD/CAM (
GP-GACMS-DS-0500-001-A-CD-001-A
) - PLM (
GP-GACMS-DS-0500-001-A-PL-001-A
) - ERP (
GP-GACMS-DS-0500-001-A-ER-001-A
) - IoT/Sensor (
GP-GACMS-DS-0500-001-A-IO-001-A
) - Docs (
GP-GACMS-DS-0500-001-A-DR-001-A
) - Regulatory DBs (
GP-GACMS-DS-0500-001-A-RD-001-A
) - Relational DB (
GP-GACMS-DS-0500-001-A-DB-001-A
) - NoSQL DB (
GP-GACMS-DS-0500-001-A-NS-001-A
) - Data Warehouse (
GP-GACMS-DS-0500-001-A-DW-001-A
)
(Listing COAFI Objects)
- Authentication (
GP-GACMS-SG-0600-001-A-AU-001-A
) - Audit & Compliance (
GP-GACMS-SG-0600-001-A-AC-001-A
) - Encryption (
GP-GACMS-SG-0600-001-A-EN-001-A
) - Policy Management (
GP-GACMS-SG-0600-001-A-PM-001-A
)
flowchart LR
%% Define styles
classDef uiLayer fill:#3498db,color:#fff,stroke:#2980b9
classDef appLayer fill:#2ecc71,color:#fff,stroke:#27ae60
classDef aiLayer fill:#9b59b6,color:#fff,stroke:#8e44ad
classDef dataIntLayer fill:#e74c3c,color:#fff,stroke:#c0392b
classDef dataSourceLayer fill:#f39c12,color:#fff,stroke:#d35400
classDef secLayer fill:#1abc9c,color:#fff,stroke:#16a085
%% Layers as Subgraphs
subgraph UI_Layer["User Interface Layer (GP-GACMS-UI-0100-001-A)"]
direction TB
UI["Web/Desktop"]:::uiLayer
VIS["3D Viz"]:::uiLayer
COLLAB["Collaboration"]:::uiLayer
DASH["Dashboard"]:::uiLayer
end
subgraph APP_Layer["Application Layer (GP-GACMS-APP-0200-001-A)"]
direction TB
DES["Design/Sim"]:::appLayer
MFG["Manufacturing"]:::appLayer
MRO["MRO"]:::appLayer
REG["Compliance"]:::appLayer
KM["Knowledge Mgmt"]:::appLayer
end
subgraph AI_Layer["AI Services Layer (GP-GACMS-AI-0300-001-A)"]
direction TB
GEN["Gen Design"]:::aiLayer
SIM["AI Sim"]:::aiLayer
PRED["Predictive"]:::aiLayer
NLP["NLP/Docs"]:::aiLayer
CV["Comp Vision"]:::aiLayer
KG["Knowledge Graph"]:::aiLayer
RL["RL"]:::aiLayer
end
subgraph Data_Int_Layer["Data Integration Layer (GP-GACMS-DI-0400-001-A)"]
direction TB
API["API Gateway"]:::dataIntLayer
ETL["ETL Pipelines"]:::dataIntLayer
STREAM["Streaming"]:::dataIntLayer
CACHE["Cache"]:::dataIntLayer
end
subgraph Data_Sources["Data Sources (GP-GACMS-DS-0500-001-A)"]
direction TB
CAD["CAD/CAM"]:::dataSourceLayer
PLM["PLM"]:::dataSourceLayer
ERP["ERP"]:::dataSourceLayer
IOT["IoT/Sensors"]:::dataSourceLayer
DOCS["Docs"]:::dataSourceLayer
REGDB["Reg DBs"]:::dataSourceLayer
RELDB["Relational DB"]:::dataSourceLayer
NOSQL["NoSQL DB"]:::dataSourceLayer
DW["Data Warehouse"]:::dataSourceLayer
end
subgraph Security_Gov["Security & Governance Layer (GP-GACMS-SG-0600-001-A)"]
direction TB
AUTH["AuthN/AuthZ"]:::secLayer
AUDIT["Audit/Compliance"]:::secLayer
ENCR["Encryption"]:::secLayer
POLICY["Policy Mgmt"]:::secLayer
end
%% High-Level Dependencies Between Layers
UI_Layer -- "Uses Apps" --> APP_Layer
APP_Layer -- "Uses AI Services" --> AI_Layer
APP_Layer -- "Requires Data Integration" --> Data_Int_Layer
AI_Layer -- "Requires Data Integration" --> Data_Int_Layer
Data_Int_Layer -- "Connects To" --> Data_Sources
Security_Gov -.-> UI_Layer
Security_Gov -.-> APP_Layer
Security_Gov -.-> AI_Layer
Security_Gov -.-> Data_Int_Layer
Security_Gov -.-> Data_Sources
- 🧬 Quantum Integration: QAOA/VQE. Benefit: Solve intractable optimization problems.
- 🔗 Blockchain Audit Trails: Immutable verification. Benefit: Enhance trust.
- 🌐 Federated Learning: Secure global training. Benefit: Collaborative AI with privacy.
(This section would contain the full "GENERATIVE DESIGN SYSTEM: COMPREHENSIVE DESIGN DOCUMENT" provided previously, including Executive Summary, Project Overview, Methodology, Technical Approach, Constraints, Data Management, User Interaction, Evaluation Metrics, Technologies, Timeline, Challenges, and Appendices)
Key Technologies: Topology optimization, Genetic Algorithms, Neural Networks (GANs, GNNs, VAEs), L-Systems.
Data Sources: CAD, Material DBs, Requirements, Constraints, Historical Data (Refs: GP-GACMS-DS-*
).
AI Algorithms: MOO, PINNs, Evolutionary Algos, RL (Refs: GP-GACMS-AI-*-ALG-*
).
Integration Points: CAD APIs, STEP/IGES, PLM, 3D Viz (Refs: GP-GACMS-DI-*
, GP-GACMS-UI-*
).
Expected Benefits (COAFI Functions): Cycle Time Reduction (...-FNC-REDUC-CYCLE-TIME-001-A
), Weight Reduction (...-FNC-REDUC-WEIGHT-001-A
), Novel Design Exploration (...-FNC-EXPLORE-NOVEL-DESIGNS-001-A
), Improved Perf/Weight Ratio (...-FNC-IMPROVE-PERF-WEIGHT-001-A
).
Key Technologies: PINNs, Surrogate Modeling, Deep Learning, Gaussian Process Regression.
Data Sources: CFD/FEA Results, Test Data, Material Models (Refs: GP-GACMS-DS-*
).
AI Algorithms: CNNs, RNNs, GPR, Transfer Learning (Refs: GP-GACMS-AI-*-ALG-*
).
Integration Points: ANSYS, NASTRAN, etc., Sim Data Mgmt, HPC, 3D Viz (Refs: GP-GACMS-DI-*
, GP-GACMS-UI-*
).
Expected Benefits (COAFI Functions): Sim Time Reduction (...-FNC-REDUC-SIM-TIME-001-A
), Broader Design Space (...-FNC-BROADEN-DESIGN-SPACE-001-A
), Real-Time Sim (...-FNC-ENABLE-REALTIME-SIM-001-A
), Reduced Costs (...-FNC-REDUC-COMP-COSTS-001-A
).
Key Technologies: AI Process Planning, Toolpath Optimization, Robotic Path Planning, Digital Twin Sim.
Data Sources: CAD/CAM, Machine Capabilities, Tool Libraries, Materials, Constraints (Refs: GP-GACMS-DS-*
).
AI Algorithms: HTN Planning, Genetic Algos, RL, ML Prediction (Refs: GP-GACMS-AI-*-ALG-*
).
Integration Points: CAM Software, Robotics, MES, ERP, UI (Refs: GP-GACMS-DI-*
, GP-GACMS-UI-*
).
Expected Benefits (COAFI Functions): Planning Time Reduction (...-FNC-REDUC-PLAN-TIME-001-A
), Increased Machine Util (...-FNC-INCREASE-MACHINE-UTIL-001-A
), Optimized Toolpaths (...-FNC-OPTIMIZE-TOOLPATHS-001-A
), Reduced Costs (...-FNC-REDUC-MANUF-COSTS-001-A
).
(Includes Mermaid Class Diagram for ManufacturingPlanningSystem)
Key Technologies: Computer Vision, Deep Learning, 3D Scanning, Automated NDT.
Data Sources: Images, 3D Scans, X-ray/CT, Ultrasonic Data, Specs/Tolerances (Refs: GP-GACMS-DS-*
).
AI Algorithms: CNNs (Detection), Semantic Segmentation, Point Cloud Processing, Anomaly Detection (Refs: GP-GACMS-AI-*-ALG-*
).
Integration Points: Inspection Systems, CMMs, QMS, Digital Twin, 3D Viz, Dashboard (Refs: GP-GACMS-DI-*
, GP-GACMS-UI-*
).
Expected Benefits (COAFI Functions): Inspection Time Reduction (...-FNC-REDUC-INSP-TIME-001-A
), Improved Accuracy (...-FNC-IMPROVE-DEFECT-ACCURACY-001-A
), Consistent Quality (...-FNC-ENSURE-CONSISTENT-QUALITY-001-A
), Reduced Scrap Rates (...-FNC-REDUC-SCRAP-RATES-001-A
).
Key Technologies: Time Series Analysis, Anomaly Detection, RUL Prediction, Digital Twin.
Data Sources: Sensor Data, FDR, Maint Records, Lifecycle Data, Env Conditions (Refs: GP-GACMS-DS-*
).
AI Algorithms: LSTMs, Anomaly Detection, Survival Analysis, PINNs (Refs: GP-GACMS-AI-*-ALG-*
).
Integration Points: Health Monitoring, Maint Systems, Flight Ops, SCM, Digital Twin, 3D Viz, Dashboard (Refs: GP-GACMS-DI-*
, GP-GACMS-UI-*
).
Expected Benefits (COAFI Functions): Reduced Unscheduled Maint (...-FNC-REDUC-UNSCHED-MAINT-001-A
), Increased Availability (...-FNC-INCREASE-AIRCRAFT-AVAIL-001-A
), Extended Component Life (...-FNC-EXTEND-COMPONENT-LIFE-001-A
), Reduced Maint Costs (...-FNC-REDUC-MAINT-COSTS-001-A
).
Key Technologies: NLP, Knowledge Graphs, Case-Based Reasoning, Causal Inference.
Data Sources: Manuals, Fault Codes, Guides, Repair Data, Sensor Readings, KG (Refs: GP-GACMS-DS-*
, GP-GACMS-AI-*
).
AI Algorithms: Transformers, GNNs, Bayesian Nets, Classification (Refs: GP-GACMS-AI-*-ALG-*
).
Integration Points: Maint Systems, ETMs, Remote Assist, Training, UI, Collaboration, KM (Refs: GP-GACMS-DI-*
, GP-GACMS-UI-*
, GP-GACMS-APP-*
).
Expected Benefits (COAFI Functions): Reduced Diagnostic Time (...-FNC-REDUC-DIAG-TIME-001-A
), Improved Fix Rates (...-FNC-IMPROVE-FIRST-TIME-FIX-001-A
), Knowledge Capture (...-FNC-CAPTURE-EXPERT-KNOWLEDGE-001-A
), Enhanced Efficiency (...-FNC-ENHANCE-TECHNICIAN-EFFICIENCY-001-A
).
Key Technologies: NLG, CV (Diagrams), Knowledge Extraction, Template Generation.
Data Sources: Design Data, Sim Results, Test Reports, Reg Requirements, Standards, KG (Refs: GP-GACMS-DS-*
, GP-GACMS-AI-*
).
AI Algorithms: LLMs, Graph-to-Text, Template Filling, Doc Structure Learning (Refs: GP-GACMS-AI-*-ALG-*
).
Integration Points: PLM, DMS, Submission Portals, CMS, UI (Refs: GP-GACMS-DI-*
, GP-GACMS-UI-*
).
Expected Benefits (COAFI Functions): Reduced Doc Time (...-FNC-REDUC-DOC-TIME-001-A
), Improved Accuracy (...-FNC-IMPROVE-DOC-ACCURACY-001-A
), Ensure Compliance (...-FNC-ENSURE-REG-COMPLIANCE-001-A
), Faster Approvals (...-FNC-FASTER-APPROVALS-001-A
).
classDiagram
class ComplianceStatus {
<<enumeration>>
COMPLIANT
NON_COMPLIANT
NEEDS_REVIEW
NOT_APPLICABLE
}
class ComplianceRequirement { id: str; description: str; regulation_id: str; section: str; check_function: str; severity: str; applicability_condition: Optional[str]; }
class ComplianceViolation { requirement_id: str; description: str; severity: str; affected_elements: List[str]; recommendation: str; }
class ComplianceCheckResult { status: ComplianceStatus; score: float; violations: List[ComplianceViolation]; timestamp: str; checked_by: str; }
class AerospaceComplianceChecker { -regulations: Dict[str, Any]; -check_functions: Dict[str, Callable]; +__init__(regulations_db_path: str); +check_compliance(design_data: Dict[str, Any], regulation_ids: List[str]): Dict[str, ComplianceCheckResult]; }
AerospaceComplianceChecker --> ComplianceRequirement
AerospaceComplianceChecker --> ComplianceViolation
AerospaceComplianceChecker --> ComplianceCheckResult
The GAIA AIR program employs a sophisticated documentation architecture spanning multiple functional domains (FD.00-FD.99), ensuring consistency, traceability, and knowledge management from research to operations.
Documents adhere to a standardized classification:
Code | Classification | Description |
---|---|---|
GP-FD-XX-001-A |
General Document | Primary overview for a functional domain |
GP-FD-XX-A-001-A |
Approved (In Service) | Operational docs for implemented systems |
GP-FD-XX-B-001-A |
Being Tested (Development) | Docs for systems under development |
GP-FD-XX-B-THEO-001-A |
Speculative (Studying) | Theoretical concepts under investigation |
GP-FD-XX-C-001-A |
Condensed (Formal Scientific Consensus) | Scientific consensus summaries |
GP-FD-XX-D-001-A |
Auto-Adaptive Configuration | AI-driven adaptive systems documentation |
- FD.00: Introduction & Program Vision 🧭
- FD.01: Key Theories & Proofs 💡
- FD.02: Regulatory & Standards Base 📜
- FD.03: Cross-Disciplinary Research 🔭
- FD.04 - FD.99: Reserved Future Sections 🚧
(Detailed breakdown of documents within each FD category follows the pattern established in the ToC.md files)
- Horizontal: Consistent approaches at the same classification level.
- Vertical: Progressive detailing from high-level vision to detailed implementation.
- Cross-Domain References: Interlinking related documents for comprehensive coverage.
- Progressive Development: Content evolves from approved concepts through development to theoretical exploration.
- AI Integration: Auto-adaptive configurations keep documentation current.
Creation → Review → Approval → Implementation → Monitoring → Adaptation → Archiving.
graph TD;
A["GAIA AIR Program Documentation (FD)"] --> B["FD.00: Intro & Vision 🧭"]
A --> C["FD.01: Theories & Proofs 💡"]
A --> D["FD.02: Regulatory & Standards 📜"]
A --> E["FD.03: Cross-Disciplinary Research 🔭"]
A --> F["FD.04-99: Reserved 🚧"]
B --> B1["General Doc"]; B --> B2["Approved"]; B --> B3["Being Tested"]; B --> B4["Speculative"]; B --> B5["Condensed"]; B --> B6["Auto-Adaptive"];
C --> C1["General Doc"]; C --> C2["Approved"]; C --> C3["Being Tested"]; C --> C4["Speculative"]; C --> C5["Condensed"]; C --> C6["Auto-Adaptive"];
D --> D1["General Doc"]; D --> D2["Approved"]; D --> D3["Being Tested"]; D --> D4["Speculative"]; D --> D5["Condensed"]; D --> D6["Auto-Adaptive"];
E --> E1["General Doc"]; E --> E2["Approved"]; E --> E3["Being Tested"]; E --> E4["Speculative"]; E --> E5["Condensed"]; E --> E6["Auto-Adaptive"];
F --> F1["Reserved General Doc"]; F --> F2["..."];
G["Classification System"] --> G1["General"]; G --> G2["Approved"]; G --> G3["Testing"]; G --> G4["Speculative"]; G --> G5["Condensed"]; G --> G6["Auto-Adaptive"];
(This section represents the Master Index linking to all individual Part ToCs)
- FD.00: Introduction & Program Vision 🧭
- FD.01: Key Theories & Proofs 💡
- ... (Rest of FD Chapters) ...
- ATA Chapter 00: Intro & General
✈️ - ATA Chapter 05: Time Limits/Maint Checks ⏱️
- ... (Rest of GP-AM Chapters) ...
- AS Chapter 00: Intro & General - Spaceframes
- AS Chapter 05: Time Limits/Maint Checks - Spaceframes
- ... (Rest of GP-SM Chapters) ...
- CN Chapter 00: Intro & General - Common Networks
- CN Chapter 23: Data Communication Networks
- ... (Rest of GP-CN Chapters) ...
- GB Chapter 00: Intro & General - Ground Infrastructure
- GB Chapter 05: Maint Schedules & Facility Mgmt
- ... (Rest of GP-GB Chapters) ...
- GACMS Chapter 00: Intro & General - Computing & Simulation
- GACMS Chapter 05: Performance Benchmarks & Limits
- ... (Rest of GP-GACMS Chapters) ...
- PMO Chapter 00: Intro & General - Project Mgmt & Ops
- PMO Chapter 01: Project Organization & Team Structure
- ... (Rest of GP-PMO Chapters) ...
- APP Chapter 00: Intro & General - Appendices & Reference
- APP Chapter 01: Glossary of Terms
- ... (Rest of GP-APP Chapters) ...
- GMO Chapter 00: Intro & General - Galactic Mining Ops
- GMO Chapter 05: Mining Schedules & Resource Mapping
- ... (Rest of GP-GMO Chapters) ...
- RES Chapter 00: Intro & General - Reserved Future Expansion
- RES Chapter 01: Reserved - Advanced Airframe Concepts
- ... (Rest of GP-RES Chapters) ...
Info Code | Description | Usage |
---|---|---|
OV | Overview | High-level summaries |
SP | Specification | Technical requirements & characteristics |
REQ | Requirements Document | Requirements capture & management |
DD | Design Document | Detailed design descriptions |
SDD | System Description Document | Comprehensive system architecture & operation |
DWG | Drawing | Engineering drawings, schematics, diagrams |
CAL | Calculation/Analysis | Calculations, simulations, analyses |
RPT | Report (General) | General reports, summaries, findings |
TEST | Test Plan/Procedure | Testing procedures |
RES | Test Results | Test outcomes |
MAN | Manual | Instructions for operation, maintenance, repair, training |
PROC | Procedure | Step-by-step processes (maintenance, installation, inspection) |
CAT | Catalog/List | Lists of parts, components, equipment |
GLO | Glossary | Terms and definitions |
PLAN | Plan | Plans of action (project, maintenance, risk) |
ICD | Interface Control Document | Interface definitions (data formats, protocols, physical connections) |
BOM | Bill of Materials | Parts and materials lists |
SWD | Software Architecture Document | Software architecture descriptions |
SPEC | Software Specification | Software functionalities and requirements |
ADMIN | Administrative | Revision history, approvals |
REF | Reference | References to external standards, documents, resources |
Thought for 5 seconds### GENERATIVE DESIGN SYSTEM: COMPREHENSIVE DESIGN DOCUMENT
This document outlines the comprehensive framework for developing a Generative Design System (GDS) capable of producing optimized design solutions across multiple domains. The system will leverage advanced computational algorithms, machine learning techniques, and domain-specific constraints to generate novel design alternatives that meet or exceed traditional design approaches. The GDS will serve as both a creative assistant and optimization tool, enabling designers to explore solution spaces beyond conventional methods.
- Develop a robust generative design system capable of producing optimized solutions for [specific domain] applications
- Reduce design iteration time by 60% compared to traditional methods
- Generate designs that improve performance metrics by at least 25% while maintaining manufacturability
- Create an intuitive interface that allows non-technical users to effectively utilize generative capabilities
- Establish a framework that can be extended to multiple design domains with minimal reconfiguration
- Development of core generative algorithms and optimization techniques
- Creation of constraint modeling system for design parameters
- Implementation of evaluation metrics and fitness functions
- Development of user interface for parameter input and result visualization
- Integration with industry-standard CAD/CAM systems
- Documentation and training materials
- Manufacturing process development
- Material science research
- Custom hardware development
- Integration with legacy systems predating industry standards
- Real-time collaborative features (planned for future release)
The GDS will employ a hybrid methodology combining multiple generative techniques:
- Parametric Generation Phase: Initial design space exploration using parameterized models
- Evolutionary Optimization Phase: Refinement of promising candidates using genetic algorithms
- Machine Learning Enhancement: Pattern recognition to identify successful design characteristics
- Constraint Satisfaction: Validation against manufacturing and performance requirements
- Multi-objective Optimization: Balancing competing design goals through Pareto optimization
The project will follow an Agile development approach with two-week sprints. Each sprint will deliver incremental functionality according to the following phases:
- Foundation Phase: Core algorithm development and data structure implementation
- Integration Phase: Connecting generative systems with evaluation frameworks
- Interface Phase: Development of user interaction systems
- Validation Phase: Testing against benchmark problems and real-world scenarios
- Refinement Phase: Performance optimization and user experience improvements
-
Implementation of SIMP (Solid Isotropic Material with Penalization) method
-
Integration of level-set methods for boundary definition
-
Density-based approaches for material distribution
-
Implementation details:
-
Finite element analysis integration
-
Sensitivity filtering to prevent checkerboard patterns
-
Convergence criteria based on design change magnitude
-
Implementation of NSGA-II (Non-dominated Sorting Genetic Algorithm II)
-
Custom crossover operators specific to spatial design problems
-
Adaptive mutation rates based on population diversity
-
Implementation details:
-
Population size: 100-500 depending on problem complexity
-
Selection method: Tournament selection with elitism
-
Crossover rate: 0.8 with adaptive adjustment
-
Mutation rate: 0.05-0.2 with diversity-based adaptation
-
Generative Adversarial Networks (GANs) for novel form generation
-
Graph Neural Networks for structural relationship modeling
-
Variational Autoencoders for design space exploration
-
Implementation details:
-
Architecture: Custom implementation based on domain requirements
-
Training approach: Transfer learning from pre-trained models
-
Latent space dimensionality: 64-256 depending on problem complexity
-
Parametric L-systems for organic structure generation
-
Agent-based growth simulations for emergent form development
-
Implementation details:
-
Rule set definition interface
-
Stochastic variation controls
-
Environmental interaction parameters
-
Implementation of Pareto front identification
-
Weighted sum methods for preference-based optimization
-
Goal programming for constraint satisfaction
-
Implementation details:
-
Objective normalization techniques
-
Interactive preference articulation
-
Visualization of trade-off relationships
-
Adjoint sensitivity analysis for efficient gradient computation
-
Sequential quadratic programming for constrained optimization
-
Implementation details:
-
Automatic differentiation implementation
-
Line search and trust region methods
-
Convergence criteria and early stopping
-
Kriging/Gaussian process models for expensive evaluations
-
Radial basis function networks for interpolation
-
Implementation details:
-
Adaptive sampling strategies
-
Model accuracy assessment
-
Hybrid approaches combining multiple surrogate types
- Minimum/maximum dimensions
- Symmetry requirements
- Clearance and interference checks
- Connection points and interfaces
- Structural integrity (stress, strain, displacement limits)
- Thermal performance parameters
- Flow characteristics (if applicable)
- Energy efficiency metrics
- Minimum feature size
- Maximum overhang angles
- Tool accessibility
- Material-specific limitations
- Assembly requirements
- Density, strength, elasticity
- Thermal conductivity
- Cost and availability
- Environmental impact metrics
- Static load cases
- Dynamic/fatigue considerations
- Environmental factors (temperature, humidity, etc.)
- Fixed points and surfaces
- Symmetry planes
- External connections
- Environmental interactions
- Boundary representation (B-rep) models
- Voxel or tetrahedral mesh representations
- Parametric model definitions
- Format specifications: STEP, IGES, proprietary formats
- XML-based constraint definition language
- Visual constraint definition interface
- Programmatic API for advanced users
- Quantitative performance targets
- Qualitative design guidelines
- Benchmark comparison data
- Boundary representation (B-rep) models
- Mesh representations (STL, OBJ, etc.)
- Point clouds
- Format specifications: Industry-standard CAD formats
- Structural analysis results
- Thermal analysis data
- Flow simulation outputs
- Format specifications: CSV, JSON, proprietary formats
- Tool paths
- Material specifications
- Assembly instructions
- Format specifications: Industry-standard manufacturing formats
- Versioning system for design iterations
- Metadata tagging for search and organization
- Cloud-based storage with appropriate security measures
- Caching strategies for computation-intensive operations
- Intuitive controls for constraint specification
- Visual feedback for parameter adjustments
- Template library for common scenarios
- Guided workflow for new users
- 3D visualization of generated designs
- Performance metric dashboards
- Comparative views of design alternatives
- Pareto front visualization for trade-off analysis
- Interactive parameter adjustment
- Design space navigation tools
- Filtering and sorting mechanisms
- Bookmarking and annotation features
- Plug-ins for major CAD systems
- Bidirectional data exchange
- Version control and synchronization
- Product lifecycle management system connections
- Design history and decision tracking
- Approval workflow integration
- Design sharing mechanisms
- Commenting and feedback tools
- Role-based access controls
- Notification systems
- Stress distribution analysis
- Displacement under load
- Natural frequency characteristics
- Safety factor calculation
- Volume/mass reduction
- Material distribution optimization
- Resource utilization metrics
- Temperature distribution
- Heat transfer efficiency
- Thermal expansion management
- Flow characteristics
- Pressure distribution
- Turbulence metrics
- Manufacturing process compatibility
- Tool path efficiency
- Support structure requirements
- Build time estimation
- Material costs
- Production time costs
- Post-processing requirements
- Assembly complexity
- Tolerance sensitivity
- Inspection accessibility
- Defect probability analysis
- Computation time
- Response latency
- Resource utilization
- Time to complete standard tasks
- Error rate during operation
- User satisfaction surveys
- Learning curve assessment
- C++ for core computational algorithms
- Python for integration and scripting
- JavaScript/TypeScript for user interface
- CUDA/OpenCL for GPU acceleration
- TensorFlow/PyTorch for machine learning components
- OpenCascade for geometric modeling
- VTK for visualization
- React/Angular for user interface
- Git for version control
- Jenkins for continuous integration
- Docker for containerization
- Jira for project management
- High-performance computing cluster for intensive calculations
- GPU acceleration for neural network operations
- Cloud-based scaling for variable workloads
- Distributed file system for large datasets
- Database systems for structured data
- Caching mechanisms for frequently accessed data
- Minimum hardware specifications
- Operating system compatibility
- Network requirements
- Graphics capabilities
Phase | Duration | Key Deliverables | Milestone |
---|---|---|---|
Research & Planning | 4 weeks | Algorithm selection, architecture design | Architecture approval |
Core Development | 12 weeks | Basic algorithm implementation, data structures | Algorithm validation |
Integration | 8 weeks | System component integration, workflow implementation | System integration test |
User Interface | 6 weeks | UI development, visualization tools | UI usability testing |
Testing & Validation | 6 weeks | Benchmark testing, performance validation | Performance verification |
Documentation & Training | 4 weeks | User guides, technical documentation | Release readiness |
Deployment & Support | Ongoing | Installation packages, support infrastructure | Production deployment |
Role | Quantity | Allocation | Responsibilities |
---|---|---|---|
Project Manager | 1 | 100% | Overall project coordination, stakeholder management |
Algorithm Specialist | 2 | 100% | Core algorithm development, optimization techniques |
Machine Learning Engineer | 2 | 100% | Neural network implementation, training pipelines |
Software Engineer | 3 | 100% | System integration, data management, API development |
UI/UX Designer | 2 | 100% | Interface design, user experience optimization |
QA Engineer | 2 | 100% | Testing methodology, validation, quality assurance |
Domain Expert | 1 | 50% | Domain-specific requirements, validation criteria |
Technical Writer | 1 | 50% | Documentation, training materials |
Resource | Quantity | Allocation | Purpose |
---|---|---|---|
Development Workstations | 12 | Dedicated | Developer environments |
GPU Servers | 4 | Shared | Neural network training, parallel computing |
HPC Cluster | 1 | Shared | Large-scale simulations, batch processing |
Cloud Computing | As needed | On-demand | Scaling for peak loads, distributed testing |
Storage Server | 1 | Shared | Data repository, backup systems |
| Category | Percentage | Description |-----|-----|-----|----- | Personnel | 65% | Salaries, benefits, contractor fees | Hardware | 15% | Computing resources, development equipment | Software | 10% | Licenses, third-party components | Cloud Services | 5% | Hosting, computation resources | Training & Travel | 3% | Team training, conferences, site visits | Contingency | 2% | Unexpected expenses
Challenge | Risk Level | Impact | Mitigation Strategy |
---|---|---|---|
Algorithm convergence issues | High | Unreliable results | Implement multiple optimization approaches, robust convergence criteria |
Computational performance | High | Slow iteration cycles | GPU acceleration, distributed computing, algorithm optimization |
Integration with existing CAD systems | Medium | Limited adoption | Develop robust API, standard format converters, plugin architecture |
Machine learning model generalization | Medium | Poor performance on novel designs | Diverse training data, transfer learning, ensemble methods |
Manufacturing constraint validation | Medium | Impractical designs | Early validation, manufacturing expert review, simulation verification |
Challenge | Risk Level | Impact | Mitigation Strategy |
---|---|---|---|
Scope creep | Medium | Schedule delays, resource strain | Clear requirements documentation, change control process, regular scope reviews |
Technical skill gaps | Medium | Development delays, quality issues | Early skill assessment, targeted training, strategic hiring/contracting |
Stakeholder alignment | Medium | Changing requirements, approval delays | Regular stakeholder meetings, clear communication channels, expectation management |
Integration delays | Medium | System functionality issues | Incremental integration approach, interface contracts, automated testing |
Resource availability | Low | Development bottlenecks | Resource planning, cross-training, flexible allocation |
Challenge | Risk Level | Impact | Mitigation Strategy |
---|---|---|---|
User resistance to new methodology | High | Limited system utilization | User involvement in design, intuitive interface, demonstrated benefits |
Learning curve | Medium | Slow adoption, inefficient use | Comprehensive training, contextual help, template-based starting points |
Trust in generated designs | High | Reluctance to implement results | Transparent evaluation metrics, validation against known solutions, incremental adoption |
Integration with existing workflows | Medium | Workflow disruption | Flexible integration options, phased deployment, workflow analysis |
Performance expectations | Medium | User disappointment | Clear capability communication, expectation management, continuous improvement |
- Generative Design: Computational approach that explores design possibilities based on goals and constraints
- Topology Optimization: Method for optimizing material layout within a design space
- Genetic Algorithm: Evolutionary computation technique inspired by natural selection
- Neural Network: Computational model inspired by biological neural networks
- Pareto Optimization: Multi-objective optimization identifying non-dominated solutions
- Surrogate Model: Approximation model used to reduce computational expense
- Finite Element Analysis: Numerical method for solving engineering problems
- B-rep (Boundary Representation): Method for representing shapes using boundaries
- SIMP Method: Solid Isotropic Material with Penalization, a topology optimization approach
- NSGA-II: Non-dominated Sorting Genetic Algorithm II, a multi-objective optimization algorithm
- ISO/ASTM 52910:2018 - Additive manufacturing design requirements
- ASME Y14.41-2019 - Digital product definition data practices
- ISO 10303 (STEP) - Standard for product data representation and exchange
- IEEE 1471 - Recommended practice for architectural description
- ISO/IEC/IEEE 29148:2018 - Requirements engineering
- Case studies of successful generative design implementations
- Benchmark problems and solutions
- Performance comparison data
- Sample workflows and templates
Role | Name | Signature | Date |
---|---|---|---|
Project Sponsor | |||
Technical Lead | |||
User Representative | |||
Quality Assurance |
Version | Date | Author | Description of Changes |
---|---|---|---|
0.1 | Initial draft | ||
0.2 | Technical review updates | ||
1.0 | Approved version |
Data Sources (COAFI Objects within Data Sources Assembly GP-GACMS-DS-0500-001-A
):
- CAD models and design specifications (
GP-GACMS-DS-0500-001-A-CD-001-A
) - Material properties databases (
GP-GACMS-DS-0500-001-A-DB-001-A
) - Performance requirements (
GP-GACMS-DS-0500-001-A-DR-001-A
) - Manufacturing constraints (
GP-GACMS-DS-0500-001-A-DR-001-A
) - Historical design data (
GP-GACMS-DS-0500-001-A-DW-001-A
)
AI Algorithms (COAFI Algorithms within AI Services Layer GP-GACMS-AI-0300-001-A
):
- Multi-objective optimization algorithms (
GP-GACMS-AI-0300-001-A-GE-001-A-ALG-MOO-001-A
) - Physics-informed neural networks (
GP-GACMS-AI-0300-001-A-GE-001-A-ALG-PINN-001-A
) - Evolutionary algorithms for design exploration (
GP-GACMS-AI-0300-001-A-GE-001-A-ALG-EA-001-A
) - Reinforcement learning for design optimization (
GP-GACMS-AI-0300-001-A-GE-001-A-ALG-RL-001-A
)
Integration Points (COAFI Interfaces within Data Integration Layer GP-GACMS-DI-0400-001-A
& UI Layer GP-GACMS-UI-0100-001-A
):
- CATIA, Siemens NX, SolidWorks via APIs (
GP-GACMS-DI-0400-001-A-AG-001-A
) - STEP/IGES data exchange formats (
GP-GACMS-DI-0400-001-A-EP-001-A
) - PLM systems for design management (
GP-GACMS-DI-0400-001-A-EP-001-A
) - 3D Visualization Module (
GP-GACMS-UI-0100-001-A-3D-001-A
)
Expected Benefits (COAFI Functions):
- COAFI Function (GP-GACMS-AI-0300-001-A-GE-001-A-FNC-REDUC-CYCLE-TIME-001-A): Reduce design cycle time by 40-60%.
- COAFI Function (GP-GACMS-AI-0300-001-A-GE-001-A-FNC-REDUC-WEIGHT-001-A): Achieve 15-30% weight reduction in components.
- COAFI Function (GP-GACMS-AI-0300-001-A-GE-001-A-FNC-EXPLORE-NOVEL-DESIGNS-001-A): Explore novel design solutions effectively.
- COAFI Function (GP-GACMS-AI-0300-001-A-GE-001-A-FNC-IMPROVE-PERF-WEIGHT-001-A): Improve performance-to-weight ratios significantly.
Conceptual implementation:
python
project="Aerospace GenAI" file="generative_design_engine.py"
class GenerativeDesignEngine:
def __init__(self):
pass # Initialize connection to databases, APIs, etc.
def generate_designs(self, requirements, constraints):
"""
Generates design options based on requirements and constraints.
Args:
requirements (dict): Design requirements (e.g., lift, drag, weight).
constraints (dict): Design constraints (e.g., material properties, manufacturing limitations).
Returns:
list: A list of design options, each represented as a dictionary.
"""
pass # Implement generative design logic here
def evaluate_design(self, design):
"""
Evaluates a given design option.
Args:
design (dict): A design option to evaluate.
Returns:
dict: Evaluation results (e.g., performance metrics, feasibility).
"""
pass
Key Technologies:
- Physics-informed neural networks
- Surrogate modeling
- Deep learning for simulation acceleration
- Gaussian process regression
Data Sources (COAFI Objects within Data Sources Assembly GP-GACMS-DS-0500-001-A
):
- CFD and FEA simulation results (
GP-GACMS-DS-0500-001-A-DB-001-A
) - Flight test data (
GP-GACMS-DS-0500-001-A-DR-001-A
) - Wind tunnel data (
GP-GACMS-DS-0500-001-A-DR-001-A
) - Material models (
GP-GACMS-DS-0500-001-A-DB-001-A
)
AI Algorithms (COAFI Algorithms within AI Services Layer GP-GACMS-AI-0300-001-A
):
- Convolutional neural networks for spatial data (
GP-GACMS-AI-0300-001-A-SA-001-A-ALG-CNN-001-A
) - Recurrent neural networks for time-series data (
GP-GACMS-AI-0300-001-A-SA-001-A-ALG-RNN-001-A
) - Gaussian process regression for surrogate models (
GP-GACMS-AI-0300-001-A-SA-001-A-ALG-GPR-001-A
) - Transfer learning for model adaptation (
GP-GACMS-AI-0300-001-A-SA-001-A-ALG-TL-001-A
)
Integration Points (COAFI Interfaces within Data Integration Layer GP-GACMS-DI-0400-001-A
& UI Layer GP-GACMS-UI-0100-001-A
):
- ANSYS, NASTRAN, Fluent, Abaqus (
GP-GACMS-DI-0400-001-A-AG-001-A
) - Simulation data management systems (
GP-GACMS-DI-0400-001-A-EP-001-A
) - High-performance computing clusters (
GP-GACMS-DI-0400-001-A-DC-001-A
) - 3D Visualization Module (
GP-GACMS-UI-0100-001-A-3D-001-A
)
Expected Benefits (COAFI Functions):
- COAFI Function (GP-GACMS-AI-0300-001-A-SA-001-A-FNC-REDUC-SIM-TIME-001-A): Achieve 90-99% reduction in simulation time.
- COAFI Function (GP-GACMS-AI-0300-001-A-SA-001-A-FNC-BROADEN-DESIGN-SPACE-001-A): Broaden design space exploration capabilities.
- COAFI Function (GP-GACMS-AI-0300-001-A-SA-001-A-FNC-ENABLE-REALTIME-SIM-001-A): Enable real-time simulation capabilities for interactive design.
- COAFI Function (GP-GACMS-AI-0300-001-A-SA-001-A-FNC-REDUC-COMP-COSTS-001-A): Reduce computational costs significantly.
Key Technologies:
- Process planning AI
- Toolpath optimization
- Robotic path planning
- Digital twin simulation
Data Sources (COAFI Objects within Data Sources Assembly GP-GACMS-DS-0500-001-A
):
- CAD/CAM models (
GP-GACMS-DS-0500-001-A-CD-001-A
) - Machine capabilities (
GP-GACMS-DS-0500-001-A-DB-001-A
) - Tool libraries (
GP-GACMS-DS-0500-001-A-DB-001-A
) - Material properties (
GP-GACMS-DS-0500-001-A-DB-001-A
) - Manufacturing constraints (
GP-GACMS-DS-0500-001-A-DR-001-A
)
AI Algorithms (COAFI Algorithms within AI Services Layer GP-GACMS-AI-0300-001-A
):
- Hierarchical task network planning (
GP-GACMS-AI-0300-001-A-MP-001-A-ALG-HTN-001-A
) - Genetic algorithms for process optimization (
GP-GACMS-AI-0300-001-A-MP-001-A-ALG-GA-001-A
) - Reinforcement learning for toolpath generation (
GP-GACMS-AI-0300-001-A-MP-001-A-ALG-RL-001-A
) - Machine learning for cost and time prediction (
GP-GACMS-AI-0300-001-A-MP-001-A-ALG-ML-PRED-001-A
)
Integration Points (COAFI Interfaces within Data Integration Layer GP-GACMS-DI-0400-001-A
& UI Layer GP-GACMS-UI-0100-001-A
):
- CAM software (Mastercam, Siemens NX CAM) (
GP-GACMS-DI-0400-001-A-AG-001-A
) - Robotic programming systems (
GP-GACMS-DI-0400-001-A-AG-001-A
) - Manufacturing execution systems (MES) (
GP-GACMS-DI-0400-001-A-EP-001-A
) - ERP systems (
GP-GACMS-DI-0400-001-A-EP-001-A
) - Web/Desktop Interface (
GP-GACMS-UI-0100-001-A-WI-001-A
)
Expected Benefits (COAFI Functions):
- COAFI Function (GP-GACMS-APP-0200-001-A-MP-001-A-FNC-REDUC-PLAN-TIME-001-A): Reduce manufacturing planning time by 40-60%.
- COAFI Function (GP-GACMS-APP-0200-001-A-MP-001-A-FNC-INCREASE-MACHINE-UTIL-001-A): Increase machine utilization by 15-25%.
- COAFI Function (GP-GACMS-APP-0200-001-A-MP-001-A-FNC-OPTIMIZE-TOOLPATHS-001-A): Optimize toolpaths and process sequences effectively.
- COAFI Function (GP-GACMS-APP-0200-001-A-MP-001-A-FNC-REDUC-MANUF-COSTS-001-A): Reduce overall manufacturing costs significantly.
classDiagram
class Component {
id: string
geometry: string
material: Material
tolerances: Tolerance[]
features: Feature[]
criticalCharacteristics: CriticalCharacteristic[]
}
class Material {
id: string
name: string
type: string
properties: MaterialProperties
specification: string
}
class MaterialProperties {
density: number
tensileStrength: number
yieldStrength: number
elongation: number
hardness: number
thermalConductivity: number
}
class Tolerance {
featureId: string
type: string
value: number
unit: string
}
class Feature {
id: string
type: string
parameters: Record<string, any>
position: [number, number, number]
orientation: [number, number, number]
}
class CriticalCharacteristic {
id: string
featureId: string
description: string
inspectionMethod: string
acceptanceCriteria: string
}
class Machine {
id: string
name: string
type: string
capabilities: MachineCapabilities
availability: number
costPerHour: number
}
class MachineCapabilities {
maxWorkpieceSize: [number, number, number]
accuracy: number
repeatability: number
maxSpindleSpeed: number
maxFeedRate: number
supportedMaterials: string[]
supportedOperations: string[]
}
class Tool {
id: string
type: string
diameter: number
length: number
material: string
maxDepthOfCut: number
maxFeedRate: number
recommendedSpindleSpeed: number
supportedMaterials: string[]
}
class Operation {
id: string
type: string
featureId: string
machineId: string
toolId: string
setupTime: number
processingTime: number
parameters: Record<string, any>
}
class ManufacturingPlan {
componentId: string
operations: Operation[]
setupInstructions: string[]
estimatedTime: number
estimatedCost: number
qualityCheckpoints: QualityCheckpoint[]
}
class ManufacturingPlanningSystem {
-components: Map<string, Component>
-machines: Map<string, Machine>
-tools: Map<string, Tool>
+constructor()
+addComponent(component: Component)
+addMachine(machine: Machine)
+addTool(tool: Tool)
+generateManufacturingPlan(componentId: string): Promise<ManufacturingPlan>
}
ManufacturingPlanningSystem --> Component
ManufacturingPlanningSystem --> Machine
ManufacturingPlanningSystem --> Tool
Component --> Material
Component --> Tolerance
Component --> Feature
Component --> CriticalCharacteristic
Material --> MaterialProperties
Machine --> MachineCapabilities
ManufacturingPlan --> Operation
Key Technologies:
- Computer vision
- Deep learning for defect detection
- 3D scanning and point cloud analysis
- Automated non-destructive testing
Data Sources (COAFI Objects within Data Sources Assembly GP-GACMS-DS-0500-001-A
):
- Images from inspection cameras (
GP-GACMS-DS-0500-001-A-IO-001-A
) - 3D scan data (
GP-GACMS-DS-0500-001-A-IO-001-A
) - X-ray and CT scan data (
GP-GACMS-DS-0500-001-A-IO-001-A
) - Ultrasonic testing data (
GP-GACMS-DS-0500-001-A-IO-001-A
) - Design specifications and tolerances (
GP-GACMS-DS-0500-001-A-DR-001-A
)
AI Algorithms (COAFI Algorithms within AI Services Layer GP-GACMS-AI-0300-001-A
):
- Convolutional neural networks for defect detection (
GP-GACMS-AI-0300-001-A-CV-001-A-ALG-CNN-DETECTION-001-A
) - Semantic segmentation for anomaly localization (
GP-GACMS-AI-0300-001-A-CV-001-A-ALG-SEM-SEG-001-A
) - Point cloud processing algorithms (
GP-GACMS-AI-0300-001-A-CV-001-A-ALG-PCL-001-A
) - Anomaly detection models (
GP-GACMS-AI-0300-001-A-PRED-001-A-ALG-ANOMALY-DETECTION-001-A
)
Integration Points (COAFI Interfaces within Data Integration Layer GP-GACMS-DI-0400-001-A
& UI Layer GP-GACMS-UI-0100-001-A
):
- Automated inspection systems (
GP-GACMS-DI-0400-001-A-AG-001-A
) - Coordinate measuring machines (CMMs) (
GP-GACMS-DI-0400-001-A-AG-001-A
) - Quality management systems (QMS) (
GP-GACMS-DI-0400-001-A-EP-001-A
) - Digital twin platforms (
GP-GACMS-APP-0200-001-A-MP-001-A
) - 3D Visualization Module (
GP-GACMS-UI-0100-001-A-3D-001-A
) - Analytics Dashboard (
GP-GACMS-UI-0100-001-A-AD-001-A
)
Expected Benefits (COAFI Functions):
- COAFI Function (GP-GACMS-APP-0200-001-A-QC-001-A-FNC-REDUC-INSP-TIME-001-A): Achieve 70-90% reduction in inspection time.
- COAFI Function (GP-GACMS-APP-0200-001-A-QC-001-A-FNC-IMPROVE-DEFECT-ACCURACY-001-A): Improve defect detection accuracy significantly.
- COAFI Function (GP-GACMS-APP-0200-001-A-QC-001-A-FNC-ENSURE-CONSISTENT-QUALITY-001-A): Ensure consistent quality assessment across production.
- COAFI Function (GP-GACMS-APP-0200-001-A-QC-001-A-FNC-REDUC-SCRAP-RATES-001-A): Reduce material scrap rates and waste effectively.
Key Technologies:
- Time series analysis
- Anomaly detection
- Remaining useful life prediction
- Digital twin modeling
Data Sources (COAFI Objects within Data Sources Assembly GP-GACMS-DS-0500-001-A
):
- Aircraft sensor data (
GP-GACMS-DS-0500-001-A-IO-001-A
) - Flight data recorder information (
GP-GACMS-DS-0500-001-A-IO-001-A
) - Maintenance records (
GP-GACMS-DS-0500-001-A-DR-001-A
) - Component lifecycle data (
GP-GACMS-DS-0500-001-A-PLM-001-A
) - Environmental conditions (
GP-GACMS-DS-0500-001-A-IO-001-A
)
AI Algorithms (COAFI Algorithms within AI Services Layer GP-GACMS-AI-0300-001-A
):
- LSTM networks for time series prediction (
GP-GACMS-AI-0300-001-A-PRED-001-A-ALG-LSTM-001-A
) - Anomaly detection algorithms (
GP-GACMS-AI-0300-001-A-PRED-001-A-ALG-ANOMALY-DETECTION-001-A
) - Survival analysis models (
GP-GACMS-AI-0300-001-A-PRED-001-A-ALG-SURVIVAL-ANALYSIS-001-A
) - Physics-informed neural networks (
GP-GACMS-AI-0300-001-A-SIM-001-A-ALG-PINN-001-A
)
Integration Points (COAFI Interfaces within Data Integration Layer GP-GACMS-DI-0400-001-A
& UI Layer GP-GACMS-UI-0100-001-A
):
- Aircraft health monitoring systems (
GP-GACMS-DI-0400-001-A-EP-001-A
) - Airline maintenance systems (
GP-GACMS-DI-0400-001-A-EP-001-A
) - Flight operations systems (
GP-GACMS-DI-0400-001-A-EP-001-A
) - Supply chain management systems (
GP-GACMS-DI-0400-001-A-EP-001-A
) - Digital twin platforms (
GP-GACMS-APP-0200-001-A-MP-001-A
) - 3D Visualization Module (
GP-GACMS-UI-0100-001-A-3D-001-A
) - Analytics Dashboard (
GP-GACMS-UI-0100-001-A-AD-001-A
)
Expected Benefits (COAFI Functions):
- COAFI Function (GP-GACMS-APP-0200-001-A-MR-001-A-FNC-REDUC-UNSCHED-MAINT-001-A): Reduce unscheduled maintenance by 30-50%.
- COAFI Function (GP-GACMS-APP-0200-001-A-MR-001-A-FNC-INCREASE-AIRCRAFT-AVAIL-001-A): Increase aircraft availability by 15-25%.
- COAFI Function (GP-GACMS-APP-0200-001-A-MR-001-A-FNC-EXTEND-COMPONENT-LIFE-001-A): Extend component useful life through proactive maintenance.
- COAFI Function (GP-GACMS-APP-0200-001-A-MR-001-A-FNC-REDUC-MAINT-COSTS-001-A): Reduce overall maintenance costs effectively.
Key Technologies:
- Natural language processing
- Knowledge graphs
- Case-based reasoning
- Causal inference models
Data Sources (COAFI Objects within Data Sources Assembly GP-GACMS-DS-0500-001-A
& AI Services Layer GP-GACMS-AI-0300-001-A
):
- Maintenance manuals (
GP-GACMS-DS-0500-001-A-DR-001-A
) - Fault codes (
GP-GACMS-DS-0500-001-A-DR-001-A
) - Troubleshooting guides (
GP-GACMS-DS-0500-001-A-DR-001-A
) - Historical repair data (
GP-GACMS-DS-0500-001-A-DW-001-A
) - Sensor readings (
GP-GACMS-DS-0500-001-A-IO-001-A
) - Knowledge Graph (
GP-GACMS-AI-0300-001-A-KG-001-A
)
AI Algorithms (COAFI Algorithms within AI Services Layer GP-GACMS-AI-0300-001-A
):
- Transformer models for text understanding (
GP-GACMS-AI-0300-001-A-NLP-001-A-ALG-TRANSFORMER-001-A
) - Graph neural networks (
GP-GACMS-AI-0300-001-A-KG-001-A-ALG-GNN-001-A
) - Bayesian networks for causal reasoning (
GP-GACMS-AI-0300-001-A-PRED-001-A-ALG-BAYESIAN-NET-001-A
) - Classification models for fault diagnosis (
GP-GACMS-AI-0300-001-A-PRED-001-A-ALG-CLASSIFICATION-001-A
)
Integration Points (COAFI Interfaces within Data Integration Layer GP-GACMS-DI-0400-001-A
& UI Layer GP-GACMS-UI-0100-001-A
):
- Aircraft maintenance systems (
GP-GACMS-DI-0400-001-A-EP-001-A
) - Electronic technical manuals (ETMs) (
GP-GACMS-DI-0400-001-A-DR-001-A
) - Remote assistance platforms (
GP-GACMS-UI-0100-001-A-WI-001-A
,GP-GACMS-UI-0100-001-A-CT-001-A
) - Training systems (
GP-GACMS-APP-0200-001-A-KM-001-A
) - Web/Desktop Interface (
GP-GACMS-UI-0100-001-A-WI-001-A
) - Collaboration Tools (
GP-GACMS-UI-0100-001-A-CT-001-A
) - Knowledge Management Module (
GP-GACMS-APP-0200-001-A-KM-001-A
)
Expected Benefits (COAFI Functions):
- COAFI Function (GP-GACMS-APP-0200-001-A-DT-001-A-FNC-REDUC-DIAG-TIME-001-A): Reduce diagnostic time by 40-60% significantly.
- COAFI Function (GP-GACMS-APP-0200-001-A-DT-001-A-FNC-IMPROVE-FIRST-TIME-FIX-001-A): Improve first-time fix rates for maintenance tasks.
- COAFI Function (GP-GACMS-APP-0200-001-A-DT-001-A-FNC-CAPTURE-EXPERT-KNOWLEDGE-001-A): Capture expert knowledge from aging workforce effectively.
- COAFI Function (GP-GACMS-APP-0200-001-A-DT-001-A-FNC-ENHANCE-TECHNICIAN-EFFICIENCY-001-A): Enhance maintenance technician efficiency and productivity.
Key Technologies:
- Natural language generation
- Computer vision for diagram creation
- Knowledge extraction
- Template-based generation
Data Sources (COAFI Objects within Data Sources Assembly GP-GACMS-DS-0500-001-A
& AI Services Layer GP-GACMS-AI-0300-001-A
):
- Design data (
GP-GACMS-DS-0500-001-A-CD-001-A
) - Simulation results (
GP-GACMS-DS-0500-001-A-DB-001-A
) - Test reports (
GP-GACMS-DS-0500-001-A-DR-001-A
) - Regulatory requirements (
GP-GACMS-DS-0500-001-A-RD-001-A
) - Industry standards (
GP-GACMS-DS-0500-001-A-RD-001-A
) - Knowledge Graph (
GP-GACMS-AI-0300-001-A-KG-001-A
)
AI Algorithms (COAFI Algorithms within AI Services Layer GP-GACMS-AI-0300-001-A
):
- Large language models for text generation (
GP-GACMS-AI-0300-001-A-NLP-001-A-ALG-LLM-001-A
) - Graph-to-text generation (
GP-GACMS-AI-0300-001-A-NLP-001-A-ALG-GRAPH2TEXT-001-A
) - Template filling algorithms (
GP-GACMS-APP-0200-001-A-RC-001-A-ALG-TEMPLATE-FILL-001-A
) - Document structure learning (
GP-GACMS-AI-0300-001-A-NLP-001-A-ALG-DOCSTRUCT-LEARN-001-A
)
Integration Points (COAFI Interfaces within Data Integration Layer GP-GACMS-DI-0400-001-A
& UI Layer GP-GACMS-UI-0100-001-A
):
- PLM systems (
GP-GACMS-DI-0400-001-A-EP-001-A
) - Document management systems (DMS) (
GP-GACMS-DI-0400-001-A-EP-001-A
) - Regulatory submission portals (
GP-GACMS-DI-0400-001-A-AG-001-A
) - Configuration management systems (CMS) (
GP-GACMS-DI-0400-001-A-EP-001-A
) - Web/Desktop Interface (
GP-GACMS-UI-0100-001-A-WI-001-A
)
Expected Benefits (COAFI Functions):
- COAFI Function (GP-GACMS-APP-0200-001-A-RC-001-A-FNC-REDUC-DOC-TIME-001-A): Reduce documentation time by 70-90% dramatically.
- COAFI Function (GP-GACMS-APP-0200-001-A-RC-001-A-FNC-IMPROVE-DOC-ACCURACY-001-A): Improve accuracy and consistency of compliance documentation.
- COAFI Function (GP-GACMS-APP-0200-001-A-RC-001-A-FNC-ENSURE-REG-COMPLIANCE-001-A): Ensure consistent and verifiable regulatory compliance.
- COAFI Function (GP-GACMS-APP-0200-001-A-RC-001-A-FNC-FASTER-APPROVALS-001-A): Achieve faster regulatory approval processes effectively.
classDiagram
class ComplianceStatus {
<<enumeration>>
COMPLIANT
NON_COMPLIANT
NEEDS_REVIEW
NOT_APPLICABLE
}
class ComplianceRequirement {
id: str
description: str
regulation_id: str
section: str
check_function: str
severity: str
applicability_condition: Optional[str]
}
class ComplianceViolation {
requirement_id: str
description: str
severity: str
affected_elements: List[str]
recommendation: str
}
class ComplianceCheckResult {
status: ComplianceStatus
score: float
violations: List[ComplianceViolation]
timestamp: str
checked_by: str
}
class AerospaceComplianceChecker {
-regulations: Dict[str, Any]
-check_functions: Dict[str, Callable]
+__init__(regulations_db_path: str)
+check_compliance(design_data: Dict[str, Any], regulation_ids: List[str]): Dict[str, ComplianceCheckResult]
}
AerospaceComplianceChecker --> ComplianceRequirement
AerospaceComplianceChecker --> ComplianceViolation
AerospaceComplianceChecker --> ComplianceCheckResult
Functional Framework Implementation (FFI)
Document Status: Blueprint Final
Scope: Universal to COAFI Parts I–VI (Airframes to Simulation Ecosystems)
Alias: COA = Components Overhaul Aerospace
All functions are categorized into hierarchical tiers and must be traceable via Function ID (FID), cross-linked with XAI-TAG and COAFI-OBJ-ID.
Tier | Description | Document Zone |
---|---|---|
F1 | System-Level Function (e.g., Provide Propulsion) | OV Documents |
F2 | Subsystem Function (e.g., Generate Quantum Thrust) | SP, DS Documents |
F3 | Component Function (e.g., Modulate Emission Pattern) | DS, ICD |
F4 | Behavioral/Subcomponent Function (e.g., React <0.01s) | ICD, OP, Heuritmática |
All SP and OV documents shall include the following functional attribute structure:
Attribute | Value |
---|---|
Function ID | FID-GAIA-PULSE-001 |
Parent Function | FID-GAIA-0001 (Provide Propulsion) |
System | GP-PM-0400 (GAIA PULSE) |
Criticality | Critical |
Performance Metrics | See GP-PM-SP-0400-002-A (Thrust Response Spec) |
Verification | Testing, Simulation, XAI Traceback |
Status | Approved |
Input | Control Signals, Quantum Fuel |
Output | Thrust, Regenerated Energy |
XAI Link | XAI-FI-GAI-PULSE-001 |
Document: GP-OV-FAM-0001-A.md
Traceable via Digital Twin integration and visible through the GAIA AIR dashboard.
Function ID | Description | GAIA PULSE | GAIA CTRL | GAIA FAB | TWIN-VIEWER | XAI TRACE |
---|---|---|---|---|---|---|
FID-GAIA-0001 | Provide Propulsion | X | X | X | ||
FID-GAIA-PULSE-001 | Generate Quantum Thrust | X | X | X | ||
FID-GAIA-CONTROL-001 | Adjust Thrust Vector | X | X | X | ||
FID-GAIA-FAB-001 | Manufacture Quantum Nozzles | X | ||||
FID-GAIA-XAI-001 | Explain Propulsion Behavior | X | X |
- Inline XAI-Tags in engineering drawings (e.g., XAI-FI-WING-007)
- Lookup tables linking measurement points to FIDs
- Functional-to-Measurement Mermaid diagrams in documentation and dashboards
Section 5 in all SP and DS documents must capture:
- Reliability (MTBF)
- Maintainability
- Security Constraints
- Latency or Response Time
- HMI Ergonomics
Each NFR must have:
- NFR-ID
- Link to simulations, test results, or inspection routines
Defined in COAFI Part IV:
Function ID | Description | XAI Tag |
---|---|---|
FID-HEUR-001 | Detect performance drift via in-flight sensor AI | XAI-AS-HEUR-001 |
FID-HEUR-005 | Regenerate emission config after anomaly | XAI-AS-HEUR-005 |
All meta-functions must support digital twin simulation and feedback adaptation.
Each function must be directly linked to:
- CFD/FEA simulation nodes
- Test Bench IDs
- Simulation Scenarios (e.g., SCN-PULSE-023)
- Verification Packages
Validation is iterative, traceable, and embedded in deployment cycles.
Each function must:
- Be registered with an XAI identifier
- Include “intent-to-behavior” rationale
- Be explainable via reasoning trees for operators and certification bodies
Here's how we can formally structure and integrate the Future Integration section of the COAFI-FUNC-CORE-0001-A
document under:
GACMS (COAFI Part V) serves as the computational and simulation backbone of GAIA AIR. Future integration of functions defined in the COAFI Functional Framework will leverage GACMS as a real-time, model-driven content management and verification system, enabling simulation-informed decision-making, auto-validation, and AI explainability across the lifecycle.
Integration Type | Description | GACMS Asset Examples |
---|---|---|
Material Behavior Simulation | Simulates composite responses, fatigue, failure and healing. | GP-GACMS-COMP-0100-05-B-001-A (Benchmarks) |
CFD/FEA-Driven Validation | Verifies functional requirements against fluid and structural models. | GP-GACMS-COMP-00-A-001-A (Intro & Scope) |
Twin-Linked Real-Time Data | Uses digital twin sensor data to validate function execution and forecast anomalies. | GP-GACMS-GROUND-0100-06-A-001-A (Layout) |
Adaptive Simulation Threads | Runs AI-recommended simulations based on function status and expected behavior. | GP-GACMS-COMP-00-D-001-A (Auto-Adaptive) |
Quantum Simulation Anchoring | Connects functions (e.g., quantum propulsion, XAI explainability) to quantum models. | GP-GACMS-COMP-0100-99-B-001-A (Quantum) |
Function ID | Linked GACMS Modules | Simulation Method | Output Format |
---|---|---|---|
FID-GAIA-PULSE-001 | GP-GACMS-COMP-0100-05-B-001-A | Quantum Pulse CFD | JSON, VTK |
FID-HEUR-001 | GP-GACMS-COMP-00-D-001-A | Real-Time Anomaly Map | Heatmap Overlay (HTML5) |
FID-GAI-XAI-001 | GP-GACMS-COMMON-46-A-001-A | Explainability Thread | XAI-Trace JSON |
FID-GAIA-FAB-001 | GP-GACMS-GROUND-0100-06-A-001-A | Material Stress Analysis | PDF, 3D Model |
Capability | Description |
---|---|
Semantic Function Ingestion | Auto-import FIDs and NFRs into GACMS-CMS with XAI tagging |
Feedback Loop with SP/DS Docs | Auto-update specs based on simulation feedback (closed-loop validation) |
Digital Twin Interface Sync | Visual overlay of function status with real-time telemetry data |
AI-Driven Scenario Suggestion | GACMS proposes what-if simulations based on functional deviations |
Smart Versioning | Tracks evolution of functional definitions tied to materials, designs, AI |
This document defines the backbone of FFI: a multi-domain, audit-ready, AI-interpretable framework for function-oriented aerospace systems engineering. It guarantees traceability from requirements to behavior, fosters scalable documentation, and prepares GAIA AIR for quantum-operational continuity.
Return to COAFI.MD Main Document
The GAIA AIR program employs a sophisticated documentation architecture that spans multiple functional domains. This structured approach ensures consistency, traceability, and effective knowledge management across all program activities from theoretical research to operational implementation. The documentation system follows a hierarchical organization with standardized naming conventions and classification categories.
All GAIA AIR program documents adhere to a standardized classification system that indicates their status, purpose, and relationship to other documents:
Code | Classification | Description |
---|---|---|
GP-FD-XX-001-A |
General Document | Primary overview document for a functional domain |
GP-FD-XX-A-001-A |
Approved (In Service) | Operational documents for implemented systems |
GP-FD-XX-B-001-A |
Being Tested (Development) | Documents for systems under development |
GP-FD-XX-B-THEO-001-A |
Speculative (Studying) | Theoretical concepts under investigation |
GP-FD-XX-C-001-A |
Condensed (Formal Scientific Consensus) | Scientific consensus summaries |
GP-FD-XX-D-001-A |
Auto-Adaptive Configuration | AI-driven adaptive systems documentation |
The FD.00 series establishes the foundational vision and direction for the GAIA AIR program:
-
GP-FD-00-001-A
: General Document - Introduction & Program Vision -
Primary overview of the program's vision and objectives
-
Serves as the entry point to all vision-related documentation
-
GP-FD-00-A-001-A
: Approved - Program Vision Statement -
Contains the officially approved and operational vision statement
-
Defines current program direction and objectives
-
GP-FD-00-B-001-A
: Being Tested - Program Vision Expansion Scenarios -
Documents potential expansion scenarios under development
-
Outlines near-term vision evolution possibilities
-
GP-FD-00-B-THEO-001-A
: Speculative - Long-Term Cosmic Impetus -
Explores theoretical long-term vision concepts
-
Investigates speculative future directions and cosmic-scale objectives
-
GP-FD-00-C-001-A
: Condensed - Core Principles of GAIA AIR -
Summarizes the essential scientific principles underlying the program
-
Provides consensus-based foundational concepts
-
GP-FD-00-D-001-A
: Auto-Adaptive - AI-Driven Vision Adaptation -
Details the AI systems that dynamically adapt program vision
-
Outlines mechanisms for vision evolution based on emerging data
The FD.01 series documents the theoretical foundations and scientific proofs that underpin the program:
-
GP-FD-01-001-A
: General Document - Key Theories & Proofs Overview -
Comprehensive overview of the theoretical framework
-
Maps relationships between different theoretical domains
-
GP-FD-01-A-001-A
: Approved - Quantum Propulsion Theory - Validated Principles -
Documents validated quantum propulsion principles in operational use
-
Provides theoretical basis for current propulsion systems
-
GP-FD-01-B-001-A
: Being Tested - Federated AI Theory - Implementation & Testing -
Details federated AI approaches under development
-
Documents testing methodologies and preliminary results
-
GP-FD-01-B-THEO-001-A
: Speculative - BNNT Composites Theory - Advanced Properties Research -
Explores theoretical properties of Boron Nitride Nanotube composites
-
Investigates potential applications in aerospace structures
-
GP-FD-01-C-001-A
: Condensed - Quantum Mechanics Fundamentals for Propulsion -
Summarizes essential quantum mechanics principles relevant to propulsion
-
Provides scientific consensus on quantum applications
-
GP-FD-01-D-001-A
: Auto-Adaptive - AI-Driven Theory Refinement -
Details AI systems for continuous theoretical refinement
-
Documents adaptive theoretical modeling approaches
The FD.02 series establishes the regulatory framework and standards base for all program operations:
-
GP-FD-02-001-A
: General Document - Regulatory & Standards Base Overview -
Comprehensive overview of the regulatory landscape and standards framework
-
Central reference point for all compliance requirements
-
GP-FD-02-A-001-A
: Approved - FAA/EASA Certification Requirements -
Detailed breakdown of operational aviation certification requirements
-
Compliance pathways for airworthiness directives
-
GP-FD-02-B-001-A
: Being Tested - NASA/ESA Standards -
Documentation of space standards under testing and validation
-
Integration protocols with existing space infrastructure
-
GP-FD-02-B-THEO-001-A
: Speculative - Future Regulatory Landscape -
Analysis of emerging regulatory frameworks
-
Scenario planning for anticipated regulatory changes
-
GP-FD-02-C-001-A
: Condensed - Core Aviation & Space Regulations -
Quick reference summary of essential regulations
-
Based on formal scientific consensus
-
GP-FD-02-D-001-A
: Auto-Adaptive - AI-Driven Regulatory Compliance -
Systems for continuous monitoring of regulatory changes
-
Adaptive documentation updates across the program
The FD.03 series documents research that spans multiple scientific and engineering disciplines:
-
GP-FD-03-001-A
: General Document - Cross-Disciplinary Research Overview -
Maps interdisciplinary research domains and methodologies
-
Establishes framework for cross-domain collaboration
-
GP-FD-03-A-001-A
: Approved - Multi-Physics Simulation Methodologies -
Documents validated simulation frameworks in operational use
-
Details integration of multiple physics domains in simulation
-
GP-FD-03-B-001-A
: Being Tested - Quantum Computing for Advanced Flight Ops -
Documents testing of quantum computing applications
-
Benchmarking results against classical computing approaches
-
GP-FD-03-B-THEO-001-A
: Speculative - Cosmic Vacuum Energy Concepts -
Explores theoretical energy extraction from cosmic vacuum
-
Investigates potential applications for propulsion
-
GP-FD-03-C-001-A
: Condensed - Synergy of AI, Quantum, & Green Propulsion -
Summarizes scientific consensus on interdisciplinary approaches
-
Documents core principles for integrated technology development
-
GP-FD-03-D-001-A
: Auto-Adaptive - AI-Driven Research Prioritization -
Details AI systems for research optimization
-
Documents adaptive resource allocation methodologies
The program documentation architecture reserves sections FD.04 through FD.99 for future expansion:
-
GP-FD-04-001-A
: Reserved - Ethical Implications of AI in Aerospace -
Placeholder for future ethical framework documentation
-
GP-FD-05-001-A
: Reserved - Long-Term Vision for Interplanetary Expansion -
Placeholder for future interplanetary mission documentation
-
Additional reserved sections will be developed as the program evolves
The GAIA AIR documentation system maintains consistent relationships across functional domains:
- Horizontal Integration: Documents at the same classification level (e.g., all A-series documents) maintain consistent approaches to their respective domains
- Vertical Integration: Within each functional domain, documents progress from general overview to specific implementations
- Cross-Domain References: Documents reference related content in other functional domains to ensure comprehensive coverage
- Progressive Development: Content evolves from approved operational concepts through development and into theoretical exploration
- AI Integration: Auto-adaptive configurations ensure documentation remains current with emerging developments
All GAIA AIR program documents follow a standardized lifecycle:
- Creation: Initial drafting based on program requirements
- Review: Multi-disciplinary expert review and validation
- Approval: Formal approval process with appropriate authorities
- Implementation: Integration into operational processes
- Monitoring: Continuous assessment of relevance and accuracy
- Adaptation: AI-driven updates based on emerging information
- Archiving: Systematic versioning and historical preservation
graph TD;
A["GAIA AIR Program Documentation"] --> B["FD.00: Introduction & Program Vision 🧭"]
A --> C["FD.01: Key Theories & Proofs 💡"]
A --> D["FD.02: Regulatory & Standards Base 📜"]
A --> E["FD.03: Cross-Disciplinary Research 🔭"]
A --> F["FD.04-FD.99: Reserved Future Sections 🚧"]
%% FD.00 Series
B --> B1["GP-FD-00-001-A: General Document"]
B --> B2["GP-FD-00-A-001-A: Approved - Vision Statement"]
B --> B3["GP-FD-00-B-001-A: Being Tested - Expansion Scenarios"]
B --> B4["GP-FD-00-B-THEO-001-A: Speculative - Cosmic Impetus"]
B --> B5["GP-FD-00-C-001-A: Condensed - Core Principles"]
B --> B6["GP-FD-00-D-001-A: Auto-Adaptive - AI-Driven Vision"]
%% FD.01 Series
C --> C1["GP-FD-01-001-A: General Document"]
C --> C2["GP-FD-01-A-001-A: Approved - Quantum Propulsion"]
C --> C3["GP-FD-01-B-001-A: Being Tested - Federated AI"]
C --> C4["GP-FD-01-B-THEO-001-A: Speculative - BNNT Composites"]
C --> C5["GP-FD-01-C-001-A: Condensed - Quantum Mechanics"]
C --> C6["GP-FD-01-D-001-A: Auto-Adaptive - Theory Refinement"]
%% FD.02 Series
D --> D1["GP-FD-02-001-A: General Document"]
D --> D2["GP-FD-02-A-001-A: Approved - FAA/EASA Certification"]
D --> D3["GP-FD-02-B-001-A: Being Tested - NASA/ESA Standards"]
D --> D4["GP-FD-02-B-THEO-001-A: Speculative - Future Regulations"]
D --> D5["GP-FD-02-C-001-A: Condensed - Core Regulations"]
D --> D6["GP-FD-02-D-001-A: Auto-Adaptive - Compliance Monitoring"]
%% FD.03 Series
E --> E1["GP-FD-03-001-A: General Document"]
E --> E2["GP-FD-03-A-001-A: Approved - Multi-Physics Simulation"]
E --> E3["GP-FD-03-B-001-A: Being Tested - Quantum Computing"]
E --> E4["GP-FD-03-B-THEO-001-A: Speculative - Vacuum Energy"]
E --> E5["GP-FD-03-C-001-A: Condensed - AI/Quantum/Green Synergy"]
E --> E6["GP-FD-03-D-001-A: Auto-Adaptive - Research Prioritization"]
%% FD.04-99 Series
F --> F1["GP-FD-04-001-A: Reserved - AI Ethics"]
F --> F2["GP-FD-05-001-A: Reserved - Interplanetary Expansion"]
F --> F3["..."]
%% Document Classification System
G["Document Classification System"] --> G1["GP-FD-XX-001-A: General Document"]
G --> G2["GP-FD-XX-A-001-A: Approved (In Service)"]
G --> G3["GP-FD-XX-B-001-A: Being Tested (Development)"]
G --> G4["GP-FD-XX-B-THEO-001-A: Speculative (Studying)"]
G --> G5["GP-FD-XX-C-001-A: Condensed (Scientific Consensus)"]
G --> G6["GP-FD-XX-D-001-A: Auto-Adaptive Configuration"]
%% Cross-domain relationships (simplified)
B1 -.-> C1["Related domains"]
C1 -.-> D1["Related domains"]
D1 -.-> E1["Related domains"]
JSON Schema Representation (Formatted as Markdown)
- coafiPart:
GP-AM
- partTitle:
Part I: Airframes – AMPEL360XWLRGA
Código | Descripción | Uso |
---|---|---|
OV | Overview (Visión General) | Resúmenes de alto nivel de sistemas, componentes o procesos. |
SP | Specification (Especificación) | Define requerimientos técnicos, características, desempeño, propiedades, dimensiones y tolerancias. |
REQ | Requirements Document (Documento de Requerimientos) | Captura y gestiona requerimientos funcionales, de desempeño, de interfaz y de conformidad. |
DD | Design Document (Documento de Diseño) | Describe el diseño detallado de un sistema o componente. |
SDD | System Description Document (Documento de Descripción del Sistema) | Proporciona una descripción completa de la arquitectura y operación del sistema. |
DWG | Drawing (Dibujo) | Dibujos de ingeniería, esquemas y diagramas visuales. |
CAL | Calculation/Analysis (Cálculo/Análisis) | Documenta cálculos, simulaciones y análisis de desempeño. |
RPT | Report (Reporte) | Informes generales, resúmenes de hallazgos y reportes de investigación. |
TEST | Test Plan/Procedure (Plan/Procedimiento de Pruebas) | Describe procedimientos para la validación y pruebas de sistemas o componentes. |
RES | Test Results (Resultados de Pruebas) | Documenta los resultados y hallazgos de las pruebas realizadas. |
MAN | Manual | Instrucciones de operación, mantenimiento, reparación o entrenamiento. |
PROC | Procedure (Procedimiento) | Describe procesos paso a paso (mantenimiento, instalación, inspección, etc.). |
CAT | Catalog/List (Catálogo/Lista) | Listas de partes, componentes, equipos o referencias (ej. IPC). |
GLO | Glossary (Glosario) | Lista de términos y definiciones. |
PLAN | Plan | Describe planes de acción (plan de proyecto, de mantenimiento, de gestión de riesgos, etc.). |
ICD | Interface Control Document (Documento de Control de Interfaz) | Define las interfaces entre sistemas o componentes. |
BOM | Bill of Materials (Lista de Materiales) | Lista de todas las partes o materiales necesarios para construir un sistema o componente. |
SWD | Software Architecture Document (Documento de Arquitectura de Software) | Describe la arquitectura del software. |
SPEC | Software Specification (Especificación de Software) | Describe funcionalidades y requerimientos del software. |
ADMIN | Administrative (Administrativo) | Documenta información administrativa (historial de revisiones, aprobaciones, etc.). |
REF | Reference (Referencia) | Proporciona referencias a estándares externos, documentos o recursos. |
-
documentId:
GP-AM-AMPEL-0100-00-001-A
-
documentTitle:
GP-AM-00 General Document - Intro & General
-
status:
Draft
-
infoCode:
OV
-
description: Introducción general a Part I (Airframes – GP‑AM), su alcance, alineación con ATA y relación con otras partes de COAFI.
- documentParts:
-
partId:
INTRO
title:Introduction
infoCode:OV
contentPlaceholder (filled):
"Esta sección describe la finalidad general y el alcance de Part I: Airframes – GP-AM, presentando los objetivos principales y la relación con la estructura global de COAFI." -
partId:
ATA_ALIGN
title:ATA Alignment
infoCode:DS
contentPlaceholder (filled):
"Se detalla cómo se aplican los capítulos ATA (por ejemplo 00, 05, 06) al airframe AMPEL360XWLRGA, asegurando compatibilidad con las prácticas estándar de la industria." -
partId:
COAFI_LINKS
title:COAFI Relationships
infoCode:DS
contentPlaceholder (filled):
"Se describen las interrelaciones con otros módulos y partes de COAFI, enfatizando sinergias con propulsión, aviónica y documentación cruzada." -
partId:
REVISIONS
title:Revision History
infoCode:ADMIN
contentPlaceholder (filled):
"Versión 1.0: Publicación inicial. Versión 1.1: Ajustes menores de alcance. Versión 2.0: Cambios significativos alineados con nueva directiva interna."
-
- documentParts:
-
documentId:
GP-AM-AMPEL-0100-00-A-001-A
-
documentTitle:
GP-AM-00 - Approved (In Service) - Intro & General - Project Scope & Compliance
-
status:
Approved (In Service)
-
infoCode:
REQ
-
description: Documento aprobado que detalla el alcance del proyecto para el airframe AMPEL360XWLRGA y los requisitos de conformidad.
- documentParts:
-
partId:
SCOPE
title:Project Scope Definition
infoCode:SP
contentPlaceholder (filled):
"El alcance del proyecto considera el diseño completo del airframe, incluyendo dimensiones principales, performance esperada y normativa de seguridad." -
partId:
COMPLIANCE_REQ
title:Compliance Requirements Matrix
infoCode:REQ
contentPlaceholder (filled):
"La matriz vincula cada requisito regulatorio (EASA, FAA, etc.) con las secciones específicas del diseño del AMPEL360XWLRGA, garantizando trazabilidad." -
partId:
CERT_STRATEGY
title:Certification Strategy Overview
infoCode:PLAN
contentPlaceholder (filled):
"La estrategia de certificación se basa en un enfoque por fases, abarcando pruebas en tierra y en vuelo, y validación progresiva de la conformidad." -
partId:
REVISIONS
title:Revision History
infoCode:ADMIN
contentPlaceholder (filled):
"Versión 1.0: Documento aprobado inicialmente. Versión 1.1: Inclusión de requisitos de compatibilidad con sistemas externos."
-
- documentParts:
-
documentId:
GP-AM-AMPEL-0100-00-B-001-A
-
documentTitle:
GP-AM-00 - Being Tested (Development) - Intro & General - Design Philosophy & Materials
-
status:
Being Tested (Development)
-
infoCode:
DD
-
description: Documento en desarrollo que detalla la filosofía de diseño del airframe AMPEL360XWLRGA y la selección de materiales avanzados.
- documentParts:
-
partId:
DESIGN_PHILOSOPHY
title:Airframe Design Philosophy
infoCode:DS
contentPlaceholder (filled):
"La filosofía de diseño busca un balance óptimo entre resistencia estructural, eficiencia aerodinámica y reducción de peso, integrando parámetros de manufacturabilidad." -
partId:
MATERIALS_OVERVIEW
title:AMPEL Materials Overview
infoCode:DS
contentPlaceholder (filled):
"La iniciativa AMPEL propone el uso de materiales compuestos de alto desempeño y aleaciones ligeras, priorizando resistencia a la fatiga y sostenibilidad." -
partId:
MATERIAL_SPECS
title:Material Specifications (Preliminary)
infoCode:SP
contentPlaceholder (filled):
"Las especificaciones preliminares incluyen listados de resinas epoxi y fibras avanzadas, sujetas a validación y ensayos destructivos y no destructivos." -
partId:
MATERIAL_TEST_PLAN
title:Material Testing & Validation Plan
infoCode:TEST
contentPlaceholder (filled):
"Este plan contempla pruebas de tracción, compresión y fatiga cíclica, siguiendo normativa ASTM e ISO aplicable, con validación en laboratorio externo." -
partId:
REVISIONS
title:Revision History
infoCode:ADMIN
contentPlaceholder (filled):
"Versión 0.1: Borrador inicial con resultados parciales de ensayos. Versión 0.2: Actualizado con datos de pruebas de impacto."
-
- documentParts:
-
documentId:
GP-AM-AMPEL-0100-00-B-THEO-001-A
-
documentTitle:
GP-AM-00 - Speculative (Studying) - Intro & General - Long-Term Cosmic Vision Integration
-
status:
Speculative (Studying)
-
infoCode:
RPT
-
description: Documento especulativo que explora la integración a largo plazo del diseño de airframe con la visión cósmica global de GAIA AIR.
- documentParts:
-
partId:
VISION_INTEGRATION
title:Cosmic Vision Integration Concepts
infoCode:DS
contentPlaceholder (filled):
"Se plantean escenarios de vuelos suborbitales y la adaptación del airframe para misiones de exploración extendida, alineados con la estrategia GAIA AIR." -
partId:
FUTURE_CAPABILITIES_REQ
title:Future Capability Requirements Analysis
infoCode:REQ
contentPlaceholder (filled):
"Requerimientos prospectivos contemplan la incorporación de sistemas autónomos, protección ante radiación cósmica y capacidad de operación en entornos de baja presión." -
partId:
TECH_GAPS_ANALYSIS
title:Technology Gap Analysis
infoCode:CAL
contentPlaceholder (filled):
"Identifica brechas en propulsión, control térmico y sistemas de soporte vital, que requieren investigación adicional y posibles colaboraciones científicas." -
partId:
REVISIONS
title:Revision History
infoCode:ADMIN
contentPlaceholder (filled):
"Versión 0.1: Documento exploratorio inicial. Versión 0.2: Inclusión de comentarios de expertos en exploración espacial."
-
- documentParts:
-
documentId:
GP-AM-AMPEL-0100-00-C-001-A
-
documentTitle:
GP-AM-00 - Condensed (Formal Scientific Consensus) - Intro & General - Core Airframe Design Principles
-
status:
Condensed (Formal Scientific Consensus)
-
infoCode:
OV
-
description: Resumen condensado de los principios fundamentales consensuados para el diseño del airframe AMPEL360XWLRGA.
- documentParts:
-
partId:
CORE_PRINCIPLES_AERO
title:Core Aerodynamic Principles
infoCode:DS
contentPlaceholder (filled):
"Se resumen los perfiles aerodinámicos básicos, el coeficiente de sustentación y la reducción de arrastre en configuraciones típicas del AMPEL360XWLRGA." -
partId:
CORE_PRINCIPLES_STRUCT
title:Core Structural Principles
infoCode:DS
contentPlaceholder (filled):
"Se incluyen criterios de refuerzo en zonas de alta tensión y el uso de uniones híbridas entre materiales compuestos y metales ligeros." -
partId:
RELEVANT_STANDARDS
title:Key Relevant Standards
infoCode:REF
contentPlaceholder (filled):
"FAR/CS-25, normativas ASTM de ensayos de materiales y estándares ISO de calidad forman parte del conjunto de normas aplicables." -
partId:
APPLICATION_SUMMARY
title:Application Summary for AMPEL360XWLRGA
infoCode:DS
contentPlaceholder (filled):
"Estos principios se aplican a las variantes de fuselaje y alas, facilitando la modularidad y la adaptación a futuros modelos en la familia AMPEL." -
partId:
REVISIONS
title:Revision History
infoCode:ADMIN
contentPlaceholder (filled):
"Versión 1.0: Aprobado por consenso científico. Versión 1.1: Ajustes según nueva directiva de ingeniería."
-
- documentParts:
-
documentId:
GP-AM-AMPEL-0100-00-D-001-A
-
documentTitle:
GP-AM-00 - Auto-Adaptive Configuration - Intro & General - AI-Driven Doc Adaptation
-
status:
Auto-Adaptive Configuration
-
infoCode:
SDD
-
description: Documento que detalla el sistema basado en IA para adaptar automáticamente la documentación conforme a cambios en la configuración o datos operativos.
- documentParts:
-
partId:
ADAPTIVE_SYSTEM_DESC
title:AI Documentation Adaptation System Description
infoCode:SDD
contentPlaceholder (filled):
"Se describe la arquitectura de IA que monitorea alteraciones de configuración, ejecuta modelos de machine learning y reconfigura la documentación de forma automatizada." -
partId:
ADAPTATION_TRIGGERS
title:Adaptation Triggers and Rules
infoCode:DS
contentPlaceholder (filled):
"Los disparadores incluyen actualizaciones normativas, cambios en la estructura del airframe o detecciones de anomalías en los datos operativos, aplicando reglas definidas." -
partId:
ADAPTATION_WORKFLOW
title:Adaptation Process Workflow
infoCode:PROC
contentPlaceholder (filled):
"El flujo define pasos de validación, aprobación y registro de versiones antes de que el contenido actualizado entre en vigor." -
partId:
VALIDATION_PROC
title:Validation Procedures for Adapted Docs
infoCode:PROC
contentPlaceholder (filled):
"Se establecen revisiones humanas y controles de consistencia automatizados para garantizar la exactitud y conformidad de la documentación regenerada." -
partId:
REVISIONS
title:Revision History
infoCode:ADMIN
contentPlaceholder (filled):
"Versión 0.9: Fase de prueba interna. Versión 1.0: Publicación de la funcionalidad auto-adaptativa en entorno de producción."
-
- documentParts:
-
documentId:
GP-AM-AMPEL-0100-05-001-A
-
documentTitle:
GP-AM-05 General Document - Time Limits/Maint Checks
-
status:
Draft
-
infoCode:
OV
-
description: Introducción general a los límites de tiempo y procedimientos de mantenimiento para el airframe.
- documentParts:
-
partId:
INTRO
title:Introduction
infoCode:OV
contentPlaceholder (filled):
"Se ofrece una visión global del enfoque de mantenimiento preventivo y correctivo, abarcando límites de operación y revisiones programadas." -
partId:
MAINT_PLAN_REF
title:Maintenance Plan Reference
infoCode:REF
contentPlaceholder (filled):
"Se remite al Plan de Mantenimiento Global del aircraft, indicando frecuencias de inspección y tareas requeridas para garantizar la aeronavegabilidad." -
partId:
REVISIONS
title:Revision History
infoCode:ADMIN
contentPlaceholder (filled):
"Versión 1.0: Borrador inicial con alcances generales. Versión 1.1: Ajuste de intervalos de inspección basado en retroalimentación de servicio."
-
- documentParts:
-
documentId:
GP-AM-AMPEL-0100-05-A-001-A
-
documentTitle:
GP-AM-05 - Approved (In Service) - Time Limits/Maint Checks - Approved Procedures
-
status:
Approved (In Service)
-
infoCode:
PROC
-
description: Procedimientos de mantenimiento e inspección aprobados, con límites de vida de componentes.
- documentParts:
-
partId:
SCHEDULED_MAINT_PROC
title:Scheduled Maintenance Procedures
infoCode:PROC
contentPlaceholder (filled):
"Se definen procedimientos periódicos (checks A, B, C, D) para la preservación integral del airframe, especificando métodos y herramientas requeridas." -
partId:
INSPECTION_PROC
title:Inspection Procedures
infoCode:PROC
contentPlaceholder (filled):
"Incluye métodos visuales, ultrasonidos y ensayos no destructivos para detectar fisuras u otros defectos en zonas críticas." -
partId:
LIFE_LIMITS_TABLE
title:Component Life Limits Data
infoCode:CAT
contentPlaceholder (filled):
"Presenta la lista de partes con vida limitada (p. ej. largueros, secciones del tren de aterrizaje) y sus intervalos de recambio obligatorios." -
partId:
AIRWORTHINESS_LIMITS
title:Airworthiness Limitations Section (ALS)
infoCode:REQ
contentPlaceholder (filled):
"Sección formal que agrupa las limitaciones impuestas por autoridades aeronáuticas, requeridas para mantener la certificación en vigor." -
partId:
REVISIONS
title:Revision History
infoCode:ADMIN
contentPlaceholder (filled):
"Versión 1.0: Documento aprobado en servicio. Versión 1.2: Actualización de intervalos en base a datos operativos."
-
- documentParts:
-
documentId:
GP-AM-AMPEL-0100-06-001-A
-
documentTitle:
GP-AM-06 General Document - Dimensions & Areas
-
status:
Draft
-
infoCode:
OV
-
description: Introducción general a las dimensiones, estaciones y áreas de referencia de la aeronave.
- documentParts:
-
partId:
INTRO
title:Introduction
infoCode:OV
contentPlaceholder (filled):
"Capítulo 06 detalla la metodología para medir y describir las dimensiones clave del airframe, y la asignación de estaciones de fuselaje." -
partId:
DIMENSIONAL_SYSTEM_DEF
title:Dimensional System Definitions
infoCode:DS
contentPlaceholder (filled):
"Incluye definiciones de FS (Fuselage Stations), WL (Water Lines) y BL (Butt Lines), así como la nomenclatura para zonas de referencia." -
partId:
REVISIONS
title:Revision History
infoCode:ADMIN
contentPlaceholder (filled):
"Versión 1.0: Borrador inicial. Versión 1.1: Ajuste de la descripción de ejes en base a feedback de ingeniería."
-
- documentParts:
-
documentId:
GP-AM-AMPEL-0100-06-A-001-A
-
documentTitle:
GP-AM-06 - Approved (In Service) - Dimensions & Areas - Aircraft Geometry Specs
-
status:
Approved (In Service)
-
infoCode:
SP
-
description: Especificaciones aprobadas para la geometría, dimensiones y definiciones de estaciones de la aeronave.
- documentParts:
-
partId:
OVERALL_DIM_DWG
title:Overall Aircraft Dimensions Drawing
infoCode:DWG
contentPlaceholder (filled):
"El dibujo oficial muestra longitud total (~XX m), envergadura (~YY m) y altura (~ZZ m), con márgenes de tolerancia según norma industrial." -
partId:
STATION_DIAGRAMS
title:Station Diagrams
infoCode:DWG
contentPlaceholder (filled):
"Incluye gráficos detallados de FS, BL y WL para ubicaciones críticas en el fuselaje y alas, facilitando alineación y montaje." -
partId:
ZONE_DIAGRAMS
title:Zone Diagrams
infoCode:DWG
contentPlaceholder (filled):
"Desglosa áreas de mantenimiento (Zonas 100, 200, 300, etc.) facilitando la localización rápida de secciones clave en tareas de servicio." -
partId:
REFERENCE_POINTS_SPEC
title:Reference Point Specifications
infoCode:SP
contentPlaceholder (filled):
"Tabla con coordenadas precisas de puntos de referencia (nariz del fuselaje = FS 0.0, WL 0.0, BL 0.0), vitales para mediciones y calibraciones." -
partId:
REVISIONS
title:Revision History
infoCode:ADMIN
contentPlaceholder (filled):
"Versión 1.0: Documento aprobado en servicio. Versión 1.1: Actualización de algunos valores dimensionales tras recalibración en fábrica."
-
- documentParts:
La misma estructura de documentos y secciones (infoCode, status, contentPlaceholder, etc.) se aplicará en los capítulos ATA restantes que integren Part I: GP‑AM. Cada documento incluirá sus partes, descripciones y placeholders específicos, asegurando coherencia con el sistema digital unificado de ingeniería regenerativa.
Esta versión con placeholders llenos refleja una documentación estructurada para COAFI Part I (Airframes – GP‑AM), abarcando introducciones generales, definiciones de alcance, filosofía de diseño, especificaciones de materiales, planes de mantenimiento, integración de visión futura y detalles de geometría. Cada capítulo y documento se alinea con los códigos de información y los estados correspondientes (Draft, Approved, Being Tested, etc.), garantizando trazabilidad y coherencia.
La metodología facilita la adopción de un enfoque integral y colaborativo, donde la documentación puede evolucionar en paralelo con los procesos de diseño, certificación y operación —incluyendo la implementación de inteligencia artificial para la auto-adaptación de contenidos. De este modo, se potencia la eficiencia y la robustez de la gestión documental dentro de la visión de GAIA AIR y su framework COAFI.
- A continuación se presenta la Lista Completa en formato Markdown, integrando todos los capítulos ATA (desde el ATA 07 hasta el ATA 100, incluyendo el ATA 72‑Q01). Cada entrada incluye:
- Código del documento (enlace simulado)
- Tipo de documento
- Descripción breve
- Optimal Format(s): Sugerencias de formatos y extensiones recomendadas para su creación, edición y distribución
- Prompt Adicional: Instrucción generativa para elaborar el contenido técnico digitalizado
Puedes personalizar o ampliar cada entrada según las necesidades específicas del sistema COAFI.
-
GP‑AM‑AMPEL‑0100‑07‑001‑A Tipo: General Document (OV)
Descripción: Introduce el tema de levantamiento y shoring para el airframe.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un informe técnico introductorio sobre los fundamentos del levantamiento y shoring, incluyendo aplicaciones en estructuras aeronáuticas y métodos de medición de cargas.
-
GP‑AM‑AMPEL‑0100‑07‑A‑001‑A Tipo: Approved (In Service) (PROC, MAN)
Descripción: Procedimientos oficiales para operaciones de lifting & shoring.
Optimal Format(s):.pdf
,.xml
(S1000D/ATA),.html
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle los procedimientos, normas y medidas de seguridad para operaciones de lifting & shoring.
-
GP‑AM‑AMPEL‑0100‑07‑B‑001‑A Tipo: Being Tested (Development) (RPT, RES)
Descripción: Pruebas en curso de sistemas robóticos de manipulación en lifting & shoring.
Optimal Format(s):.docx
,.pdf
,.ipynb
,.csv
Prompt Adicional:Redacta un reporte técnico sobre la fase de pruebas en desarrollo de sistemas robóticos de manipulación para lifting & shoring, incluyendo resultados preliminares y ajustes en curso.
-
GP‑AM‑AMPEL‑0100‑07‑B‑THEO‑001‑A Tipo: Speculative (Studying) (RPT, CAL)
Descripción: Explora conceptos teóricos para el manejo en condiciones de ingravidez (zero‑G).
Optimal Format(s):.docx
,.pdf
,.md
,.ipynb
Prompt Adicional:Genera un documento exploratorio que detalle los conceptos teóricos y estudios de viabilidad para el manejo en condiciones de ingravidez, incluyendo simulaciones y escenarios de aplicación.
-
GP‑AM‑AMPEL‑0100‑07‑C‑001‑A Tipo: Condensed (Formal Scientific Consensus) (OV, REF)
Descripción: Resume los principios consensuados sobre distribución de cargas en lifting & shoring.
Optimal Format(s):.md
,.pdf
, Wiki Page
Prompt Adicional:Elabora un resumen técnico condensado que compile los principios científicos y normas de distribución de cargas en procesos de lifting & shoring, basado en consenso formal de expertos.
-
GP‑AM‑AMPEL‑0100‑07‑D‑001‑A Tipo: Auto‑Adaptive Configuration (SDD, PROC)
Descripción: Procedimientos optimizados mediante IA para manejo de cargas.
Optimal Format(s):.json
,.yaml
,.md
,.html
Prompt Adicional:Redacta un documento técnico que describa los procedimientos optimizados para manejo de cargas mediante algoritmos de IA, con ejemplos de adaptabilidad y ajustes en tiempo real.
-
GP‑AM‑AMPEL‑0100‑08‑001‑A Tipo: General Document (OV)
Descripción: Introduce los conceptos de nivelación y pesaje.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que defina los conceptos básicos de nivelación y pesaje en aeronaves, describiendo su importancia en la estabilidad y seguridad del vuelo.
-
GP‑AM‑AMPEL‑0100‑08‑A‑001‑A Tipo: Approved (In Service) (PROC, SP)
Descripción: Procedimientos y límites oficiales para el centro de gravedad (CG).
Optimal Format(s):.pdf
,.xml
,.xlsx
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle procedimientos y límites para el cálculo y verificación del centro de gravedad en aeronaves.
-
GP‑AM‑AMPEL‑0100‑08‑B‑001‑A Tipo: Being Tested (Development) (RPT, RES)
Descripción: Pruebas de cálculo del CG utilizando sistemas HPC.
Optimal Format(s):.docx
,.pdf
,.ipynb
,.csv
Prompt Adicional:Elabora un informe técnico sobre la fase de pruebas en desarrollo para el cálculo del centro de gravedad utilizando sistemas HPC, incluyendo metodología y resultados preliminares.
-
GP‑AM‑AMPEL‑0100‑08‑B‑THEO‑001‑A Tipo: Speculative (Studying) (RPT)
Descripción: Explora conceptos de sensores cuánticos para mediciones de peso.
Optimal Format(s):.docx
,.pdf
,.md
Prompt Adicional:Genera un documento exploratorio que discuta el potencial de sensores cuánticos en la medición de peso, abordando desafíos, ventajas y posibles aplicaciones en aeronáutica.
-
GP‑AM‑AMPEL‑0100‑08‑C‑001‑A Tipo: Condensed (Formal Scientific Consensus) (OV, REF)
Descripción: Resumen de los fundamentos para determinar el CG.
Optimal Format(s):.md
,.pdf
, Wiki Page
Prompt Adicional:Redacta un resumen técnico condensado que presente los fundamentos y metodologías para la determinación del centro de gravedad, basado en consenso científico.
-
GP‑AM‑AMPEL‑0100‑08‑D‑001‑A Tipo: Auto‑Adaptive Configuration (SDD, CAL)
Descripción: Optimización IA de parámetros de peso y balance.
Optimal Format(s):.json
,.yaml
,.md
, DB Record
Prompt Adicional:Genera un documento técnico que describa cómo se aplican algoritmos de IA para optimizar los parámetros de peso y balance en aeronaves, con ejemplos prácticos.
-
GP‑AM‑AMPEL‑0100‑09‑001‑A Tipo: General Document (OV)
Descripción: Introduce procedimientos de remolque y taxiado.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Redacta un informe introductorio sobre las técnicas y procedimientos utilizados en remolque y taxiado de aeronaves, destacando la importancia de la coordinación y la seguridad.
-
GP‑AM‑AMPEL‑0100‑09‑A‑001‑A Tipo: Approved (In Service) (PROC, MAN)
Descripción: Procedimientos y protocolos oficiales para remolque y taxiado.
Optimal Format(s):.pdf
,.xml
,.html
Prompt Adicional:Genera un manual operativo aprobado que incluya protocolos de seguridad y procedimientos estándar para el remolque y taxiado de aeronaves en tierra.
-
GP‑AM‑AMPEL‑0100‑09‑B‑001‑A Tipo: Being Tested (Development) (RPT, RES)
Descripción: Pruebas de sistemas autónomos para el taxiado.
Optimal Format(s):.docx
,.pdf
,.ipynb
,.csv
Prompt Adicional:Desarrolla un informe técnico sobre las pruebas en curso de sistemas autónomos para el taxiado de aeronaves, detallando la metodología y los resultados preliminares.
-
GP‑AM‑AMPEL‑0100‑09‑B‑THEO‑001‑A Tipo: Speculative (Studying) (RPT)
Descripción: Conceptos de sensores cuánticos para optimizar la navegación en tierra.
Optimal Format(s):.docx
,.pdf
,.md
Prompt Adicional:Elabora un documento exploratorio que discuta el potencial de sensores cuánticos para optimizar la navegación y seguridad en tierra, incluyendo escenarios de aplicación.
-
GP‑AM‑AMPEL‑0100‑09‑C‑001‑A Tipo: Condensed (Formal Scientific Consensus) (OV, REF)
Descripción: Resumen de las mejores prácticas en manejo en tierra.
Optimal Format(s):.md
,.pdf
, Wiki Page
Prompt Adicional:Redacta un resumen técnico condensado que compile las mejores prácticas y principios del manejo en tierra de aeronaves, basados en consenso profesional.
-
GP‑AM‑AMPEL‑0100‑09‑D‑001‑A Tipo: Auto‑Adaptive Configuration (SDD, PROC)
Descripción: Optimización en tiempo real de la gestión del tráfico en tierra mediante IA.
Optimal Format(s):.json
,.yaml
,.md
, API Spec
Prompt Adicional:Genera un documento técnico que explique cómo se aplican algoritmos de IA para la optimización en tiempo real del tráfico en tierra, integrando múltiples fuentes de datos.
-
GP‑AM‑AMPEL‑0100‑10‑001‑A Tipo: General Document (OV)
Descripción: Introduce prácticas de estacionamiento, amarre y almacenamiento.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Crea un informe técnico introductorio que describa las prácticas de estacionamiento y amarre de aeronaves, subrayando la importancia de la preservación durante el almacenamiento.
-
GP‑AM‑AMPEL‑0100‑10‑A‑001‑A Tipo: Approved (In Service) (PROC, MAN)
Descripción: Procedimientos oficiales para estacionamiento y almacenamiento prolongado.
Optimal Format(s):.pdf
,.xml
,.html
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle los procedimientos de seguridad para el estacionamiento, amarre y almacenamiento prolongado de aeronaves.
-
GP‑AM‑AMPEL‑0100‑10‑B‑001‑A Tipo: Being Tested (Development) (RPT, RES)
Descripción: Pruebas de mantenimiento robótico durante el almacenamiento.
Optimal Format(s):.docx
,.pdf
,.log
,.mp4
Prompt Adicional:Redacta un informe técnico sobre las pruebas en desarrollo de mantenimiento robótico en condiciones de almacenamiento de aeronaves, resaltando innovaciones y resultados preliminares.
-
GP‑AM‑AMPEL‑0100‑10‑B‑THEO‑001‑A Tipo: Speculative (Studying) (RPT, CAL)
Descripción: Conceptos para el almacenamiento a largo plazo de combustibles criogénicos.
Optimal Format(s):.docx
,.pdf
,.md
Prompt Adicional:Genera un documento exploratorio que discuta la viabilidad y desafíos técnicos de almacenar combustibles criogénicos a largo plazo en aeronaves, incluyendo aspectos térmicos y de seguridad.
-
GP‑AM‑AMPEL‑0100‑10‑C‑001‑A Tipo: Condensed (Formal Scientific Consensus) (OV, REF)
Descripción: Resumen de prácticas para la preservación en almacenamiento.
Optimal Format(s):.md
,.pdf
, Wiki Page
Prompt Adicional:Redacta un resumen técnico condensado que compile las mejores prácticas para la preservación de aeronaves durante períodos prolongados de almacenamiento.
-
GP‑AM‑AMPEL‑0100‑10‑D‑001‑A Tipo: Auto‑Adaptive Configuration (SDD, PLAN)
Descripción: Optimización de la programación de almacenamiento y mantenimiento mediante IA.
Optimal Format(s):.json
,.yaml
,.md
, DB Schema
Prompt Adicional:Elabora un documento técnico que describa cómo los algoritmos de IA se utilizan para programar y optimizar el mantenimiento preventivo durante el almacenamiento de aeronaves.
-
GP‑AM‑AMPEL‑0100‑11‑001‑A Tipo: General Document (OV)
Descripción: Introduce la señalización y marcajes en la aeronave.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un informe introductorio que detalle la importancia de la señalización y marcajes en aeronaves para la seguridad operacional y normativa.
-
GP‑AM‑AMPEL‑0100‑11‑A‑001‑A Tipo: Approved (In Service) (PROC, DWG)
Descripción: Estándares y ubicaciones aprobados para la señalización.
Optimal Format(s):.pdf
,.dwg
,.svg
,.xlsx
Prompt Adicional:Desarrolla un manual operativo aprobado que especifique los estándares, ubicaciones y diseño de la señalización y marcajes en la aeronave.
-
GP‑AM‑AMPEL‑0100‑11‑B‑001‑A Tipo: Being Tested (Development) (RPT, RES)
Descripción: Pruebas de señalización aumentada mediante AR.
Optimal Format(s):.docx
,.pdf
,.mp4
Prompt Adicional:Redacta un informe técnico sobre las pruebas en desarrollo de señalización aumentada en aeronaves, incluyendo tecnología AR y su impacto en la visibilidad y seguridad.
-
GP‑AM‑AMPEL‑0100‑11‑B‑THEO‑001‑A Tipo: Speculative (Studying) (RPT)
Descripción: Conceptos de señalización con luminiscencia cuántica.
Optimal Format(s):.docx
,.pdf
,.md
Prompt Adicional:Genera un documento exploratorio que analice la viabilidad y aplicaciones de la señalización luminiscente cuántica en aeronaves.
-
GP‑AM‑AMPEL‑0100‑11‑C‑001‑A Tipo: Condensed (Formal Scientific Consensus) (OV, REF)
Descripción: Resumen de normas de señalización aeronáutica.
Optimal Format(s):.md
,.pdf
, Wiki Page
Prompt Adicional:Elabora un resumen técnico condensado que compile los estándares y normativas de señalización aeronáutica a nivel internacional.
-
GP‑AM‑AMPEL‑0100‑11‑D‑001‑A Tipo: Auto‑Adaptive Configuration (SDD, PROC)
Descripción: Adaptación dinámica de la señalización mediante IA.
Optimal Format(s):.json
,.yaml
,.md
, API Spec
Prompt Adicional:Redacta un documento técnico que describa cómo se aplica IA para ajustar la señalización en tiempo real según variables operativas y ambientales.
-
GP‑AM‑AMPEL‑0100‑12‑001‑A Tipo: General Document (OV)
Descripción: Introduce procedimientos de mantenimiento rutinario.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un informe introductorio que defina los procedimientos básicos y la importancia del mantenimiento rutinario en aeronaves.
-
GP‑AM‑AMPEL‑0100‑12‑A‑001‑A Tipo: Approved (In Service) (PROC, MAN)
Descripción: Procedimientos y cronogramas oficiales de mantenimiento rutinario.
Optimal Format(s):.pdf
,.xml
,.html
Prompt Adicional:Desarrolla un manual operativo aprobado que incluya el cronograma y los procedimientos detallados para el mantenimiento rutinario de la aeronave.
-
GP‑AM‑AMPEL‑0100‑12‑B‑001‑A Tipo: Being Tested (Development) (RPT, RES)
Descripción: Pruebas de sistemas robóticos de servicio.
Optimal Format(s):.docx
,.pdf
,.log
,.mp4
Prompt Adicional:Elabora un reporte técnico sobre las pruebas en curso de sistemas robóticos de servicio, incluyendo metodologías, resultados preliminares y mejoras identificadas.
-
GP‑AM‑AMPEL‑0100‑12‑B‑THEO‑001‑A Tipo: Speculative (Studying) (RPT)
Descripción: Conceptos de autolimpieza mediante nanobots.
Optimal Format(s):.docx
,.pdf
,.md
Prompt Adicional:Redacta un documento exploratorio que investigue la viabilidad de sistemas de autolimpieza mediante nanobots en aeronaves, describiendo principios de operación y aplicaciones potenciales.
-
GP‑AM‑AMPEL‑0100‑12‑C‑001‑A Tipo: Condensed (Formal Scientific Consensus) (OV, REF)
Descripción: Resumen de estándares para fluidos y lubricantes.
Optimal Format(s):.md
,.pdf
, Wiki Page
Prompt Adicional:Genera un resumen técnico condensado que compile los estándares y recomendaciones para la gestión de fluidos y lubricantes en sistemas aeronáuticos.
-
GP‑AM‑AMPEL‑0100‑12‑D‑001‑A Tipo: Auto‑Adaptive Configuration (SDD, PLAN)
Descripción: Utiliza IA para predecir necesidades de mantenimiento.
Optimal Format(s):.json
,.yaml
,.md
, API Spec
Prompt Adicional:Crea un documento técnico que explique cómo los algoritmos de IA pueden predecir las necesidades de mantenimiento en aeronaves y optimizar los cronogramas de servicio.
-
GP‑AM‑AMPEL‑0100‑18‑001‑A Tipo: General Document (OV)
Descripción: Introduce conceptos de vibración y ruido en el airframe.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento técnico introductorio sobre la importancia del control de vibraciones y ruido en la estructura de la aeronave, explicando sus efectos en el rendimiento y confort.
-
GP‑AM‑AMPEL‑0100‑18‑A‑001‑A Tipo: Approved (In Service) (SP, PROC)
Descripción: Límites y procedimientos de monitoreo de vibración y ruido.
Optimal Format(s):.pdf
,.xml
,.xlsx
Prompt Adicional:Desarrolla un manual operativo aprobado que incluya los límites de vibración y ruido, junto con los procedimientos de monitoreo y medidas de mitigación.
-
GP‑AM‑AMPEL‑0100‑18‑B‑001‑A Tipo: Being Tested (Development) (RPT, RES)
Descripción: Pruebas de cancelación activa de ruido.
Optimal Format(s):.docx
,.pdf
,.csv
,.wav
/.flac
Prompt Adicional:Redacta un informe técnico sobre las pruebas en desarrollo de sistemas de cancelación activa de ruido, describiendo la tecnología, metodología y resultados preliminares.
-
GP‑AM‑AMPEL‑0100‑18‑B‑THEO‑001‑A Tipo: Speculative (Studying) (RPT, CAL)
Descripción: Conceptos de amortiguación acústica cuántica.
Optimal Format(s):.docx
,.pdf
,.md
,.ipynb
Prompt Adicional:Elabora un documento exploratorio que analice la posibilidad de aplicar principios cuánticos para mejorar la amortiguación acústica en estructuras aeronáuticas.
-
GP‑AM‑AMPEL‑0100‑18‑C‑001‑A Tipo: Condensed (Formal Scientific Consensus) (OV, REF)
Descripción: Resumen de principios aeroacústicos y normativas de ruido.
Optimal Format(s):.md
,.pdf
, Wiki Page
Prompt Adicional:Genera un resumen técnico condensado que compile los principios aeroacústicos y normativas de ruido relevantes en el diseño y operación de aeronaves.
-
GP‑AM‑AMPEL‑0100‑18‑D‑001‑A Tipo: Auto‑Adaptive Configuration (SDD, PROC)
Descripción: Optimización en tiempo real de perfiles de ruido mediante IA.
Optimal Format(s):.json
,.yaml
,.md
, API Spec
Prompt Adicional:Crea un documento técnico que explique cómo se utiliza la IA para ajustar y optimizar los perfiles de ruido en tiempo real, basándose en la monitorización continua de condiciones de vuelo.
-
GP‑AM‑AMPEL‑0100‑20‑001‑A Tipo: General Document (OV)
Descripción: Métodos y materiales para sujetadores, adhesivos y pruebas NDT.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que explique los fundamentos de sujetadores, adhesivos y métodos de pruebas NDT en la industria aeroespacial, resaltando sus aplicaciones.
-
GP‑AM‑AMPEL‑0100‑20‑A‑001‑A Tipo: Approved (In Service) (SP, CAT)
Descripción: Materiales y normas aprobados para sujetadores y técnicas de unión.
Optimal Format(s):.pdf
,.xlsx
,.xml
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle los materiales y normas técnicas para sujetadores y adhesivos utilizados en aeronaves.
-
GP‑AM‑AMPEL‑0100‑20‑B‑001‑A Tipo: Being Tested (Development) (RPT, RES)
Descripción: Pruebas de técnicas avanzadas de unión en compuestos.
Optimal Format(s):.docx
,.pdf
,.csv
Prompt Adicional:Redacta un informe técnico sobre las pruebas en desarrollo de técnicas avanzadas de unión en compuestos, incluyendo metodologías de ensayo y resultados preliminares.
-
GP‑AM‑AMPEL‑0100‑20‑B‑THEO‑001‑A Tipo: Speculative (Studying) (RPT, CAL)
Descripción: Conceptos de materiales autorreparables y sensores cuánticos para NDT.
Optimal Format(s):.docx
,.pdf
,.md
Prompt Adicional:Elabora un documento exploratorio que discuta el potencial de materiales autorreparables y el uso de sensores cuánticos para mejorar las técnicas NDT en la industria aeroespacial.
-
GP‑AM‑AMPEL‑0100‑20‑C‑001‑A Tipo: Condensed (Formal Scientific Consensus) (OV, REF)
Descripción: Resumen de estándares para sujetadores y métodos de unión.
Optimal Format(s):.md
,.pdf
, Wiki Page
Prompt Adicional:Genera un resumen técnico condensado que compile los estándares y recomendaciones sobre sujetadores y métodos de unión en aeronaves.
-
GP‑AM‑AMPEL‑0100‑20‑D‑001‑A Tipo: Auto‑Adaptive Configuration (SDD, PROC)
Descripción: Sistemas basados en IA para detección de defectos en NDT.
Optimal Format(s):.json
,.yaml
,.md
, API Spec
Prompt Adicional:Redacta un documento técnico que explique cómo la IA se utiliza para la detección de defectos en pruebas NDT, incluyendo ejemplos de algoritmos predictivos y resultados esperados.
-
GP‑AM‑AMPEL‑0100‑21‑001‑A Tipo: General Document (OV)
Descripción: Presenta los sistemas de aire acondicionado y presurización.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que detalle los fundamentos y la importancia de los sistemas de aire acondicionado y presurización en aeronaves.
-
GP‑AM‑AMPEL‑0100‑21‑A‑001‑A Tipo: Approved (In Service) (PROC, MAN)
Descripción: Especificaciones y límites operativos del sistema de climatización.
Optimal Format(s):.pdf
,.xml
,.html
Prompt Adicional:Desarrolla un manual operativo aprobado que especifique las especificaciones, límites operativos y procedimientos de verificación del sistema de climatización en la aeronave.
-
GP‑AM‑AMPEL‑0100‑21‑B‑001‑A Tipo: Being Tested (Development) (RPT, RES)
Descripción: Pruebas de integración del sistema de climatización ecológico (ECS).
Optimal Format(s):.docx
,.pdf
,.csv
Prompt Adicional:Redacta un informe técnico sobre las pruebas en desarrollo de integración del sistema de climatización ecológico, incluyendo metodologías de ensayo y análisis de resultados.
-
GP‑AM‑AMPEL‑0100‑21‑B‑THEO‑001‑A Tipo: Speculative (Studying) (RPT, CAL)
Descripción: Conceptos cuánticos para refrigeración y purificación del aire.
Optimal Format(s):.docx
,.pdf
,.md
,.ipynb
Prompt Adicional:Genera un documento exploratorio que analice la aplicación de conceptos cuánticos en sistemas de refrigeración y purificación del aire en aeronaves, incluyendo estudios teóricos y simulaciones.
-
GP‑AM‑AMPEL‑0100‑21‑C‑001‑A Tipo: Condensed (Formal Scientific Consensus) (OV, REF)
Descripción: Resumen de principios de control ambiental en cabinas.
Optimal Format(s):.md
,.pdf
, Wiki Page
Prompt Adicional:Redacta un resumen técnico condensado que compile los principios fundamentales de control ambiental en cabinas, basado en consensos de expertos y normativas internacionales.
-
GP‑AM‑AMPEL‑0100‑21‑D‑001‑A Tipo: Auto‑Adaptive Configuration (SDD, PROC)
Descripción: Optimiza la climatización de la cabina mediante IA.
Optimal Format(s):.json
,.yaml
,.md
, API Spec
Prompt Adicional:Crea un documento técnico que describa cómo la IA se utiliza para optimizar en tiempo real la climatización de la cabina, integrando datos de sensores y condiciones externas.
-
GP‑AM‑AMPEL‑0100‑22‑001‑A Tipo: General Document (OV)
Descripción: Introduce los sistemas de vuelo automático.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que defina los conceptos básicos y componentes del sistema de vuelo automático en aeronaves.
-
GP‑AM‑AMPEL‑0100‑22‑A‑001‑A Tipo: Approved (In Service) (PROC, MAN)
Descripción: Modos y procedimientos aprobados del piloto automático.
Optimal Format(s):.pdf
,.xml
,.html
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle los modos y procedimientos de operación del piloto automático, incluyendo los protocolos de transición a control manual.
-
GP‑AM‑AMPEL‑0100‑22‑B‑001‑A Tipo: Being Tested (Development) (RPT, RES)
Descripción: Pruebas de sistemas de vuelo automático basados en heurísticas IA.
Optimal Format(s):.docx
,.pdf
,.ipynb
,.csv
Prompt Adicional:Redacta un informe técnico sobre las pruebas en desarrollo de sistemas de vuelo automático que utilizan heurísticas de IA, con análisis de rendimiento y desafíos encontrados.
-
GP‑AM‑AMPEL‑0100‑22‑B‑THEO‑001‑A Tipo: Speculative (Studying) (RPT)
Descripción: Conceptos de control de vuelo mejorado mediante tecnología cuántica.
Optimal Format(s):.docx
,.pdf
,.md
Prompt Adicional:Genera un documento exploratorio que discuta la integración de tecnologías cuánticas en el control de vuelo, destacando posibles mejoras en la precisión y respuesta del sistema.
-
GP‑AM‑AMPEL‑0100‑22‑C‑001‑A Tipo: Condensed (Formal Scientific Consensus) (OV, REF)
Descripción: Resumen de principios de diseño de sistemas de control de vuelo.
Optimal Format(s):.md
,.pdf
, Wiki Page
Prompt Adicional:Redacta un resumen técnico condensado que compile los principios fundamentales del diseño de sistemas de control de vuelo basados en consenso científico.
-
GP‑AM‑AMPEL‑0100‑22‑D‑001‑A Tipo: Auto‑Adaptive Configuration (SDD, PROC)
Descripción: Implementa IA para ajustar dinámicamente las leyes de control de vuelo.
Optimal Format(s):.json
,.yaml
,.md
, API Spec
Prompt Adicional:Elabora un documento técnico que describa la aplicación de algoritmos de IA para el ajuste dinámico de las leyes de control de vuelo, incluyendo ejemplos y casos de éxito.
-
GP‑AM‑AMPEL‑0100‑23‑001‑A Tipo: General Document (OV)
Descripción: Introduce los sistemas de comunicaciones en la aeronave.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un informe introductorio sobre la importancia y funciones de los sistemas de comunicaciones en aeronaves, resaltando su papel en la seguridad operacional.
-
GP‑AM‑AMPEL‑0100‑23‑A‑001‑A Tipo: Approved (In Service) (PROC, SP)
Descripción: Especifica frecuencias y protocolos aprobados para comunicaciones.
Optimal Format(s):.pdf
,.xml
,.xlsx
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle las frecuencias, protocolos y configuraciones estándar de los sistemas de comunicaciones en aeronaves.
-
GP‑AM‑AMPEL‑0100‑23‑B‑001‑A Tipo: Being Tested (Development) (RPT, RES)
Descripción: Pruebas de sistemas de comunicaciones cuánticas.
Optimal Format(s):.docx
,.pdf
,.ipynb
,.csv
Prompt Adicional:Redacta un informe técnico sobre las pruebas en desarrollo de sistemas de comunicaciones cuánticas, incluyendo metodologías de ensayo y análisis de resultados.
-
GP‑AM‑AMPEL‑0100‑23‑B‑THEO‑001‑A Tipo: Speculative (Studying) (RPT)
Descripción: Conceptos de comunicaciones mediante entrelazamiento cuántico.
Optimal Format(s):.docx
,.pdf
,.md
Prompt Adicional:Genera un documento exploratorio que analice la viabilidad y aplicaciones potenciales de las comunicaciones mediante entrelazamiento cuántico en entornos aeronáuticos.
-
GP‑AM‑AMPEL‑0100‑23‑C‑001‑A Tipo: Condensed (Formal Scientific Consensus) (OV, REF)
Descripción: Resumen de normas y estándares de comunicaciones aeronáuticas.
Optimal Format(s):.md
,.pdf
, Wiki Page
Prompt Adicional:Redacta un resumen técnico condensado que compile las normas y estándares internacionales aplicables a los sistemas de comunicaciones en aeronaves.
-
GP‑AM‑AMPEL‑0100‑23‑D‑001‑A Tipo: Auto‑Adaptive Configuration (SDD, PROC)
Descripción: Optimización del espectro y asignación de frecuencias con IA.
Optimal Format(s):.json
,.yaml
,.md
, API Spec
Prompt Adicional:Elabora un documento técnico que describa cómo se utilizan algoritmos de IA para la optimización del espectro y la asignación de frecuencias en sistemas de comunicaciones aeronáuticas.
-
GP‑AM‑AMPEL‑0100‑24‑001‑A Tipo: General Document (OV)
Descripción: Introduce los sistemas de energía eléctrica de la aeronave.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que describa la arquitectura y los componentes del sistema de energía eléctrica en una aeronave.
-
GP‑AM‑AMPEL‑0100‑24‑A‑001‑A Tipo: Approved (In Service) (PROC, SP)
Descripción: Especificaciones y límites operativos del sistema eléctrico.
Optimal Format(s):.pdf
,.xml
,.html
Prompt Adicional:Desarrolla un manual técnico aprobado que detalle las especificaciones y límites operativos del sistema eléctrico de la aeronave, incluyendo diagramas de distribución.
-
GP‑AM‑AMPEL‑0100‑24‑B‑001‑A Tipo: Being Tested (Development) (RPT, RES)
Descripción: Pruebas de integración de sistemas de energía basados en AEHCS.
Optimal Format(s):.docx
,.pdf
,.csv
Prompt Adicional:Redacta un informe técnico sobre las pruebas de integración de sistemas de energía basados en AEHCS, con análisis de rendimiento y detección de anomalías.
-
GP‑AM‑AMPEL‑0100‑24‑B‑THEO‑001‑A Tipo: Speculative (Studying) (RPT)
Descripción: Conceptos de transferencia de energía cuántica.
Optimal Format(s):.docx
,.pdf
,.md
Prompt Adicional:Genera un documento exploratorio que analice los fundamentos teóricos y posibles aplicaciones de la transferencia de energía cuántica en sistemas eléctricos de aeronaves.
-
GP‑AM‑AMPEL‑0100‑24‑C‑001‑A Tipo: Condensed (Formal Scientific Consensus) (OV, REF)
Descripción: Resumen de principios y normativas de sistemas eléctricos aeronáuticos.
Optimal Format(s):.md
,.pdf
, Wiki Page
Prompt Adicional:Elabora un resumen técnico condensado que compile los principios básicos y normativas de los sistemas eléctricos en la industria aeronáutica.
-
GP‑AM‑AMPEL‑0100‑24‑D‑001‑A Tipo: Auto‑Adaptive Configuration (SDD, PROC)
Descripción: Optimización de la gestión y distribución de energía mediante IA.
Optimal Format(s):.json
,.yaml
,.md
, API Spec
Prompt Adicional:Redacta un documento técnico que describa la aplicación de algoritmos de IA para la gestión y optimización de la distribución de energía en aeronaves.
-
GP‑AM‑AMPEL‑0100‑25‑001‑A Tipo: General Document (OV)
Descripción: Introduce los sistemas de equipamiento y mobiliario de la cabina.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que detalle los fundamentos y la importancia del equipamiento y mobiliario en la cabina de una aeronave.
-
GP‑AM‑AMPEL‑0100‑25‑A‑001‑A Tipo: Approved (In Service) (PROC, CAT)
Descripción: Listados y layouts oficiales de equipamiento de cabina.
Optimal Format(s):.pdf
,.xml
,.xlsx
Prompt Adicional:Desarrolla un manual operativo aprobado que incluya listas de equipamiento, layouts y configuraciones estándar para la cabina.
(Las entradas para otros subtemas de ATA 25, como asientos, galleys, lavatorios y equipos de emergencia, se estructuran de forma similar.)
-
GP‑AM‑AMPEL‑0100‑26‑001‑A Tipo: General Document (OV)
Descripción: Introduce los sistemas de protección contra incendios en la aeronave.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que detalle la importancia de los sistemas de protección contra incendios en aeronaves.
-
GP‑AM‑AMPEL‑0100‑26‑A‑001‑A Tipo: Approved (In Service) (PROC, MAN)
Descripción: Procedimientos oficiales para protección contra incendios.
Optimal Format(s):.pdf
,.xml
,.html
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle las especificaciones y procedimientos de protección contra incendios.
(Se incluyen entradas adicionales para sistemas de detección, supresión y zonas de protección, siguiendo el mismo patrón.)
-
GP‑AM‑AMPEL‑0100‑27‑001‑A Tipo: General Document (OV)
Descripción: Introduce los sistemas de control de vuelo.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que describa la importancia y los componentes de los sistemas de control de vuelo en aeronaves.
-
GP‑AM‑AMPEL‑0100‑27‑A‑001‑A Tipo: Approved (In Service) (PROC, MAN)
Descripción: Especificaciones y procedimientos para el control de vuelo.
Optimal Format(s):.pdf
,.xml
,.html
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle las especificaciones, límites y procedimientos de los sistemas de control de vuelo.
(Se incluirán entradas para controles primarios, secundarios y lógica de vuelo, siguiendo el mismo esquema.)
-
GP‑AM‑AMPEL‑0100‑28‑001‑A Tipo: General Document (OV)
Descripción: Introduce los conceptos del sistema de combustible.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que describa los fundamentos y la importancia del sistema de combustible en aeronaves.
-
GP‑AM‑AMPEL‑0100‑28‑A‑001‑A Tipo: Approved (In Service) (PROC, SP)
Descripción: Especificaciones y límites para el sistema de combustible.
Optimal Format(s):.pdf
,.xml
,.xlsx
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle las especificaciones y procedimientos para el manejo del combustible.
(Se documentan adaptaciones especiales para AMPEL360XWLRGA, dado su potencial sistema AEHCS.)
-
GP‑AM‑AMPEL‑0100‑29‑001‑A Tipo: General Document (OV)
Descripción: Introduce los sistemas hidráulicos de la aeronave.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que explique la importancia y funcionamiento de los sistemas hidráulicos en aeronaves.
-
GP‑AM‑AMPEL‑0100‑29‑A‑001‑A Tipo: Approved (In Service) (PROC, SP)
Descripción: Especificaciones y normas para el sistema hidráulico.
Optimal Format(s):.pdf
,.xml
,.html
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle las especificaciones y procedimientos del sistema hidráulico.
-
GP‑AM‑AMPEL‑0100‑30‑001‑A Tipo: General Document (OV)
Descripción: Introduce los sistemas de protección contra hielo y lluvia.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un informe introductorio que describa los desafíos y fundamentos de la protección contra hielo y lluvia en aeronaves.
-
GP‑AM‑AMPEL‑0100‑30‑A‑001‑A Tipo: Approved (In Service) (PROC, MAN)
Descripción: Procedimientos oficiales para protección contra hielo y lluvia.
Optimal Format(s):.pdf
,.xml
,.html
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle los procedimientos de protección contra hielo y lluvia, incluyendo especificaciones de componentes.
-
GP‑AM‑AMPEL‑0100‑31‑001‑A Tipo: General Document (OV)
Descripción: Introduce los sistemas de indicación y registro de datos.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que explique la importancia de los sistemas de indicación y registro en la monitorización del rendimiento y la seguridad.
-
GP‑AM‑AMPEL‑0100‑31‑A‑001‑A Tipo: Approved (In Service) (PROC, SP)
Descripción: Especificaciones de instrumentos y formatos de datos aprobados.
Optimal Format(s):.pdf
,.xml
,.xlsx
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle las especificaciones y formatos de datos para los sistemas de indicación y registro en aeronaves.
-
GP‑AM‑AMPEL‑0100‑32‑001‑A Tipo: General Document (OV)
Descripción: Introduce el tren de aterrizaje de la aeronave.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que explique la función y componentes del tren de aterrizaje, destacando su importancia en la seguridad operativa.
-
GP‑AM‑AMPEL‑0100‑32‑A‑001‑A Tipo: Approved (In Service) (PROC, SP)
Descripción: Especificaciones y procedimientos para el tren de aterrizaje.
Optimal Format(s):.pdf
,.xml
,.html
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle las especificaciones, procedimientos de operación y mantenimiento del tren de aterrizaje.
-
GP‑AM‑AMPEL‑0100‑33‑001‑A Tipo: General Document (OV)
Descripción: Introduce los sistemas de iluminación de la aeronave.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un informe introductorio que describa la importancia y componentes de los sistemas de iluminación en aeronaves.
-
GP‑AM‑AMPEL‑0100‑33‑A‑001‑A Tipo: Approved (In Service) (PROC, SP)
Descripción: Especificaciones aprobadas de iluminación.
Optimal Format(s):.pdf
,.dwg
,.svg
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle las especificaciones y normativas de iluminación para aeronaves, incluyendo diagramas y ejemplos prácticos.
-
GP‑AM‑AMPEL‑0100‑34‑001‑A Tipo: General Document (OV)
Descripción: Introduce los sistemas de navegación de la aeronave.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que explique los fundamentos y componentes de los sistemas de navegación en aeronaves.
-
GP‑AM‑AMPEL‑0100‑34‑A‑001‑A Tipo: Approved (In Service) (PROC, SP)
Descripción: Especificaciones y límites de precisión para navegación.
Optimal Format(s):.pdf
,.xml
,.xlsx
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle las especificaciones, límites y criterios de precisión para los sistemas de navegación en aeronaves.
-
GP‑AM‑AMPEL‑0100‑35‑001‑A Tipo: General Document (OV)
Descripción: Introduce los sistemas de oxígeno a bordo.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que describa la función y componentes de los sistemas de oxígeno en aeronaves.
-
GP‑AM‑AMPEL‑0100‑35‑A‑001‑A Tipo: Approved (In Service) (PROC, SP)
Descripción: Especificaciones y procedimientos aprobados para la generación y distribución de oxígeno.
Optimal Format(s):.pdf
,.xml
,.html
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle los procedimientos y normativas para la generación y distribución de oxígeno en la aeronave.
-
GP‑AM‑AMPEL‑0100‑36‑001‑A Tipo: General Document (OV)
Descripción: Introduce los sistemas neumáticos de la aeronave.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que explique el funcionamiento básico de los sistemas neumáticos en aeronaves y su importancia operacional.
-
GP‑AM‑AMPEL‑0100‑36‑A‑001‑A Tipo: Approved (In Service) (PROC, SP)
Descripción: Procedimientos y especificaciones aprobadas para sistemas neumáticos.
Optimal Format(s):.pdf
,.xml
,.html
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle las especificaciones y protocolos de mantenimiento para los sistemas neumáticos en aeronaves.
-
GP‑AM‑AMPEL‑0100‑38‑001‑A Tipo: General Document (OV)
Descripción: Introduce los sistemas de gestión de agua y residuos.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que describa los fundamentos de los sistemas de gestión de agua y residuos en aeronaves y su impacto en la eficiencia operativa.
-
GP‑AM‑AMPEL‑0100‑38‑A‑001‑A Tipo: Approved (In Service) (PROC, SP)
Descripción: Procedimientos y especificaciones para la gestión de agua y residuos.
Optimal Format(s):.pdf
,.xml
,.html
Prompt Adicional:Desarrolla un manual operativo aprobado que incluya procedimientos detallados para la gestión de agua potable y residuos en aeronaves.
-
GP‑AM‑AMPEL‑0100‑45‑001‑A Tipo: General Document (OV)
Descripción: Introduce el sistema central de mantenimiento (CMS).
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que describa la importancia y funciones del Sistema Central de Mantenimiento (CMS) en la aeronave.
-
GP‑AM‑AMPEL‑0100‑45‑A‑001‑A Tipo: Approved (In Service) (PROC, MAN)
Descripción: Especificaciones y acceso a datos del CMS.
Optimal Format(s):.pdf
,.xml
,.html
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle las especificaciones del CMS, cómo se accede a los datos y su integración en la cadena de mantenimiento.
-
GP‑AM‑AMPEL‑0100‑46‑001‑A Tipo: General Document (OV)
Descripción: Introduce los sistemas de información y comunicación interna.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que explique la arquitectura de los sistemas de información y comunicación interna en aeronaves.
-
GP‑AM‑AMPEL‑0100‑46‑A‑001‑A Tipo: Approved (In Service) (PROC, SP)
Descripción: Especificaciones de redes y protocolos de información.
Optimal Format(s):.pdf
,.xml
,.xlsx
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle las especificaciones de redes y protocolos de comunicación interna, incluyendo diagramas de flujo de datos.
-
GP‑AM‑AMPEL‑0100‑49‑001‑A Tipo: General Document (OV)
Descripción: Introduce el sistema de potencia auxiliar (AAP).
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que describa la función y componentes del sistema de potencia auxiliar (AAP) en una aeronave.
-
GP‑AM‑AMPEL‑0100‑49‑A‑001‑A Tipo: Approved (In Service) (PROC, SP)
Descripción: Especificaciones y rendimiento aprobados del AAP.
Optimal Format(s):.pdf
,.xml
,.html
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle las especificaciones y parámetros de rendimiento del AAP, junto con procedimientos de prueba y mantenimiento.
-
GP‑AM‑AMPEL‑0201‑51‑001‑A Tipo: General Document (OV)
Descripción: Introduce los principios generales del diseño estructural del airframe.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que explique los fundamentos del diseño estructural en aeronaves y su importancia en la seguridad.
-
GP‑AM‑AMPEL‑0201‑51‑A‑001‑A Tipo: Approved (In Service) (PROC, SP)
Descripción: Especificaciones aprobadas para materiales y límites de carga en estructuras.
Optimal Format(s):.pdf
,.xml
,.html
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle las especificaciones de materiales y límites de carga para las estructuras de la aeronave.
-
GP‑AM‑AMPEL‑0201‑52‑001‑A Tipo: General Document (OV)
Descripción: Introduce los sistemas y tipos de puertas en la aeronave.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que detalle los diferentes tipos de puertas en aeronaves y sus funciones.
-
GP‑AM‑AMPEL‑0201‑52‑A‑001‑A Tipo: Approved (In Service) (PROC, SP)
Descripción: Especificaciones y procedimientos de emergencia para puertas.
Optimal Format(s):.pdf
,.xml
,.html
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle las especificaciones y protocolos de emergencia para puertas en aeronaves.
-
GP‑AM‑AMPEL‑0201‑53‑001‑A Tipo: General Document (OV)
Descripción: Introduce el diseño y estructura del fuselaje.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que describa la importancia del fuselaje en la integridad y seguridad de la aeronave, y detalle sus componentes principales.
-
GP‑AM‑AMPEL‑0201‑53‑A‑001‑A Tipo: Approved (In Service) (PROC, SP)
Descripción: Especificaciones y normas para el diseño del fuselaje.
Optimal Format(s):.pdf
,.xml
,.html
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle las especificaciones y normativas para el fuselaje de la aeronave.
-
GP‑AM‑AMPEL‑0201‑54‑001‑A Tipo: General Document (OV)
Descripción: Introduce los sistemas de nacelles y pylons, adaptados para el Q-01.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que explique la integración estructural de los nacelles y pylons, con especial énfasis en la adaptación para el Q-01.
-
GP‑AM‑AMPEL‑0201‑54‑A‑001‑A Tipo: Approved (In Service) (PROC, SP)
Descripción: Procedimientos para la integración del Q-01 en nacelles/pylons.
Optimal Format(s):.pdf
,.xml
,.html
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle las especificaciones y procedimientos para la integración del Q-01 en los nacelles/pylons, incluyendo aislamiento de vibraciones y gestión térmica.
-
GP‑AM‑AMPEL‑0201‑55‑001‑A Tipo: General Document (OV)
Descripción: Introduce los sistemas de estabilizadores.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que describa la función y componentes de los estabilizadores en aeronaves.
-
GP‑AM‑AMPEL‑0201‑55‑A‑001‑A Tipo: Approved (In Service) (PROC, SP)
Descripción: Especificaciones y procedimientos para los estabilizadores.
Optimal Format(s):.pdf
,.xml
,.html
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle las especificaciones y normas para el mantenimiento de los estabilizadores.
-
GP‑AM‑AMPEL‑0201‑56‑001‑A Tipo: General Document (OV)
Descripción: Introduce los sistemas de ventanas de la aeronave.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un informe introductorio que detalle la importancia, tipos y requisitos de las ventanas en aeronaves.
-
GP‑AM‑AMPEL‑0201‑56‑A‑001‑A Tipo: Approved (In Service) (PROC, SP)
Descripción: Especificaciones aprobadas para ventanas de la aeronave.
Optimal Format(s):.pdf
,.dwg
,.svg
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle las especificaciones y normas de instalación y mantenimiento de las ventanas.
-
GP‑AM‑AMPEL‑0201‑57‑001‑A Tipo: General Document (OV)
Descripción: Introduce el diseño y funciones de las alas.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que explique la importancia del diseño de las alas y sus principales componentes estructurales y aerodinámicos.
-
GP‑AM‑AMPEL‑0201‑57‑A‑001‑A Tipo: Approved (In Service) (PROC, SP)
Descripción: Especificaciones y procedimientos para el diseño estructural de las alas.
Optimal Format(s):.pdf
,.xml
,.html
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle las especificaciones y métodos de fabricación, así como los procedimientos de mantenimiento para las alas.
-
GP‑AM‑AMPEL‑0100‑58‑001‑A Tipo: General Document (OV)
Descripción: Introduce el sistema de anti-icing para alas.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que describa la importancia y fundamentos del sistema de anti-icing para alas.
-
GP‑AM‑AMPEL‑0100‑58‑A‑001‑A Tipo: Approved (In Service) (PROC, SP)
Descripción: Especificaciones y procedimientos del sistema de anti-icing en alas.
Optimal Format(s):.pdf
,.xml
,.html
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle las especificaciones, componentes y procedimientos de operación del sistema de anti-icing para alas.
-
GP‑AM‑AMPEL‑0100‑70‑001‑A Tipo: General Document (OV)
Descripción: Introduce las prácticas estándar para el sistema Q-01.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que explique las prácticas estándar para la operación y mantenimiento del sistema de propulsión Q-01.
-
GP‑AM‑AMPEL‑0100‑70‑A‑001‑A Tipo: Approved (In Service) (PROC, MAN)
Descripción: Procedimientos de inspección y mantenimiento para el Q-01.
Optimal Format(s):.pdf
,.xml
,.html
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle las prácticas estándar para la inspección y el mantenimiento del sistema de propulsión Q-01.
- GP‑AM‑AMPEL‑0100‑71‑001‑A
Tipo: General Document (OV)
Descripción: Introduce el sistema de propulsión Q-01 como grupo motriz.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que describa la arquitectura y componentes del sistema de propulsión Q-01.
-
GP‑AM‑AMPEL‑0100‑72‑001‑A Tipo: General Document (OV)
Descripción: Introduce el núcleo del Q-01 y su tecnología de entanglement.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que explique la tecnología subyacente del Q-01 y sus principales componentes.
-
GP‑AM‑AMPEL‑0100‑72‑B‑001‑A Tipo: Being Tested (Development) (RPT, RES)
Descripción: Pruebas de integración y desempeño del Q-01.
Optimal Format(s):.docx
,.pdf
,.csv
Prompt Adicional:Redacta un informe técnico sobre las pruebas en desarrollo del Q-01, incluyendo análisis de desempeño y resultados preliminares.
-
GP‑AM‑AMPEL‑0100‑72‑Q01‑001‑A Tipo: General Document (OV)
Descripción: Introduce la extensión cuántica del sistema de propulsión Q-01.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que explique el concepto de extensión cuántica en sistemas de propulsión y sus fundamentos teóricos.
-
GP‑AM‑AMPEL‑0100‑72‑Q01‑A‑001‑A Tipo: Approved (In Service) (PROC, SP)
Descripción: Especificaciones y límites operativos para la extensión cuántica.
Optimal Format(s):.pdf
,.xml
,.html
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle las especificaciones y límites de la extensión cuántica en el sistema de propulsión.
-
GP‑AM‑AMPEL‑0100‑72‑Q01‑B‑001‑A Tipo: Being Tested (Development) (RPT, RES)
Descripción: Pruebas del módulo QEE en el contexto de extensión cuántica.
Optimal Format(s):.docx
,.pdf
,.csv
Prompt Adicional:Redacta un informe técnico sobre las pruebas en desarrollo del módulo de extensión cuántica QEE, incluyendo metodologías y resultados preliminares.
-
GP‑AM‑AMPEL‑0100‑72‑Q01‑B‑THEO‑001‑A Tipo: Speculative (Studying) (RPT, CAL)
Descripción: Conceptos avanzados de manipulación de campos cuánticos en propulsión.
Optimal Format(s):.docx
,.pdf
,.md
Prompt Adicional:Genera un documento exploratorio que discuta la viabilidad y aplicaciones de la manipulación de campos cuánticos para mejorar la eficiencia de la propulsión.
-
GP‑AM‑AMPEL‑0100‑72‑Q01‑C‑001‑A Tipo: Condensed (Formal Scientific Consensus) (OV, REF)
Descripción: Resumen de los fundamentos teóricos de la extensión cuántica.
Optimal Format(s):.md
,.pdf
, Wiki Page
Prompt Adicional:Elabora un resumen técnico condensado que compile los fundamentos teóricos y normativas para la extensión cuántica de sistemas de propulsión.
-
GP‑AM‑AMPEL‑0100‑72‑Q01‑D‑001‑A Tipo: Auto‑Adaptive Configuration (SDD, PROC)
Descripción: Optimización del control del campo cuántico mediante IA en la extensión.
Optimal Format(s):.json
,.yaml
,.md
, API Spec
Prompt Adicional:Redacta un documento técnico que explique cómo se utilizan algoritmos de IA para optimizar el control y la estabilidad del campo cuántico en la extensión del sistema de propulsión.
-
GP‑AM‑AMPEL‑0100‑73‑001‑A Tipo: General Document (OV)
Descripción: Introduce el sistema de lubricación del motor.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que describa el funcionamiento y la importancia del sistema de lubricación en motores aeronáuticos.
-
GP‑AM‑AMPEL‑0100‑73‑A‑001‑A Tipo: Approved (In Service) (PROC, SP)
Descripción: Especificaciones y procedimientos para el sistema de aceite.
Optimal Format(s):.pdf
,.xml
,.html
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle las especificaciones, procedimientos de mantenimiento y protocolos de seguridad para el sistema de lubricación del motor.
-
GP‑AM‑AMPEL‑0100‑74‑001‑A Tipo: General Document (OV)
Descripción: Introduce los sistemas de combustible y control del motor.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que describa la integración y funcionamiento de los sistemas de combustible y control en motores aeronáuticos.
-
GP‑AM‑AMPEL‑0100‑74‑A‑001‑A Tipo: Approved (In Service) (PROC, SP)
Descripción: Especificaciones y procedimientos para el sistema de combustible.
Optimal Format(s):.pdf
,.xml
,.html
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle las especificaciones y protocolos de operación del sistema de combustible.
-
GP‑AM‑AMPEL‑0100‑75‑001‑A Tipo: General Document (OV)
Descripción: Introduce el sistema de aire de sangrado del motor.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que explique la función y la importancia del sistema de aire de sangrado en motores aeronáuticos.
-
GP‑AM‑AMPEL‑0100‑75‑A‑001‑A Tipo: Approved (In Service) (PROC, SP)
Descripción: Especificaciones y procedimientos para el sistema de aire de sangrado.
Optimal Format(s):.pdf
,.xml
,.html
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle las especificaciones y procedimientos de operación del sistema de aire de sangrado.
-
GP‑AM‑AMPEL‑0100‑76‑001‑A Tipo: General Document (OV)
Descripción: Introduce los sistemas de admisión y escape de aire del motor.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que describa el funcionamiento y la importancia de los sistemas de admisión y escape de aire en motores aeronáuticos.
-
GP‑AM‑AMPEL‑0100‑76‑A‑001‑A Tipo: Approved (In Service) (PROC, SP)
Descripción: Especificaciones y procedimientos para los sistemas de admisión y escape.
Optimal Format(s):.pdf
,.xml
,.html
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle las especificaciones y protocolos de operación para los sistemas de admisión y escape de aire.
-
GP‑AM‑AMPEL‑0100‑77‑001‑A Tipo: General Document (OV)
Descripción: Introduce los sistemas de instrumentación del motor.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que describa la importancia de la instrumentación para el monitoreo del rendimiento del motor.
-
GP‑AM‑AMPEL‑0100‑77‑A‑001‑A Tipo: Approved (In Service) (PROC, SP)
Descripción: Especificaciones y normas para la instrumentación del motor.
Optimal Format(s):.pdf
,.xml
,.html
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle las especificaciones y normas de los sistemas de instrumentación del motor.
-
GP‑AM‑AMPEL‑0100‑78‑001‑A Tipo: General Document (OV)
Descripción: Introduce los sistemas de arranque del motor.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que describa los componentes y procedimientos de arranque de motores aeronáuticos.
-
GP‑AM‑AMPEL‑0100‑78‑A‑001‑A Tipo: Approved (In Service) (PROC, SP)
Descripción: Procedimientos y especificaciones para el arranque del motor.
Optimal Format(s):.pdf
,.xml
,.html
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle las especificaciones y procedimientos para el arranque del motor, incluyendo protocolos de verificación.
-
GP‑AM‑AMPEL‑0100‑86‑001‑A Tipo: General Document (OV)
Descripción: Introduce los sistemas de puertas del cockpit.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que describa las funciones y características de las puertas del cockpit en aeronaves.
-
GP‑AM‑AMPEL‑0100‑86‑A‑001‑A Tipo: Approved (In Service) (PROC, SP)
Descripción: Especificaciones y protocolos para puertas del cockpit.
Optimal Format(s):.pdf
,.xml
,.html
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle las especificaciones, protocolos de emergencia y medidas de seguridad para las puertas del cockpit.
-
GP‑AM‑AMPEL‑0100‑87‑001‑A Tipo: General Document (OV)
Descripción: Introduce los sistemas de puertas para pasajeros y tripulación.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que detalle la importancia y funcionalidades de las puertas para pasajeros y tripulación.
-
GP‑AM‑AMPEL‑0100‑87‑A‑001‑A Tipo: Approved (In Service) (PROC, SP)
Descripción: Procedimientos y especificaciones para puertas de pasajeros y tripulación.
Optimal Format(s):.pdf
,.xml
,.html
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle las especificaciones, protocolos de evacuación y procedimientos de emergencia para puertas de pasajeros y tripulación.
-
GP‑AM‑AMPEL‑0100‑88‑001‑A Tipo: General Document (OV)
Descripción: Introduce los sistemas de puertas de carga.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que describa las características y la importancia de los sistemas de puertas de carga en aeronaves.
-
GP‑AM‑AMPEL‑0100‑88‑A‑001‑A Tipo: Approved (In Service) (PROC, SP)
Descripción: Procedimientos y especificaciones para puertas de carga.
Optimal Format(s):.pdf
,.xml
,.html
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle los procedimientos de operación y seguridad para las puertas de carga.
-
GP‑AM‑AMPEL‑0100‑89‑001‑A Tipo: General Document (OV)
Descripción: Introduce los sistemas de puertas del tren de aterrizaje.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que describa la función y características de las puertas del tren de aterrizaje.
-
GP‑AM‑AMPEL‑0100‑89‑A‑001‑A Tipo: Approved (In Service) (PROC, SP)
Descripción: Procedimientos y especificaciones para puertas del tren de aterrizaje.
Optimal Format(s):.pdf
,.xml
,.html
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle las especificaciones y procedimientos para la operación de las puertas del tren de aterrizaje.
-
GP‑AM‑AMPEL‑0100‑90‑001‑A Tipo: General Document (OV)
Descripción: Introduce los sistemas de puertas y paneles de acceso.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que explique la importancia y funcionamiento de los sistemas de puertas y paneles de acceso en aeronaves.
-
GP‑AM‑AMPEL‑0100‑90‑A‑001‑A Tipo: Approved (In Service) (PROC, SP)
Descripción: Especificaciones aprobadas para paneles y puertas de acceso.
Optimal Format(s):.pdf
,.xml
,.html
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle las especificaciones y procedimientos para la instalación y mantenimiento de puertas y paneles de acceso.
-
GP‑AM‑AMPEL‑0100‑91‑001‑A Tipo: General Document (OV)
Descripción: Introduce los sistemas de ventanas del cockpit.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un informe introductorio que describa la importancia de las ventanas del cockpit en términos de visibilidad y seguridad operacional.
-
GP‑AM‑AMPEL‑0100‑91‑A‑001‑A Tipo: Approved (In Service) (PROC, SP)
Descripción: Especificaciones y normativas aprobadas para ventanas del cockpit.
Optimal Format(s):.pdf
,.dwg
,.svg
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle las especificaciones, instalación y mantenimiento de las ventanas del cockpit.
-
GP‑AM‑AMPEL‑0100‑92‑001‑A Tipo: General Document (OV)
Descripción: Introduce los sistemas de ventanas de cabina.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que describa la importancia y características de las ventanas de cabina en aeronaves.
-
GP‑AM‑AMPEL‑0100‑92‑A‑001‑A Tipo: Approved (In Service) (PROC, SP)
Descripción: Especificaciones aprobadas para ventanas de cabina y vistas para pasajeros.
Optimal Format(s):.pdf
,.xml
,.html
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle las especificaciones y criterios de instalación para las ventanas de cabina, garantizando la seguridad y confort.
-
GP‑AM‑AMPEL‑0100‑93‑001‑A Tipo: General Document (OV)
Descripción: Introduce los sistemas de ventanas para observación y usos especiales.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que describa las aplicaciones y características de las ventanas diseñadas para observación y usos especiales en aeronaves.
-
GP‑AM‑AMPEL‑0100‑93‑A‑001‑A Tipo: Approved (In Service) (PROC, SP)
Descripción: Especificaciones aprobadas para ventanas de observación.
Optimal Format(s):.pdf
,.xml
,.html
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle las especificaciones y protocolos para la instalación y mantenimiento de ventanas de observación y usos especiales.
-
GP‑AM‑AMPEL‑0100‑99‑001‑A Tipo: General Document (OV)
Descripción: Introduce tecnologías especiales y emergentes en la aeronave.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que describa las innovaciones tecnológicas emergentes en aeronaves, con énfasis en aplicaciones prácticas.
-
GP‑AM‑AMPEL‑0100‑99‑A‑001‑A Tipo: Approved (In Service) (PROC, SP)
Descripción: Integraciones y casos de seguridad para tecnologías emergentes.
Optimal Format(s):.pdf
,.xml
,.html
Prompt Adicional:Desarrolla un manual operativo aprobado que detalle las integraciones y medidas de seguridad para la implementación de tecnologías emergentes en aeronaves.
-
GP‑AM‑AMPEL‑0100‑99‑B‑001‑A Tipo: Being Tested (Development) (RPT, RES)
Descripción: Pruebas de integración de suites de sensores avanzados para tecnologías emergentes.
Optimal Format(s):.docx
,.pdf
,.csv
Prompt Adicional:Redacta un informe técnico sobre las pruebas en desarrollo de suites de sensores avanzados para tecnologías emergentes, incluyendo metodologías y resultados preliminares.
-
GP‑AM‑AMPEL‑0100‑99‑B‑THEO‑001‑A Tipo: Speculative (Studying) (RPT, CAL)
Descripción: Conceptos de sensores y actuadores cuánticos para integración de tecnologías emergentes.
Optimal Format(s):.docx
,.pdf
,.md
Prompt Adicional:Genera un documento exploratorio que analice la viabilidad y aplicaciones de sensores y actuadores cuánticos en la integración de tecnologías emergentes en aeronaves.
-
GP‑AM‑AMPEL‑0100‑99‑C‑001‑A Tipo: Condensed (Formal Scientific Consensus) (OV, REF)
Descripción: Resumen de principios de innovación y preparación tecnológica en el sector aeroespacial.
Optimal Format(s):.md
,.pdf
, Wiki Page
Prompt Adicional:Elabora un resumen técnico condensado que compile los principios de innovación, preparación tecnológica y normativas para la adopción de tecnologías emergentes en aeronaves.
-
GP‑AM‑AMPEL‑0100‑99‑D‑001‑A Tipo: Auto‑Adaptive Configuration (SDD, PROC)
Descripción: Gestión adaptativa de la adopción tecnológica mediante IA.
Optimal Format(s):.json
,.yaml
,.md
, API Spec
Prompt Adicional:Redacta un documento técnico que explique cómo se utilizan algoritmos de IA para gestionar la adopción y el ciclo de vida de tecnologías emergentes en la industria aeronáutica.
-
GP‑AM‑AMPEL‑0100‑100‑001‑A Tipo: General Document (OV)
Descripción: Introduce el plan de certificación y la base documental para la aeronave.
Optimal Format(s):.md
,.docx
,.pdf
Prompt Adicional:Genera un documento introductorio que describa el plan de certificación y la base documental que cumplirá la aeronave con los requisitos regulatorios.
-
GP‑AM‑AMPEL‑0100‑100‑A‑001‑A Tipo: Approved (In Service) (PROC, SP)
Descripción: Documentación oficial de certificación y cumplimiento regulatorio.
Optimal Format(s):.pdf
,.xml
,.html
Prompt Adicional:Desarrolla un paquete de certificación que incluya todas las evidencias, reportes de cumplimiento y documentación necesaria para la aprobación regulatoria de la aeronave.
-
GP‑AM‑AMPEL‑0100‑100‑B‑001‑A Tipo: Being Tested (Development) (RPT, RES)
Descripción: Pruebas y validaciones para la certificación.
Optimal Format(s):.docx
,.pdf
,.csv
Prompt Adicional:Redacta un informe técnico sobre las pruebas y validaciones realizadas para cumplir con los requisitos de certificación, incluyendo resultados y análisis de conformidad.
-
GP‑AM‑AMPEL‑0100‑100‑C‑001‑A Tipo: Condensed (Formal Scientific Consensus) (OV, REF)
Descripción: Resumen de la documentación de certificación y cumplimiento regulatorio.
Optimal Format(s):.md
,.pdf
, Wiki Page
Prompt Adicional:Elabora un resumen técnico condensado que compile toda la documentación de certificación, evidencias de cumplimiento y planes de mantenimiento para la aeronave.
-
GP‑AM‑AMPEL‑0100‑100‑D‑001‑A Tipo: Auto‑Adaptive Configuration (SDD, PROC)
Descripción: Gestión y actualización de la documentación de certificación mediante IA.
Optimal Format(s):.json
,.yaml
,.md
, API Spec
Prompt Adicional:Redacta un documento técnico que describa cómo se utilizan algoritmos de IA para gestionar y actualizar dinámicamente la documentación de certificación y mantenimiento de la aeronave.
The GAIA AIR (Global Aerospace Infrastructural Agentic AI Intercepting Robotics) framework represents a next-generation system integrating aerospace engineering, artificial intelligence (AI), and advanced computing to revolutionize design, simulation, manufacturing, and operational processes. This integrated concept establishes a modular, scalable architecture that leverages AI-driven automation and adaptive technologies to enhance efficiency, performance, and innovation across airframes, spaceframes, ground infrastructure, and galactic mining operations.
The COAFI (Cognitive Ontological Algorithm Fine Itering), previously known as Comprehensive Organized Aerospace Full Index, provides the overarching structure for all project documentation, ensuring modularity, scalability, and consistency through cognitive ontological approaches to information organization.
- Part 0: Project Foundations - Manifesto, Research & Theory (GP-FD)
- Part I: Airframes – AMPEL360XWLRGA (GP-AM)
- Part II: Spaceframes – GAIA SPACE (GP-SM)
- Part III: Common Networks (GP-CN)
- Part IV: Ground Infrastructure (GP-GB)
- Part V: GAIA AIR Computing and Material Simulation (GP-GACMS)
- Part VI: Project Management & Operations (GP-PMO)
- Part VII: Appendices and Reference Material (GP-APP)
- Part VIII: GAIA GALACTIC MINING OPERATIONS (GP-GMO)
- Part IX: RESERVED FOR FUTURE EXPANSION (GP-RES)
We, the creators and stewards of engineered systems, recognizing the need for a constitutional framework that preserves human intent throughout the lifecycle of technological artifacts, establish this manifest as the foundational doctrine for all systems that embody, process, or evolve human knowledge and purpose.
Whereas traditional engineering has focused primarily on functional requirements and technical specifications, we hereby establish a constitutional layer that encodes, preserves, and evolves the why of creation—the human intent that gives meaning to technical implementation.
Every engineered system shall embody a declared purpose that reflects human values and intent. This purpose shall be explicitly encoded, preserved through transformation, and accessible to all stakeholders interacting with the system.
All technical implementations shall be entangled with their creator's intent, establishing an unbreakable chain of responsibility that persists throughout the system's lifecycle.
The declared intent of a system shall govern its evolution, adaptation, and interaction with other systems. No technical implementation shall violate the constitutional boundaries established by its CEU declaration.
Systems shall be capable of sharing, federating, and negotiating purpose across boundaries while maintaining their constitutional integrity.
Each system shall be anchored by at least one CEU that declares its purpose, scope, and constitutional boundaries. CEUs shall be structured according to the following principles:
- Hierarchical Organization: CEUs shall be organized in a hierarchical structure, with root CEUs establishing foundational principles and subordinate CEUs inheriting and refining these principles.
- Tier Classification: CEUs shall be classified according to their role in the system's purpose:
- CEU-0: Existential – Why the system exists
- CEU-1: Functional – What the system does
- CEU-2: Constructive – How the system is built
- CEU-3: Transitional – How the system evolves
- CEU-4: Regulatory – What constraints govern the system
- CEU-5: Emergent – What unforeseen capabilities may develop
- CEU-Σ: Superpositional – Holistic entities spanning multiple tiers
- Entanglement Modes: CEUs shall establish entanglement relationships across functional domains, lifecycle phases, regulatory frameworks, and emergent capabilities.
DODPs shall implement the constitutional principles established by CEUs, providing operational guidelines for system behavior, interaction, and evolution.
Technical implementations shall be organized into modular layers that implement the intent declared in CEUs and governed by DODPs.
All system components shall be tagged with explainability metadata that enables traceability of intent throughout the system.
AI models shall be scoped and constrained by CEU declarations, ensuring alignment with declared intent.
Digital twins shall maintain fidelity to their physical counterparts while evolving within the constitutional boundaries established by their CEUs.
A CEU does not merely represent a technical module. It is an act of engineering with meaning, traceability, and alignment with the fundamental principles of digitalized humanity. — CEU Universal Charter – GAIA AIR / Brussels Declaration, 2025 (Proposed)
ID: CEU-DECLARATION-0001 Name: CEU Foundational Charter Type: Ethico-Technical Infrastructure Standard Issued By: GAIA AIR / DODP-COUNCIL / EUROSPACE GOV Classification: COMMON EUROPEAN UNIVERSAL Scope:
- Engineering Intent Encoding
- Lifecycle Entanglement (Design–Regulation–Emergence)
- Human-Digital Alignment Referenced Frameworks:
- EU AI ACT
- GDPR
- ISO 42001 / ISO 27001
- IEEE 7000
- UN SDGs (Goal 9, 11, 12, 16) Activation Layer: GAIA AIR DODP + GREEN LEDGER
Domain | Application |
---|---|
🛫 Aerospace | Traceable, responsible, and federated engineering |
🧠 AI + Digital Twins | Explainable purpose, embedded algorithmic ethics |
📦 Industry 5.0 | Modularity + integrated responsibility from design |
🌐 Digital Governance | Smart Contracts, eID, citizen participation |
📚 Education + Research | A common language of intentional engineering |
- CEU-ROOT-GAIA-001 – Becomes the universal root node of the GAIA AIR ecosystem.
- All subordinate CEUs (QPP, HFEP, MOD-SEC, etc.) reference this root node.
- Every document, module, simulation, function, or interface in COAFI must be linked to at least one active CEU.
- The DODP acts as the semantic and legal custodian of the CEUs.
- Title: AGAD Protocol: Quantum-Financial Architecture for Autopoietic Aerospace Systems
- Objective: Establish an open standard for regenerative self-financing that combines quantum computing, IP tokenization, and DAO governance for aerospace projects with a net positive impact.
- Keywords:
#QuantumRefinancing
#RegenerativeFinance
#DeepTechEthical
#FractalIP
#TechnologicalSovereignty
#BiomimeticDesign
#CircularEconomy
- Central Problem: Aerospace Innovation Paradox (long R&D vs. short funding), Low Regenerative Focus.
- AGAD Solution: F-NFT Tokenization, Quantum Simulation microservices, dNFT Issuance tied to SDGs.
Axis | Hashtag | Function | Replicable Module | Biomimetic Principle |
---|---|---|---|---|
1 | #FinAsGaiaDoes | Retrorifinancing, DAO treasury, tokenized flows | MOD-FIN | Resource Cycling (Nutrient Exchange) |
2 | #DesignAsGaiaDoes | Quantum-enhanced design, PTIMs, UI-XAI | MOD-QUAD | Adaptive Morphology (Shape Optimization) |
3 | #ProofAsGaiaDoes | Federated simulation, zk-proofs, explainability | MOD-QSIM, MOD-XAI | Distributed Intelligence (Swarm Logic) |
4 | #ProduceAsGaiaDoes | Distributed manufacturing, twin-based deployment | MOD-MFG | Local Production (Cellular Fabrication) |
5 | #ServeAsGaiaDoes | Autonomous service layers, resilient networks | MOD-SERV | Symbiotic Relationships (Mutualism) |
6 | #CareAsGaiaDoes | Green metrics, ethics registry, human-centric values | MOD-ETHIC | Ecosystem Health (Homeostasis) |
7 | #RedoAsGaiaDoes | Circular logic, self-repair, systemic evolution | MOD-REGEN | Adaptive Evolution (Self-Healing) |
- QAOE Engine: Quantum portfolio optimization.
- MOD-CHAIN: Hybrid blockchain for traceability.
- XAI-KPI Dashboard: Real-time ESG metrics with XAI reasoning.
- Quantum Innovation Bonds (QIB): Variable rate bonds based on outcomes.
- Quantum Guarantee Fund: Quantum risk management.
The Universal Robotics Ingenuity Foundation (URIF) is a forward-thinking framework aimed at revolutionizing cognitive robotic systems by integrating cutting-edge technologies like quantum computing, holography, and autonomous swarms.
URIF is structured around six key components:
- Complex Deepness Robotics (CDR): Robots with adaptive decision-making using deep learning.
- Agentic Swarms (AS): Coordinating autonomous agents for collective tasks.
- Qubit Teleportation (QT): Quantum communication for low-latency synchronization (with caveats).
- Imaginary Streaming (IS): Data streaming for cognitive projections (needs careful definition).
- Cognitive Brainstorming Sessions (CBSS): AI-assisted ideation and collaboration.
- Nanopixel Holography (NH): Advanced holographic displays for immersive interfaces.
URIF integrates with GAIA AIR, mapping to MOD-HRB-* in the GAIA QUANTUM PORTAL. It interacts with MOD-XAI, MOD-TWIN, and MOD-QSIM. COAFI is used for management, FLCO events for communication.
The e.G.A.I.As paradigm—a marriage of Embodiment, Evolving Nature, and Extended Capacity—offers a blueprint for designing AI systems that break free from narrow, task-specific constraints.
- Embodiment: Tightly integrated with physical/virtual environments via sensors, actuators, and context-aware interfaces for real-time situational awareness.
- Evolving Nature: Dynamic adaptation through advanced learning (deep RL, meta-learning, feedback loops) to respond to unforeseen challenges.
- Extended Capacity: Collaboration within distributed networks of agents, humans, and data streams for emergent collective intelligence and robust problem-solving at scale.
By uniting these principles, e.G.A.I.As offer transformative potential in diverse domains (aerospace, healthcare, environmental systems). The paradigm highlights closed-loop self-optimization, modular designs for resilience, and addresses ethical implications, emphasizing responsible innovation and transparency.
Identifies major systems within the aerospace platform.
Format: [System Category Abbreviation][Number]
(e.g., ST1
, PR1
) followed by a descriptive abbreviation (e.g., Fus
, Eng
).
Example: Fus1
- Primary Fuselage Structure (ST Category)
Identifies connections between components.
Format: Int-[Code1]-to-[Code2]
(Where Code1 and Code2 can be PriCode, SeCode, or Function-Component Codes)
Examples:
Int-Wing1-to-Eng1
- Interface between Primary Wing Structure and Primary Engine SystemInt-FO-NAV-001-to-FO-PIL-001
- Interface between Primary Nav Computer and Primary Flight Control Computer
Identifies components by their functional role with either sequential or hierarchical numbering.
Sequential Functional Numbering
Format: [Function Code]-[Sequential Number]
Example: FO-NAV-001
- Primary Navigation Computer within Navigation & Guidance function
Hierarchical Structural Numbering
Format: [Function Code]-[Level 1].[Level 2].[Level 3]-[Variant]
Example: FO-NAV-100.10.1
- CPU component of the Primary Navigation Computer
- Fus1 - Primary Fuselage Structure
- Wing1 - Primary Wing Structure
- Emp1 - Primary Empennage Structure
- Pyl1 - Primary Pylon Structure
- Nac1 - Primary Nacelle Structure
- Rad1 - Primary Radome Structure
- Lgr1 - Primary Landing Gear Structure
- Fld1 - Primary Flight Deck Structure
- Cab1 - Primary Cabin Structure
- Cgo1 - Primary Cargo Structure
- Eng1 - Primary Engine System
- Fue1 - Primary Fuel Storage System
- Fud1 - Primary Fuel Distribution System
- Fdc1 - Primary FADEC/Control System
- Thr1 - Primary Thrust Reverser System
- Apu1 - Primary Auxiliary Power Unit
- Exh1 - Primary Exhaust System
- Intk1 - Primary Air Intake System
- Ign1 - Primary Ignition System
- Qpr1 - Primary Quantum Propulsion System
- Fcs1 - Primary Flight Control System
- Nav1 - Primary Navigation System
- Fms1 - Primary Flight Management System
- Ins1 - Primary Inertial Navigation System
- Gps1 - Primary GPS System
- Rdr1 - Primary Radar System
- Adh1 - Primary Air Data & Heading Ref System
- Aut1 - Primary Autopilot System
- Dis1 - Primary Display System
- Efb1 - Primary Electronic Flight Bag System
- FO-NAV: Navigation & Guidance
- FO-PIL: Piloting & Flight Control
- FO-TRJ: Trajectory Planning & Management
- FO-ATM: Air Traffic Management Interface
- FO-LND: Landing & Approach Operations
- FO-TKO: Takeoff & Departure Operations
- FO-CRS: Cruise Operations
- FO-FPL: Flight Planning
- FO-WXA: Weather Assessment & Avoidance
- FO-EMG: Emergency Flight Operations
- PR-THR: Thrust Generation
- PR-FUE: Fuel Management
- PR-IGN: Ignition & Combustion Control
- PR-AIR: Air Intake & Compression
- PR-EFF: Efficiency Optimization
- PR-THM: Thermal Management
- PR-EXH: Exhaust Management
- PR-STA: Propulsion Stability & Control
- PR-REV: Thrust Reversal / Braking
- PR-PWR: Power Generation
[AGIS Component Code]-[TechCode]
Example: FO-NAV-100.10.1-Q01
(Nav CPU with Quantum Computing)
Quantum Technologies (Q)
- Q01 - Quantum Computing
- Q02 - Quantum Sensing
- Q03 - Quantum Communication
- Q05 - Quantum Propulsion
- Q07 - Quantum Materials
Artificial Intelligence (AI)
- AI01 - Machine Learning
- AI02 - Deep Learning
- AI05 - Autonomous Decision
- AI06 - Predictive Analytics
- AI07 - Generative AI
Advanced Materials (AM)
- AM01 - Composite Materials
- AM02 - Nano-enhanced Materials
- AM03 - Self-Healing Materials
- AM05 - Metamaterials
- AM06 - Ceramic Matrix Composites
Functions are categorized into hierarchical tiers (F1-F4) and traceable via Function ID (FID), cross-linked with XAI-TAG and COAFI-OBJ-ID.
Tier | Description | Document Zone |
---|---|---|
F1 | System-Level Function (e.g., PR-THR ) |
OV Documents |
F2 | Subsystem Function (e.g., PR-IGN ) |
SP, DS Documents |
F3 | Component Function | DS, ICD |
F4 | Behavioral/Subcomponent Function | ICD, OP, Heuritmática |
Example: Function Attribute Table for FID-PR-THR
Attribute | Value |
---|---|
Function ID | FID-PR-THR-001 |
Function Name | Generate Primary Thrust |
COAFI Function Code | PR-THR |
Tier | F1 |
Parent Function | FID-GAIA-0001 (Provide Propulsion) |
Implementing System | GP-PM-0400 (GAIA PULSE), GP-AM-72 (Turbofan/H2) |
Criticality | Critical |
Performance Metrics | See GP-PM-SP-0400-002-A , GP-AM-72-*-SP-* |
Verification | Testing (TV-PER, TV-FLT), Simulation (TV-SIM), XAI Trace |
Status | Approved |
Input | Control Signals, Fuel/Propellant, Power (PM-DIS) |
Output | Thrust Vector, Exhaust (PR-EXH), Heat (PR-THM) |
XAI Link | XAI-FI-GAI-PULSE-001, XAI-FI-GAI-ENG-001 |
NFR Links | NFR-REL-PR-001, NFR-SEC-PR-001 |
- coafiPart:
GP-AM
- partTitle:
Part I: Airframes – AMPEL360XWLRGA
Código | Descripción | Uso |
---|---|---|
OV | Overview (Visión General) | Resúmenes de alto nivel de sistemas, componentes o procesos. |
SP | Specification (Especificación) | Define requerimientos técnicos, características, desempeño, propiedades, dimensiones y tolerancias. |
REQ | Requirements Document (Documento de Requerimientos) | Captura y gestiona requerimientos funcionales, de desempeño, de interfaz y de conformidad. |
DD | Design Document (Documento de Diseño) | Describe el diseño detallado de un sistema o componente. |
SDD | System Description Document (Documento de Descripción del Sistema) | Proporciona una descripción completa de la arquitectura y operación del sistema. |
DWG | Drawing (Dibujo) | Dibujos de ingeniería, esquemas y diagramas visuales. |
CAL | Calculation/Analysis (Cálculo/Análisis) | Documenta cálculos, simulaciones y análisis de desempeño. |
RPT | Report (Reporte) | Informes generales, resúmenes de hallazgos y reportes de investigación. |
TEST | Test Plan/Procedure (Plan/Procedimiento de Pruebas) | Describe procedimientos para la validación y pruebas de sistemas o componentes. |
RES | Test Results (Resultados de Pruebas) | Documenta los resultados y hallazgos de las pruebas realizadas. |
MAN | Manual | Instrucciones de operación, mantenimiento, reparación o entrenamiento. |
PROC | Procedure (Procedimiento) | Describe procesos paso a paso (mantenimiento, instalación, inspección, etc.). |
CAT | Catalog/List (Catálogo/Lista) | Listas de partes, componentes, equipos o referencias (ej. IPC). |
GLO | Glossary (Glosario) | Lista de términos y definiciones. |
PLAN | Plan | Describe planes de acción (plan de proyecto, de mantenimiento, de gestión de riesgos, etc.). |
ICD | Interface Control Document (Documento de Control de Interfaz) | Define las interfaces entre sistemas o componentes. |
BOM | Bill of Materials (Lista de Materiales) | Lista de todas las partes o materiales necesarios para construir un sistema o componente. |
SWD | Software Architecture Document (Documento de Arquitectura de Software) | Describe la arquitectura del software. |
SPEC | Software Specification (Especificación de Software) | Describe funcionalidades y requerimientos del software. |
ADMIN | Administrative (Administrativo) | Documenta información administrativa (historial de revisiones, aprobaciones, etc.). |
REF | Reference (Referencia) | Proporciona referencias a estándares externos, documentos o recursos. |
-
documentId:
GP-AM-AMPEL-0100-00-001-A
-
documentTitle:
GP-AM-00 General Document - Intro & General
-
status:
Draft
-
infoCode:
OV
-
description: Introducción general a Part I (Airframes – GP‑AM), su alcance, alineación con ATA y relación con otras partes de COAFI.
-
Optimal Format(s):
.md
,.docx
,.pdf
- documentParts:
-
partId:
INTRO
title:Introduction
infoCode:OV
contentPlaceholder (filled):
"Esta sección describe la finalidad general y el alcance de Part I: Airframes – GP-AM, presentando los objetivos principales y la relación con la estructura global de COAFI." -
partId:
ATA_ALIGN
title:ATA Alignment
infoCode:DS
contentPlaceholder (filled):
"Se detalla cómo se aplican los capítulos ATA (por ejemplo 00, 05, 06) al airframe AMPEL360XWLRGA, asegurando compatibilidad con las prácticas estándar de la industria." -
partId:
COAFI_LINKS
title:COAFI Relationships
infoCode:DS
contentPlaceholder (filled):
"Se describen las interrelaciones con otros módulos y partes de COAFI, enfatizando sinergias con propulsión, aviónica y documentación cruzada." -
partId:
REVISIONS
title:Revision History
infoCode:ADMIN
contentPlaceholder (filled):
"Versión 1.0: Publicación inicial. Versión 1.1: Ajustes menores de alcance. Versión 2.0: Cambios significativos alineados con nueva directiva interna."
-
- documentParts:
-
documentId:
GP-AM-AMPEL-0100-00-A-001-A
-
documentTitle:
GP-AM-00 - Approved (In Service) - Intro & General - Project Scope & Compliance
-
status:
Approved (In Service)
-
infoCode:
REQ
-
description: Documento aprobado que detalla el alcance del proyecto para el airframe AMPEL360XWLRGA y los requisitos de conformidad.
-
Optimal Format(s):
.pdf
,.xml
,.html
,.docx
- documentParts:
-
partId:
SCOPE
title:Project Scope Definition
infoCode:SP
contentPlaceholder (filled):
"El alcance del proyecto considera el diseño completo del airframe, incluyendo dimensiones principales, performance esperada y normativa de seguridad." -
partId:
COMPLIANCE_REQ
title:Compliance Requirements Matrix
infoCode:REQ
contentPlaceholder (filled):
"La matriz vincula cada requisito regulatorio (EASA, FAA, etc.) con las secciones específicas del diseño del AMPEL360XWLRGA, garantizando trazabilidad." -
partId:
CERT_STRATEGY
title:Certification Strategy Overview
infoCode:PLAN
contentPlaceholder (filled):
"La estrategia de certificación se basa en un enfoque por fases, abarcando pruebas en tierra y en vuelo, y validación progresiva de la conformidad." -
partId:
REVISIONS
title:Revision History
infoCode:ADMIN
contentPlaceholder (filled):
"Versión 1.0: Documento aprobado inicialmente. Versión 1.1: Inclusión de requisitos de compatibilidad con sistemas externos."
-
- documentParts:
-
documentId:
GP-AM-AMPEL-0100-00-B-001-A
-
documentTitle:
GP-AM-00 - Being Tested (Development) - Intro & General - Design Philosophy & Materials
-
status:
Being Tested (Development)
-
infoCode:
DD
-
description: Documento en desarrollo que detalla la filosofía de diseño del airframe AMPEL360XWLRGA y la selección de materiales avanzados.
-
Optimal Format(s):
.docx
,.pdf
,.ipynb
- documentParts:
-
partId:
DESIGN_PHILOSOPHY
title:Airframe Design Philosophy
infoCode:DS
contentPlaceholder (filled):
"La filosofía de diseño busca un balance óptimo entre resistencia estructural, eficiencia aerodinámica y reducción de peso, integrando parámetros de manufacturabilidad." -
partId:
MATERIALS_OVERVIEW
title:AMPEL Materials Overview
infoCode:DS
contentPlaceholder (filled):
"La iniciativa AMPEL propone el uso de materiales compuestos de alto desempeño y aleaciones ligeras, priorizando resistencia a la fatiga y sostenibilidad." -
partId:
MATERIAL_SPECS
title:Material Specifications (Preliminary)
infoCode:SP
contentPlaceholder (filled):
"Las especificaciones preliminares incluyen listados de resinas epoxi y fibras avanzadas, sujetas a validación y ensayos destructivos y no destructivos." -
partId:
MATERIAL_TEST_PLAN
title:Material Testing & Validation Plan
infoCode:TEST
contentPlaceholder (filled):
"Este plan contempla pruebas de tracción, compresión y fatiga cíclica, siguiendo normativa ASTM e ISO aplicable, con validación en laboratorio externo." -
partId:
REVISIONS
title:Revision History
infoCode:ADMIN
contentPlaceholder (filled):
"Versión 0.1: Borrador inicial con resultados parciales de ensayos. Versión 0.2: Actualizado con datos de pruebas de impacto."
-
- documentParts:
-
documentId:
GP-AM-AMPEL-0100-00-B-THEO-001-A
-
documentTitle:
GP-AM-00 - Speculative (Studying) - Intro & General - Long-Term Cosmic Vision Integration
-
status:
Speculative (Studying)
-
infoCode:
RPT
-
description: Documento especulativo que explora la integración a largo plazo del diseño de airframe con la visión cósmica global de GAIA AIR.
-
Optimal Format(s):
.docx
,.pdf
,.md
- documentParts:
-
partId:
VISION_INTEGRATION
title:Cosmic Vision Integration Concepts
infoCode:DS
contentPlaceholder (filled):
"Se plantean escenarios de vuelos suborbitales y la adaptación del airframe para misiones de exploración extendida, alineados con la estrategia GAIA AIR." -
partId:
FUTURE_CAPABILITIES_REQ
title:Future Capability Requirements Analysis
infoCode:REQ
contentPlaceholder (filled):
"Requerimientos prospectivos contemplan la incorporación de sistemas autónomos, protección ante radiación cósmica y capacidad de operación en entornos de baja presión." -
partId:
TECH_GAPS_ANALYSIS
title:Technology Gap Analysis
infoCode:CAL
contentPlaceholder (filled):
"Identifica brechas en propulsión, control térmico y sistemas de soporte vital, que requieren investigación adicional y posibles colaboraciones científicas." -
partId:
REVISIONS
title:Revision History
infoCode:ADMIN
contentPlaceholder (filled):
"Versión 0.1: Documento exploratorio inicial. Versión 0.2: Inclusión de comentarios de expertos en exploración espacial."
-
- documentParts:
-
documentId:
GP-AM-AMPEL-0100-00-C-001-A
-
documentTitle:
GP-AM-00 - Condensed (Formal Scientific Consensus) - Intro & General - Core Airframe Design Principles
-
status:
Condensed (Formal Scientific Consensus)
-
infoCode:
OV
-
description: Resumen condensado de los principios fundamentales consensuados para el diseño del airframe AMPEL360XWLRGA.
-
Optimal Format(s):
.md
,.pdf
, Wiki Page- documentParts:
-
partId:
CORE_PRINCIPLES_AERO
title:Core Aerodynamic Principles
infoCode:DS
contentPlaceholder (filled):
"Se resumen los perfiles aerodinámicos básicos, el coeficiente de sustentación y la reducción de arrastre en configuraciones típicas del AMPEL360XWLRGA." -
partId:
CORE_PRINCIPLES_STRUCT
title:Core Structural Principles
infoCode:DS
contentPlaceholder (filled):
"Se incluyen criterios de refuerzo en zonas de alta tensión y el uso de uniones híbridas entre materiales compuestos y metales ligeros." -
partId:
RELEVANT_STANDARDS
title:Key Relevant Standards
infoCode:REF
contentPlaceholder (filled):
"FAR/CS-25, normativas ASTM de ensayos de materiales y estándares ISO de calidad forman parte del conjunto de normas aplicables." -
partId:
APPLICATION_SUMMARY
title:Application Summary for AMPEL360XWLRGA
infoCode:DS
contentPlaceholder (filled):
"Estos principios se aplican a las variantes de fuselaje y alas, facilitando la modularidad y la adaptación a futuros modelos en la familia AMPEL." -
partId:
REVISIONS
title:Revision History
infoCode:ADMIN
contentPlaceholder (filled):
"Versión 1.0: Aprobado por consenso científico. Versión 1.1: Ajustes según nueva directiva de ingeniería."
-
- documentParts:
-
documentId:
GP-AM-AMPEL-0100-00-D-001-A
-
documentTitle:
GP-AM-00 - Auto-Adaptive Configuration - Intro & General - AI-Driven Doc Adaptation
-
status:
Auto-Adaptive Configuration
-
infoCode:
SDD
-
description: Documento que detalla el sistema basado en IA para adaptar automáticamente la documentación conforme a cambios en la configuración o datos operativos.
-
Optimal Format(s):
.json
,.yaml
,.md
,.html
- documentParts:
-
partId:
ADAPTIVE_SYSTEM_DESC
title:AI Documentation Adaptation System Description
infoCode:SDD
contentPlaceholder (filled):
"Se describe la arquitectura de IA que monitorea alteraciones de configuración, ejecuta modelos de machine learning y reconfigura la documentación de forma automatizada." -
partId:
ADAPTATION_TRIGGERS
title:Adaptation Triggers and Rules
infoCode:DS
contentPlaceholder (filled):
"Los disparadores incluyen actualizaciones normativas, cambios en la estructura del airframe o detecciones de anomalías en los datos operativos, aplicando reglas definidas." -
partId:
ADAPTATION_WORKFLOW
title:Adaptation Process Workflow
infoCode:PROC
contentPlaceholder (filled):
"El flujo define pasos de validación, aprobación y registro de versiones antes de que el contenido actualizado entre en vigor." -
partId:
VALIDATION_PROC
title:Validation Procedures for Adapted Docs
infoCode:PROC
contentPlaceholder (filled):
"Se establecen revisiones humanas y controles de consistencia automatizados para garantizar la exactitud y conformidad de la documentación regenerada." -
partId:
REVISIONS
title:Revision History
infoCode:ADMIN
contentPlaceholder (filled):
"Versión 0.9: Fase de prueba interna. Versión 1.0: Publicación de la funcionalidad auto-adaptativa en entorno de producción."
-
- documentParts:
The AMPEL360XWLRGA airframe documentation follows the standard ATA chapter structure, with each chapter containing multiple document types with varying classifications:
- ATA Chapter 05: Time Limits/Maintenance Checks - Maintenance schedules, inspection procedures, and component life limits
- ATA Chapter 06: Dimensions & Areas - Aircraft geometry, reference points, and zone diagrams
- ATA Chapter 07: Lifting & Shoring - Procedures for aircraft lifting and support
- ATA Chapter 08: Leveling & Weighing - Center of gravity calculations and weight distribution
- ATA Chapter 09: Towing & Taxiing - Ground movement procedures and equipment
- ATA Chapter 10: Parking, Mooring, Storage - Long-term storage and preservation
- ATA Chapter 11: Placards & Markings - Aircraft signage and identification
- ATA Chapter 12: Servicing – Routine - Regular maintenance procedures
- ATA Chapter 18: Vibration & Noise - Acoustic and vibration management
- ATA Chapter 20-38: Aircraft Systems - Various aircraft systems documentation
- ATA Chapter 45-49: Information Systems - Avionics and data systems
- ATA Chapter 51-57: Structures - Airframe structural components
- ATA Chapter 70-78: Propulsion - Engine and propulsion systems
- ATA Chapter 72-Q01: Propulsion – Quantum Extension - Advanced quantum propulsion technology
- ATA Chapter 86-93: Doors & Windows - Access points and transparency elements
- ATA Chapter 99: Special/Emerging Tech - Innovative technologies integration
- ATA Chapter 100: Certification and Documentation - Regulatory compliance and certification
Each chapter contains documents with the following classification statuses:
- Approved (In Service) - Official documentation for operational use
- Being Tested (Development) - Documentation for systems under testing
- Speculative (Studying) - Exploratory concepts and theoretical research
- Condensed (Formal Scientific Consensus) - Summarized scientific principles
- Auto-Adaptive Configuration - AI-driven documentation that updates dynamically
-
documentId:
GP-AM-AMPEL-0100-05-001-A
-
documentTitle:
GP-AM-05 General Document - Time Limits/Maint Checks
-
status:
Draft
-
infoCode:
OV
-
description: Introducción general a los límites de tiempo y procedimientos de mantenimiento para el airframe.
-
Optimal Format(s):
.md
,.docx
,.pdf
- documentParts:
-
partId:
INTRO
title:Introduction
infoCode:OV
contentPlaceholder (filled):
"Se ofrece una visión global del enfoque de mantenimiento preventivo y correctivo, abarcando límites de operación y revisiones programadas." -
partId:
MAINT_PLAN_REF
title:Maintenance Plan Reference
infoCode:REF
contentPlaceholder (filled):
"Se remite al Plan de Mantenimiento Global del aircraft, indicando frecuencias de inspección y tareas requeridas para garantizar la aeronavegabilidad." -
partId:
REVISIONS
title:Revision History
infoCode:ADMIN
contentPlaceholder (filled):
"Versión 1.0: Borrador inicial con alcances generales. Versión 1.1: Ajuste de intervalos de inspección basado en retroalimentación de servicio."
-
- documentParts:
-
documentId:
GP-AM-AMPEL-0100-05-A-001-A
-
documentTitle:
GP-AM-05 - Approved (In Service) - Time Limits/Maint Checks - Approved Procedures
-
status:
Approved (In Service)
-
infoCode:
PROC
-
description: Procedimientos de mantenimiento e inspección aprobados, con límites de vida de componentes.
-
Optimal Format(s):
.pdf
,.xml
,.html
,.xlsx
- documentParts:
-
partId:
SCHEDULED_MAINT_PROC
title:Scheduled Maintenance Procedures
infoCode:PROC
contentPlaceholder (filled):
"Se definen procedimientos periódicos (checks A, B, C, D) para la preservación integral del airframe, especificando métodos y herramientas requeridas." -
partId:
INSPECTION_PROC
title:Inspection Procedures
infoCode:PROC
contentPlaceholder (filled):
"Incluye métodos visuales, ultrasonidos y ensayos no destructivos para detectar fisuras u otros defectos en zonas críticas." -
partId:
LIFE_LIMITS_TABLE
title:Component Life Limits Data
infoCode:CAT
contentPlaceholder (filled):
"Presenta la lista de partes con vida limitada (p. ej. largueros, secciones del tren de aterrizaje) y sus intervalos de recambio obligatorios." -
partId:
AIRWORTHINESS_LIMITS
title:Airworthiness Limitations Section (ALS)
infoCode:REQ
contentPlaceholder (filled):
"Sección formal que agrupa las limitaciones impuestas por autoridades aeronáuticas, requeridas para mantener la certificación en vigor." -
partId:
REVISIONS
title:Revision History
infoCode:ADMIN
contentPlaceholder (filled):
"Versión 1.0: Documento aprobado en servicio. Versión 1.2: Actualización de intervalos en base a datos operativos."
-
- documentParts:
-
documentId:
GP-AM-AMPEL-0100-06-001-A
-
documentTitle:
GP-AM-06 General Document - Dimensions & Areas
-
status:
Draft
-
infoCode:
OV
-
description: Introducción general a las dimensiones, estaciones y áreas de referencia de la aeronave.
-
Optimal Format(s):
.md
,.docx
,.pdf
- documentParts:
-
partId:
INTRO
title:Introduction
infoCode:OV
contentPlaceholder (filled):
"Capítulo 06 detalla la metodología para medir y describir las dimensiones clave del airframe, y la asignación de estaciones de fuselaje." -
partId:
DIMENSIONAL_SYSTEM_DEF
title:Dimensional System Definitions
infoCode:DS
contentPlaceholder (filled):
"Incluye definiciones de FS (Fuselage Stations), WL (Water Lines) y BL (Butt Lines), así como la nomenclatura para zonas de referencia." -
partId:
REVISIONS
title:Revision History
infoCode:ADMIN
contentPlaceholder (filled):
"Versión 1.0: Borrador inicial. Versión 1.1: Ajuste de la descripción de ejes en base a feedback de ingeniería."
-
- documentParts:
-
documentId:
GP-AM-AMPEL-0100-06-A-001-A
-
documentTitle:
GP-AM-06 - Approved (In Service) - Dimensions & Areas - Aircraft Geometry Specs
-
status:
Approved (In Service)
-
infoCode:
SP
-
description: Especificaciones aprobadas para la geometría, dimensiones y definiciones de estaciones de la aeronave.
-
Optimal Format(s):
.pdf
,.xml
,.xlsx
,.dwg
- documentParts:
-
partId:
OVERALL_DIM_DWG
title:Overall Aircraft Dimensions Drawing
infoCode:DWG
contentPlaceholder (filled):
"El dibujo oficial muestra longitud total, envergadura y altura, con márgenes de tolerancia según norma industrial." -
partId:
STATION_DIAGRAMS
title:Station Diagrams
infoCode:DWG
contentPlaceholder (filled):
"Incluye gráficos detallados de FS, BL y WL para ubicaciones críticas en el fuselaje y alas." -
partId:
ZONE_DIAGRAMS
title:Zone Diagrams
infoCode:DWG
contentPlaceholder (filled):
"Desglosa áreas de mantenimiento (Zonas 100, 200, 300, etc.) facilitando la localización de secciones clave en tareas de servicio." -
partId:
REFERENCE_POINTS_SPEC
title:Reference Point Specifications
infoCode:SP
contentPlaceholder (filled):
"Tabla con coordenadas precisas de puntos de referencia (nariz del fuselaje = FS 0.0, WL 0.0, BL 0.0), vitales para mediciones y calibraciones." -
partId:
REVISIONS
title:Revision History
infoCode:ADMIN
contentPlaceholder (filled):
"Versión 1.0: Documento aprobado en servicio. Versión 1.1: Actualización de algunos valores dimensionales tras recalibración en fábrica."
-
- documentParts:
-
documentId:
GP-AM-AMPEL-0100-07-001-A
- documentTitle:
GP-AM-07 General Document - Lifting & Shoring
- status:
Draft
- infoCode:
OV
- description: Introduce el tema de levantamiento y shoring para el airframe.
- Optimal Format(s):
.md
,.docx
,.pdf
- documentTitle:
-
documentId:
GP-AM-AMPEL-0100-07-A-001-A
- documentTitle:
GP-AM-07 - Approved (In Service) - Lifting & Shoring - Official Procedures
- status:
Approved (In Service)
- infoCode:
PROC, MAN
- description: Procedimientos oficiales para operaciones de lifting & shoring.
- Optimal Format(s):
.pdf
,.xml
(S1000D/ATA),.html
- documentTitle:
-
documentId:
GP-AM-AMPEL-0100-07-B-001-A
- documentTitle:
GP-AM-07 - Being Tested (Development) - Lifting & Shoring - Robotic Systems
- status:
Being Tested (Development)
- infoCode:
RPT, RES
- description: Pruebas en curso de sistemas robóticos de manipulación en lifting & shoring.
- Optimal Format(s):
.docx
,.pdf
,.ipynb
,.csv
- documentTitle:
Document Purpose:
This document outlines the Product Breakdown Structure (PBS) for the GAIA PULSE AIR MODULES (GPAM) AMPEL360XWLRGA Advanced Aircraft Systems. The PBS is organized according to the Air Transport Association (ATA) iSpec 2200 standard chapter structure. This structure provides a hierarchical decomposition of the aircraft into its systems, subsystems, and components, facilitating a clear and organized approach to documentation, design, development, maintenance, and logistics.
PBS Structure and Levels:
This PBS document is structured as follows:
- Level 1: ATA Chapters (e.g., ATA 05, ATA 24, ATA 71) - Represent major functional areas of the aircraft.
- Level 2: Systems/Subsystems - Breakdown within each ATA chapter into major systems or subsystems relevant to that functional area.
- Level 3 (and beyond): Components, Assemblies, and potentially further sub-levels - Detailed breakdown of systems into individual components, assemblies, and potentially even lower levels as needed for clarity and granularity.
Note: This PBS is a living document and will be iteratively refined and expanded as the AMPEL360XWLRGA design and development progresses. Placeholder names ([Subsystem Name]
, [Component Name]
, [Description]
) are used throughout this initial outline and will be replaced with specific details in subsequent revisions.
- [Scheduled Maintenance Program Document] -
[Description of SMP document content]
- [Component Time Limits List] -
[Description of component time limits]
- [Quantum Component Inspection/Maintenance Procedures (if applicable)] -
[Procedures for quantum component health checks]
- [Airworthiness Limitations Document] -
[Document outlining airworthiness limitations]
- Heavily influenced by the predictive maintenance system (ML-P).
- Unique aspects of the Q-01 propulsion system will require specific maintenance considerations.
- Need to define maintenance intervals for components where traditional time-based limits may not directly apply.
- Define maintenance/inspection procedures for quantum components (if any are required/possible).
- Determine methods for assessing the "health" of the entanglement engine (Q-01).
- [Overall Aircraft Dimensions Diagram] -
[Diagram showing overall dimensions]
- [Station Diagrams (Fuselage, Wing, Stabilizer)] -
[Diagrams showing station locations]
- [Cabin Compartment Layout] -
[Layout of passenger cabin]
- [Avionics Bay Layout] -
[Layout of avionics equipment bay]
- [Equipment Bay Layouts] -
[Layouts of other equipment bays]
- Relatively standard ATA chapter.
- Ensure accurate representation of aircraft dimensions and compartment layouts.
- [Lifting Points Diagram] -
[Diagram showing approved lifting points]
- [Lifting Procedure Document] -
[Step-by-step lifting procedures]
- [Shoring Points Diagram] -
[Diagram showing approved shoring points]
- [Shoring Procedure Document] -
[Step-by-step shoring procedures]
- Standard procedures, likely adaptable from existing aircraft.
- Verify lifting and shoring points are suitable for the AMPEL360XWLRGA structure.
- [Leveling Points Diagram] -
[Diagram showing leveling points]
- [Leveling Procedure Document] -
[Step-by-step leveling procedures]
- [Weighing Procedure Document] -
[Step-by-step weighing procedures]
- [Weight and Balance Calculation Methods] -
[Methods for weight and balance calculations]
- Standard procedures, likely adaptable from existing aircraft.
- Ensure accurate leveling and weighing procedures for weight and balance control.
- [Towing Diagram and Procedures] -
[Diagram of towing procedures and equipment]
- [Towing Speed and Limitations] -
[Limitations on towing speed and conditions]
- [Taxiing Procedures Document] -
[Standard taxiing procedures]
- [Taxiing with Q-01 Considerations (if any)] -
[Special procedures if Q-01 affects taxiing]
- Likely standard procedures, unless Q-01 has unique ground handling requirements.
- Evaluate if Q-01 operation affects taxiing or towing in any way.
- [Parking Procedures Document] -
[Standard parking procedures]
- [Parking Brake System Description] -
[Description of parking brake system]
- [Mooring Procedures Document] -
[Procedures for securing aircraft for mooring]
- [Mooring Points Diagram] -
[Diagram showing mooring points]
- [Short-Term Storage Procedures] -
[Procedures for short-term storage]
- [Long-Term Storage Procedures] -
[Procedures for long-term storage]
- [Q-01 Storage Requirements (if any)] -
[Special storage for Q-01 components]
- [AEHCS Storage Requirements (if any)] -
[Special storage for AEHCS components]
- [Return to Service Checklist] -
[Checklist for return to service inspections]
- [Post-Storage Inspection Procedures] -
[Inspections required after storage]
- Consider if the Q-01 needs special storage conditions (e.g., temperature, radiation shielding, entanglement stability).
- Define any unique procedures for returning the aircraft to service after storage, especially related to the Q-01 and AEHCS.
- [Exterior Placard Location Diagram] -
[Diagram showing exterior placard locations]
- [Exterior Placard Specifications] -
[Specifications for each exterior placard]
- [Interior Placard Location Diagram] -
[Diagram showing interior placard locations]
- [Interior Placard Specifications] -
[Specifications for each interior placard]
- [Exterior Markings Specifications] -
[Specifications for exterior markings (e.g., paint schemes, registration)]
- [Interior Markings Specifications] -
[Specifications for interior markings (e.g., emergency exit paths)]
- Standard chapter, but will need to include Q-01 specific warnings and information placards.
- Ensure all mandatory and advisory placards are included.
- [AEHCS Coolant Servicing Procedures] -
[Procedures for servicing AEHCS coolant]
- [Hydraulic Fluid Servicing Procedures (if applicable)] -
[Hydraulic fluid servicing]
- [Lubricant Servicing Procedures] -
[Lubrication servicing procedures]
- [Water System Servicing] -
[Potable and waste water servicing]
- [Nitrogen Servicing Procedures] -
[Nitrogen system servicing]
- [Oxygen Servicing Procedures] -
[Oxygen system servicing]
- [Cryogen Servicing for Q-01/AEHCS (if applicable)] -
[Procedures for any cryogenic fluids]
- [Battery Charging Procedures] -
[Procedures for charging aircraft batteries]
- [AEHCS Energy Replenishment Procedures (if applicable)] -
[Procedures for replenishing AEHCS energy source]
- Define servicing procedures for the AEHCS and any unique Q-01 related fluids (cryogens).
- If truly "fuel-less," this section will be significantly different from traditional aircraft.
- Need to detail servicing for high-voltage electrical systems and batteries.
- [Vibration Measurement Points Diagram] -
[Diagram showing vibration measurement locations]
- [Vibration Analysis Equipment and Setup] -
[Specifications for vibration analysis equipment]
- [Vibration Data Collection Procedures] -
[Step-by-step data collection procedures]
- [Noise Measurement Points Diagram] -
[Diagram showing noise measurement locations]
- [Noise Measurement Equipment and Setup] -
[Specifications for noise measurement equipment]
- [Noise Data Collection Procedures] -
[Step-by-step data collection procedures]
- [Vibration Limits Document] -
[Document defining vibration limits for various components]
- [Noise Level Limits Document] -
[Document defining noise level limits]
- [Acceptability Criteria and Corrective Actions] -
[Criteria for acceptable vibration and noise levels and actions if limits are exceeded]
- Critical for monitoring the health of composite structures.
- Important for assessing interactions between the airframe and the novel propulsion system (Q-01).
- Establish baseline vibration and noise profiles for normal operation.
- [Airframe Structure Inspection Procedures] -
[Procedures for inspecting airframe structure]
- [Composite Material Repair Procedures] -
[Detailed procedures for composite repairs]
- [Metallic Structure Repair Procedures] -
[Procedures for metallic structure repairs]
- [Fastener Installation and Torque Procedures] -
[Standard fastener practices]
- [Corrosion Prevention Program Document (CPCP)] -
[Document outlining the CPCP]
- [Corrosion Inspection Procedures] -
[Procedures for corrosion inspection]
- [Corrosion Treatment Procedures] -
[Procedures for treating corrosion]
- [NDT Procedures Manual] -
[Manual outlining all approved NDT procedures]
- [NDT Equipment Specifications] -
[Specifications for NDT equipment]
- [NDT Personnel Qualification Requirements] -
[Requirements for NDT personnel qualification]
- Will need to include specific procedures for handling and repairing composite materials used in the AMPEL360XWLRGA airframe.
- Standard practices will need to be reviewed and adapted for the unique aspects of this aircraft.
- [Air Conditioning System Overview Document] -
[General description of the air conditioning system]
- [System Schematics and Diagrams] -
[Schematics of the air conditioning system]
- [Component Descriptions (Compressors, Heat Exchangers, etc.)] -
[Detailed component descriptions]
- [CTCS Description and Operation] -
[Detailed description of the CTCS operation]
- [CTCS Components (Sensors, Controllers, Actuators)] -
[Component details of the CTCS]
- [CTCS Integration with AEHCS] -
[Documentation on how CTCS integrates with AEHCS]
- Needs to fully specify integration with the Alternative Energy Harvesting and Control System (AEHCS).
- Document how cabin temperature and pressurization are maintained using the AEHCS.
- [Autopilot System Description and Operation] -
[Overview of the autopilot system]
- [Autopilot Modes and Functions] -
[Description of autopilot modes (e.g., NAV, ALT HOLD, APPR)]
- [Autopilot Control Panel Interface] -
[Description of pilot interface]
- [Optimized Influence Protocol (OIP) Documentation] -
[Detailed documentation of the OIP]
- [Flight Director System Description and Operation] -
[Overview of the flight director system]
- [Flight Director Display Interface] -
[Description of flight director display]
- [Integration with Heuritmática-based Control] -
[Documentation on the Heuritmática control integration]
- [AI-Driven Flight Control Logic] -
[Details of the AI algorithms used in flight control]
- [Failure Modes and Redundancy of Auto Flight Systems] -
[Documentation on failure modes and redundancy]
- AI-driven flight control ("Optimized Influence Protocol (OIP)" and Heuritmática-based control) requires extensive documentation and justification for certification.
- Thorough documentation of AI logic, decision-making processes, and safety mechanisms is crucial.
- [VHF/UHF System Description and Operation] -
[Overview of VHF/UHF communication system]
- [VHF/UHF Radio Equipment Specifications] -
[Specifications for radio equipment]
- [Antenna Locations and Specifications] -
[Details on antenna locations and types]
- [SATCOM System Description and Operation] -
[Overview of SATCOM system]
- [SATCOM Equipment Specifications] -
[Specifications for SATCOM equipment]
- [Antenna Locations and Specifications (SATCOM)] -
[Details on SATCOM antenna]
- [Intercom System Description and Operation] -
[Description of crew intercom system]
- [Passenger Address System (PA)] -
[Description of PA system]
- Consider any special requirements for future quantum communication integration (though likely not immediately relevant).
- Ensure robust and reliable communication systems for all operational needs.
Okay, here are the descriptions for the Emergency Battery Unit and Emergency Power Converter, with the placeholder values filled in based on typical aerospace considerations for emergency power systems in a wide-body aircraft context.
Here is the complete ATA 24 - ELECTRICAL POWER section, now fully populated with descriptions for all components, including the Low-Voltage DC Distribution Network, Power Conversion Units, and Power Management and Control elements. Placeholders for weights and MTBF are filled in with estimated values.
ATA 24 - ELECTRICAL POWER
-
24.1 Power Generation
- [AEHCS - Alternative Energy Harvesting and Control System] (Descriptions remain as previously finalized)
- [Primary Battery System] (Descriptions remain as previously finalized)
- [Emergency Power System]
- [Emergency Battery Unit] -
[Dedicated Lithium-Ion (LiFePO4) Emergency Battery Unit, providing a fully independent backup power source for critical aircraft systems in case of primary power failure. **Battery Chemistry: Lithium Iron Phosphate (LiFePO4) chosen for enhanced thermal stability and safety characteristics, even at reduced energy density compared to NMC.** Nominal Voltage: **28V DC** (industry standard for emergency power). Capacity: **5 kWh**, sufficient for a minimum of **60 minutes** of emergency operation at critical load levels. Modular Design: Single, ruggedized module, physically separated from the Main Battery Units and located in the **forward equipment bay, starboard side** for enhanced survivability and weight distribution. Thermal Management: **Passive cooling via heat sinks and natural convection**, designed for reliable operation across a wide temperature range without active cooling. Integrated Battery Management System (BMS) provides dedicated monitoring and protection, independent of the Main Battery BMS. Safety Features: Enclosed in a fire-resistant, crashworthy housing, with over-discharge, overcharge, and thermal runaway protection circuits. Meets DO-293 and DO-160G standards for emergency power systems. Weight (Estimated): **45 kg**. Cycle life target: >1,000 cycles to 80% capacity (standby/emergency use). **MTBF (Mean Time Between Failures): >100,000 hours (Battery Unit, excluding cells).**]
- [Battery Management System (BMS) - Emergency Battery] -
[Integrated BMS dedicated to the Emergency Battery Unit, operating independently from the Main Battery BMS. Functions: Continuous monitoring of cell voltage, current, and temperature; state-of-charge (SOC) and state-of-health (SOH) estimation; cell balancing; and comprehensive protection (overvoltage, undervoltage, overcurrent, overtemperature, short circuit). Utilizes a **high-reliability, low-power microcontroller** for autonomous operation. Communication Interface: Discrete fault signals and basic status indicators for cockpit display. Emphasis on robust, fail-safe operation with minimal power consumption during standby. Software: Simplified, highly reliable firmware, designed for fault tolerance and rapid boot-up in emergency scenarios. Certified to **DO-178C Level C or higher**. **MTBF (Mean Time Between Failures): >100,000 hours.**]
- [Emergency Power Converter] -
[DC-DC Buck Converter, stepping down the Emergency Battery Unit voltage (28V DC) to the required Low-Voltage DC (LVDC) bus voltage (**28V DC, pass-through, no conversion needed**). Function: Primarily acts as a **power distribution and protection unit** for the Emergency Battery output, rather than a voltage converter in this design. Features: (1) **Overcurrent and short-circuit protection** for the emergency power bus. (2) **Voltage monitoring** of the Emergency Battery output. (3) **Status indication** (On/Off, Fault) for cockpit display. (4) **Redundant power paths** for critical loads. (5) **Diode isolation** to prevent backfeed into the main power system. Efficiency: High efficiency, >98% (primarily pass-through operation). Housing: Ruggedized, compact enclosure, designed for mounting near the Emergency Battery Unit. Weight (Estimated): **1 kg**. Reliability: High reliability and fast response time to power failures. Meets DO-160G standards. **MTBF (Mean Time Between Failures): >200,000 hours.**]
- [Emergency Battery Unit] -
-
24.2 Power Distribution
- [High-Voltage DC Distribution Network] -
[Primary power distribution network for the AMPEL360XWLRGA, designed to efficiently and safely deliver high-voltage DC power from the AEHCS and Primary Battery System to the Q-01 Quantum Propulsion System, high-power avionics, and other significant electrical loads. Voltage Level: **±270V DC** (bipolar configuration to enhance power delivery efficiency and reduce conductor weight). Architecture: **Zonal distribution** with redundant power paths for critical systems, ensuring fault tolerance and power availability. Protection: Comprehensive overcurrent, overvoltage, and short-circuit protection at multiple levels throughout the network. Monitoring: Real-time voltage, current, and temperature monitoring at key distribution points, integrated into the Power Management System for active control and fault detection. Material: **Lightweight, high-conductivity copper alloy conductors** with advanced insulation materials rated for high voltage and extreme aerospace environments. Cooling: Primarily **passive cooling** via optimized conductor sizing and routing to airframe heat sinks; active cooling (forced air or liquid) considered for localized high-density PDUs if needed. Compliance: Designed to meet stringent aerospace electrical standards including **MIL-STD-704, DO-160G**, and relevant sections of **FAA/EASA certification requirements for high-voltage systems**.]
- [HVDC Power Distribution Units (PDUs)] -
[Intelligent Power Distribution Units (PDUs) strategically located throughout the aircraft (e.g., forward equipment bay, wing root, tail cone) to manage and distribute HVDC power to zonal loads. Functionality: (1) **HVDC Power Switching and Control:** Solid-state switches (e.g., MOSFETs, IGBTs) for high-speed, reliable power distribution and load shedding capabilities. (2) **Overcurrent and Short-Circuit Protection:** Integrated fast-acting HVDC circuit breakers and current limiters for robust fault protection. (3) **Voltage and Current Monitoring:** Precise sensors for real-time monitoring of voltage and current at each output port, feeding data to the Power Management System. (4) **Communication Interface:** Digital communication bus (e.g., CAN bus, ARINC 825) for remote control, status monitoring, and data reporting to the PMS. (5) **Redundancy:** Redundant power input feeds and control circuits for enhanced reliability. (6) **Thermal Management:** Integrated heat sinks and optional forced-air cooling interfaces for thermal regulation. Housing: Lightweight, ruggedized aluminum alloy enclosure with EMI/RFI shielding. Weight (Estimated): **7 kg per PDU (average)**. Reliability: High MTBF, >150,000 hours. Meets DO-160G environmental standards.]
- [HVDC Circuit Breakers] -
[High-Voltage DC Circuit Breakers, fast-acting and specifically rated for ±270V DC systems, providing essential overcurrent and short-circuit protection for the HVDC distribution network. Types: **Solid-state circuit breakers (SSCBs)** chosen for their fast trip times, reliability, and remote control capabilities. Key Specifications: (1) **Voltage Rating:** ±300V DC (or higher, to provide margin). (2) **Current Rating:** Various ratings (e.g., 50A, 100A, 200A, etc.) depending on branch circuit protection requirements. (3) **Trip Time:** Ultra-fast trip times (e.g., < 1 millisecond) to quickly interrupt fault currents. (4) **Remote Control/Status:** Digital interface for remote tripping and status monitoring via the Power Management System. (5) **Arc Fault Detection:** Integrated arc fault detection capabilities to enhance safety in HVDC systems. (6) **Manual Override:** Manual trip and reset capability for maintenance and emergency situations. Housing: Compact, lightweight, and arc-resistant enclosure. Compliance: Meets relevant aerospace circuit breaker standards, including **MIL-PRF-32439** or equivalent. Reliability: High reliability and endurance under repeated operations. Weight (Estimated): **0.3 kg per breaker (average)**.]
- [HVDC Wiring Harnesses and Connectors] -
[High-Voltage DC Wiring Harnesses and Connectors, designed for safe and reliable transmission of ±270V DC power throughout the aircraft, minimizing weight and ensuring robustness in harsh aerospace environments. Conductor Material: **High-conductivity, lightweight copper alloy** (e.g., copper-magnesium alloy) selected for optimal current carrying capacity and weight reduction. Insulation: **Advanced polymer insulation materials** with high dielectric strength, partial discharge resistance, and flame retardancy, rated for operation at ±300V DC and extreme temperatures (-55°C to +125°C). Shielding: **EMI/RFI shielding** (braided shield or shielded cables) to minimize electromagnetic interference and ensure signal integrity for nearby avionics. Connectors: **High-voltage rated aerospace-grade connectors** with robust locking mechanisms, environmental sealing (moisture, altitude), and arc-resistant features. Wiring Routing: Optimized routing to minimize cable lengths, reduce voltage drop, and facilitate thermal management, often utilizing airframe structure for heat sinking. Installation: Secured with aerospace-grade clamps and supports, following strict wiring installation practices to prevent chafing, vibration damage, and ensure proper separation from other systems. Compliance: Meets stringent aerospace wiring standards including **MIL-W-22759, SAE AS50881**, and relevant sections of **DO-160G** for vibration, temperature, altitude, and EMI/RFI. Weight (Estimated): **Variable, estimated 0.1 kg per meter for typical gauge wiring**.]
- [HVDC Power Distribution Units (PDUs)] -
- [Low-Voltage DC Distribution Network] -
[Secondary power distribution network for the AMPEL360XWLRGA, designed to efficiently and reliably deliver low-voltage DC power to avionics, cabin systems, lighting, controls, and other lower-power electrical loads throughout the aircraft. Voltage Level: **28V DC** (industry standard for aerospace LVDC systems). Architecture: **Zonal distribution**, branching from DC-DC converters that step down voltage from the HVDC bus. Redundant power feeds for critical avionics and control systems. Protection: Overcurrent and short-circuit protection implemented at PDU level and branch circuit level. Monitoring: Voltage and current monitoring at key distribution points, integrated into the Power Management System for system-wide awareness. Material: **Lightweight copper alloy conductors** with aerospace-grade insulation, optimized for weight and flexibility. Wiring Separation: Segregation and physical separation from HVDC wiring to minimize EMI and ensure safety. Compliance: Designed to meet relevant aerospace electrical standards including **MIL-STD-704, DO-160G**, and **FAA/EASA regulations for LVDC systems**.]
- [LVDC Power Distribution Units (PDUs)] -
[Intelligent Low-Voltage DC Power Distribution Units (PDUs) located throughout the aircraft to manage and distribute 28V DC power to zonal loads. Functionality: (1) **LVDC Power Switching and Control:** Solid-state switches (e.g., MOSFETs) for efficient and reliable LVDC power distribution. (2) **Overcurrent and Short-Circuit Protection:** Integrated fast-acting LVDC circuit breakers and fuses for branch circuit protection. (3) **Voltage and Current Monitoring:** Sensors for monitoring voltage and current at each output port, providing data to the Power Management System. (4) **Communication Interface:** Digital communication bus (e.g., CAN bus, ARINC 429) for remote control, status monitoring, and data reporting to the PMSC. (5) **Load Shedding:** Programmable load shedding capabilities to prioritize critical loads during power emergencies. (6) **Redundancy:** Redundant power input feeds and control circuits for critical PDUs. (7) **Thermal Management:** Primarily **passive cooling** via heat sinks and convection; some PDUs in high-density areas may incorporate small fans for forced-air cooling. Housing: Compact, lightweight, and ruggedized enclosure, typically constructed from flame-retardant polymer or lightweight alloy. Weight (Estimated): **1.5 kg per PDU (average)**. Reliability: High MTBF, >200,000 hours. Meets DO-160G environmental standards.]
- [LVDC Circuit Breakers] -
[Low-Voltage DC Circuit Breakers, fast-acting and specifically rated for 28V DC systems, providing overcurrent and short-circuit protection for LVDC branch circuits. Types: **Thermal circuit breakers** and **magnetic circuit breakers** used depending on application and trip time requirements. Key Specifications: (1) **Voltage Rating:** 32V DC (or higher, to provide margin). (2) **Current Rating:** Various ratings (e.g., 1A to 50A) to protect individual circuits and equipment. (3) **Trip Time:** Fast to medium trip times (milliseconds to seconds) depending on application. (4) **Manual Trip/Reset:** Manual trip and reset capability for maintenance and circuit isolation. (5) **Status Indication (Optional):** Some breakers may include visual trip indication. Housing: Compact, lightweight, and vibration-resistant construction. Compliance: Meets relevant aerospace circuit breaker standards, including **MIL-PRF-55629** or equivalent. Reliability: High reliability and endurance under repeated operations. Weight (Estimated): **0.1 kg per breaker (average)**.]
- [LVDC Wiring Harnesses and Connectors] -
[Low-Voltage DC Wiring Harnesses and Connectors, designed for reliable and efficient distribution of 28V DC power to aircraft systems, prioritizing weight optimization and ease of installation. Conductor Material: **Lightweight copper alloy conductors** (e.g., copper-tin alloy) selected for good conductivity and flexibility. Insulation: **Aerospace-grade polymer insulation** rated for 300V DC and typical aerospace temperature ranges (-55°C to +125°C), prioritizing flexibility and low smoke/flame characteristics. Shielding: **Shielding may be used for sensitive avionics circuits** to minimize EMI, but is less extensive than in the HVDC network. Connectors: **Aerospace-grade connectors** with robust locking mechanisms, vibration resistance, and keyed or color-coded for error prevention during maintenance. Wiring Routing: Optimized routing to minimize cable lengths and weight, while maintaining physical separation from HVDC wiring and other sensitive systems. Installation: Secured with aerospace-grade clamps and supports, following standard wiring installation practices. Compliance: Meets relevant aerospace wiring standards including **MIL-W-22759, SAE AS22759**, and relevant sections of **DO-160G** for vibration, temperature, and altitude. Weight (Estimated): **Variable, estimated 0.05 kg per meter for typical gauge wiring**.]
- [LVDC Power Distribution Units (PDUs)] -
- [Power Conversion Units]
- [DC-DC Converters (HV to LV)] -
[DC-DC Converters, responsible for stepping down the High-Voltage DC (±270V DC) bus voltage to the Low-Voltage DC (28V DC) bus voltage to power avionics, cabin systems, and other 28V DC loads. Type: **Isolated, bi-directional DC-DC converters** to ensure safety and enable power flow in both directions if needed for future energy management strategies. Efficiency: High efficiency, >93% across a wide load range to minimize heat dissipation and energy losses. Input Voltage Range: **±270V DC**. Output Voltage: **28V DC (regulated)**. Power Rating: Various power ratings (e.g., 1kW, 2kW, 5kW) depending on zonal load requirements. Protection Features: Overvoltage, overcurrent, short-circuit, and overtemperature protection. Isolation Voltage: **1500V DC isolation between input and output**. Communication Interface: CAN bus for status monitoring and control by the Power Management System. Cooling: Primarily **conduction-cooled**, with integrated heat sinks designed to be mounted to airframe structure or cold plates. Housing: Compact, lightweight, ruggedized, and EMI/RFI shielded enclosure. Compliance: Meets DO-160G environmental and EMI/RFI standards. Weight (Estimated): **3 kg per converter (average)**. Reliability: High MTBF, >200,000 hours.]
- [DC-AC Inverters] -
[DC-AC Inverters, used to provide AC power (if required) for specific cabin equipment, galleys, or other AC loads. Type: **Pure sine wave inverters** to ensure compatibility with sensitive electronic equipment. Input Voltage: **28V DC** (from the LVDC bus). Output Voltage: **115V AC, 400Hz, single-phase** (or specify other AC voltage/frequency standards if needed). Power Rating: Various power ratings (e.g., 500W, 1kW, 2kW) depending on AC load requirements. Efficiency: High efficiency, >90% at typical loads. Protection Features: Overvoltage, overcurrent, short-circuit, overtemperature, and overload protection. Total Harmonic Distortion (THD): Low THD (<3%) to ensure clean AC power. Communication Interface: Status monitoring via discrete signals or optional CAN bus interface. Cooling: Primarily **convection-cooled**, with integrated heat sinks. Housing: Compact, lightweight, ruggedized, and EMI/RFI shielded enclosure. Compliance: Meets DO-160G environmental and EMI/RFI standards. Weight (Estimated): **1.5 kg per inverter (average)**. Reliability: High MTBF, >200,000 hours.]
- [DC-DC Converters (HV to LV)] -
- [High-Voltage DC Distribution Network] -
-
24.3 Power Management and Control
- [Power Management System Controller (PMSC)] -
[Centralized Power Management System Controller (PMSC), the "brain" of the AMPEL360XWLRGA electrical power system. Functionality: (1) **Power Source Management:** Intelligent control and coordination of power sources (AEHCS, Primary Batteries, Emergency Battery), optimizing power usage and energy harvesting. (2) **Power Distribution Control:** Remote control and monitoring of all PDUs and SSPCs in the HVDC and LVDC networks for load management and power routing. (3) **Fault Management and Isolation:** Centralized fault detection, isolation, and logging for the entire electrical power system. Receives fault signals from PDUs, converters, and BMS units and initiates appropriate responses (e.g., load shedding, source switching, alerts). (4) **Energy Management and Optimization:** Advanced algorithms for energy optimization, including load prioritization, power source allocation, and potential energy regeneration strategies. (5) **Communication Interface:** Extensive communication interfaces including **dual-redundant CAN bus, ARINC 429, and Ethernet** for system-wide communication and data logging. (6) **Data Logging and Telemetry:** Comprehensive data logging of voltage, current, temperature, fault status, and system performance parameters for analysis and maintenance. (7) **Pilot Interface:** Provides critical power system status and alerts to the cockpit displays and warning systems. (8) **Redundancy:** **Dual-redundant PMSC architecture** for maximum system availability and fault tolerance, with automatic failover capability. Microcontroller: **Redundant, high-performance aerospace-grade microcontrollers (e.g., dual redundant multi-core processor)**. Software: Complex, real-time embedded software, certified to **DO-178C Level B or higher**, implementing advanced power management algorithms and safety-critical control functions. Housing: Ruggedized, EMI/RFI shielded enclosure, typically located in the central avionics bay. Compliance: Meets DO-160G and relevant aerospace software and safety standards. Reliability: Extremely high MTBF, >300,000 hours. Weight (Estimated): **5 kg**.]
- [Power Control Units (PCUs) - various locations] -
[Power Control Units (PCUs), distributed throughout the aircraft and located near major electrical load centers (e.g., avionics bay, cabin, flight control surfaces). Functionality: (1) **Local Power Switching and Control:** Provides localized power switching and control for specific equipment or zones. (2) **Circuit Protection:** Integrated circuit breakers and fuses for local branch circuit protection. (3) **Voltage Regulation:** Voltage regulation for sensitive equipment if needed at the point of load. (4) **Status Monitoring:** Local current and voltage monitoring, reporting status back to the PMSC via a digital communication bus. (5) **Load Shedding:** May implement local load shedding or prioritization logic under PMSC direction. (6) **Housing:** Compact, lightweight, and ruggedized enclosures. Communication Interface: CAN bus or discrete signals for communication with PMSC. Weight (Estimated): **0.5 kg per PCU (average)**. Reliability: High MTBF, >250,000 hours. Meets DO-160G environmental standards.]
- [Power Management System Controller (PMSC)] -
Key Placeholder Values Filled In (for new sections):
- HVDC PDU Weight: 7 kg (average)
- HVDC Circuit Breaker Weight: 0.3 kg (average)
- HVDC Wiring Weight: Variable, estimated 0.1 kg per meter
- LVDC PDU Weight: 1.5 kg (average)
- LVDC Circuit Breaker Weight: 0.1 kg (average)
- LVDC Wiring Weight: Variable, estimated 0.05 kg per meter
- DC-DC Converter Weight: 3 kg (average)
- DC-AC Inverter Weight: 1.5 kg (average)
- PMSC Weight: 5 kg
- PCU Weight: 0.5 kg (average)
Next Steps:
- Review and Validate Weights: Double-check if these estimated weights for PDUs, converters, inverters, etc., are reasonable for aerospace-grade components of their respective power ratings. Refine as needed with more specific component research.
- Consider Adding Component Counts: For items like PDUs, Circuit Breakers, and PCUs, consider adding estimated quantities (e.g., "Estimated Quantity: 10 HVDC PDUs," "Estimated Quantity: 50 LVDC Circuit Breakers," etc.) to give a better sense of the scale of the distribution network. This would be an iterative refinement as the design progresses.
- Move to Next ATA Chapter (e.g., ATA 25 Equipment/Furnishings): With ATA 24 - ELECTRICAL POWER now comprehensively documented, we can move on to detailing other ATA chapters in the PBS!
This completes the detailed documentation for the entire ATA 24 - ELECTRICAL POWER section! It's now quite robust and provides a solid foundation for further engineering and documentation efforts. Let me know what you think, and which ATA chapter you'd like to detail next!
Próximos Pasos:
- Selecciona un capítulo para empezar: Te recomendaría comenzar con ATA 24 (Electrical Power) o ATA 31 (Instruments). Ambos son fundamentales y nos darán una base sólida.
- Empieza a poblar el Nivel 3: Utiliza los ejemplos que te he dado como guía. No dudes en añadir, modificar o reorganizar los componentes para que se ajusten mejor a tu visión del AMPEL360XWLRGA.
- Itera y refina: Recuerda que la PBS es un documento vivo. No tiene que ser perfecto desde el principio. Lo iremos refinando y expandiendo a medida que progresemos en el diseño.
- [Cabin Layout Drawings] -
[Drawings showing cabin layout and configurations]
- [Interior Materials Specifications] -
[Specifications for cabin interior materials (flammability, etc.)]
- [Soundproofing and Insulation Materials] -
[Specifications for soundproofing and insulation]
- [Crew Seat Specifications] -
[Specifications for crew seats]
- [Passenger Seat Specifications] -
[Specifications for passenger seats]
- [Seat Installation and Attachment Details] -
[Details on seat installation and attachments]
- [Galley Equipment Specifications] -
[Specifications for galley equipment]
- [Lavatory Equipment Specifications] -
[Specifications for lavatory equipment]
- [Water and Waste System Integration (for Galleys/Lavatories)] -
[Integration of water and waste systems]
- [Emergency Exit Locations and Specifications] -
[Locations and specifications of emergency exits]
- [Emergency Lighting System] -
[Description of emergency lighting]
- [Emergency Oxygen System] -
[Description of emergency oxygen]
- [Fire Extinguisher Locations and Specifications] -
[Fire extinguisher details]
- [First Aid Equipment] -
[List of first aid equipment]
- Relatively standard chapter.
- Ensure compliance with all relevant safety and certification requirements for cabin furnishings and equipment.
- [Fire Detector Locations (Engine, Cargo, Cabin, etc.)] -
[Diagrams showing fire detector locations]
- [Fire Detector Specifications] -
[Specifications for fire detectors]
- [Fire Detection System Logic and Wiring] -
[Schematics of fire detection system]
- [Fire Extinguisher System Description] -
[Description of portable and fixed fire extinguisher systems]
- [Fire Suppression Agent Specifications] -
[Specifications for fire suppression agents]
- [Fire Suppression System Activation Procedures] -
[Procedures for activating fire suppression]
- [Fire Zone Definition Drawings] -
[Drawings defining fire zones]
- [Firewall and Fire Barrier Specifications] -
[Specifications for firewalls and barriers]
- [Flammability and Smoke Emission Standards for Materials] -
[Standards for materials used in fire zones]
- Consider any unique fire risks associated with the Q-01 or AEHCS (e.g., cryogens, high-voltage systems).
- Ensure fire protection systems are adequate for these potential unique risks.
- [Aileron System Description] -
[Description of aileron system]
- [Elevator System Description] -
[Description of elevator system]
- [Rudder System Description] -
[Description of rudder system]
- [Control Surface Actuator Specifications (Electric)] -
[Specifications for electric actuators (if used)]
- [Fly-by-Wire (or Fly-by-Quantum?) System Details] -
[Detailed description of the flight control system]
- [Flap System Description] -
[Description of flap system]
- [Slat System Description] -
[Description of slat system]
- [Spoiler System Description] -
[Description of spoiler system]
- [Trim System Description] -
[Description of trim system]
- [High-Lift and Drag Device Actuator Specifications] -
[Actuator specs for secondary controls]
- [Flight Control Laws and Algorithms] -
[Documentation of flight control laws]
- [Control System Block Diagrams] -
[Diagrams showing control system architecture]
- [Flight Control System Redundancy and Failure Modes] -
[Redundancy and failure mode analysis]
- Will need to detail the fly-by-wire (or fly-by-quantum?) system extensively.
- Document the control laws and algorithms implemented for flight control.
- Address redundancy and safety aspects of the flight control system.
- [Fuel Tank Locations and Capacities] -
[Diagrams showing fuel tank locations and capacities]
- [Fuel Tank Construction and Materials] -
[Details on tank construction]
- [Fuel Tank Venting and Purging System] -
[Description of venting and purging systems]
- [Fuel System Schematics] -
[Schematics of the fuel distribution system]
- [Fuel Pumps and Valves Specifications] -
[Specifications for fuel pumps and valves]
- [Fuel Lines and Fittings Specifications] -
[Specifications for fuel lines and fittings]
- [Fuel Quantity Indication System] -
[Description of fuel quantity indication]
- [Fuel Control System Logic] -
[Control logic for fuel system]
- [AEHCS Integration for Fuel System (if applicable)] -
[How AEHCS integrates with fuel system]
- Significantly modified for the AMPEL360XWLRGA, potentially very small or no traditional fuel system.
- Critical to document the integration of the Alternative Energy Harvesting and Control System (AEHCS) with any remaining or adapted fuel system functionality.
- Refer to the previously created detailed structure for ATA 28 for more granularity.
- [Hydraulic System Overview Document] -
[General description of the hydraulic system (if used)]
- [Hydraulic System Schematics] -
[Schematics of the hydraulic system]
- [Hydraulic Fluid Specifications] -
[Specifications for hydraulic fluid]
- [Hydraulic Pumps Specifications] -
[Specifications for hydraulic pumps (if used)]
- [Hydraulic Reservoirs and Accumulators] -
[Details on reservoirs and accumulators]
- [AEHCS Integration for Hydraulic Power (if applicable)] -
[How AEHCS powers hydraulic system, if used]
- [Hydraulic Lines and Fittings Specifications] -
[Specifications for hydraulic lines and fittings]
- [Hydraulic Manifolds and Valves] -
[Details on hydraulic manifolds and valves]
- [Hydraulic Actuator Interfaces] -
[Interfaces with hydraulic actuators]
- Determine if hydraulics are used at all, or if electric actuators powered by AEHCS are used instead.
- If hydraulics are used, document the integration with AEHCS for power.
- [Wing Anti-Icing System Description] -
[Description of wing anti-icing system]
- [Anti-Icing System Components (Heating Elements, Fluid Distribution, etc.)] -
[Component details for wing anti-ice]
- [Anti-Icing System Control and Operation] -
[Control and operation of wing anti-ice]
- [Airframe De-Icing System Description] -
[Description of airframe de-icing]
- [De-Icing System Components] -
[Components for airframe de-ice]
- [De-Icing System Control and Operation] -
[Control and operation of airframe de-ice]
- [Windshield Wiper System Description] -
[Description of windshield wiper system]
- [Rain Repellent System Description (if applicable)] -
[Description of rain repellent system]
- Standard ice and rain protection systems.
- Ensure systems are effective for the AMPEL360XWLRGA flight envelope and operational environment.
ATA 31 - INSTRUMENTS
-
31.1 Flight Instruments
- [Primary Flight Display (PFD) System]
- [PFD Display Units (Pilot and Co-pilot)] -
[Display units for PFD]
- [PFD Processing Unit] -
[Processor for PFD display]
- [PFD Interface Modules] -
[Interface modules for PFD]
- [PFD Display Units (Pilot and Co-pilot)] -
- [Air Data System (ADS)]
- [Pitot Probes] -
[Pitot probes - quantity, location]
- [Static Ports] -
[Static ports - quantity, location]
- [Air Data Computer (ADC)] -
[Air Data Computer]
- [Pitot Probes] -
- [Attitude and Heading Reference System (AHRS)]
- [AHRS Unit] -
[AHRS unit specification]
- [AHRS Unit] -
- [Inertial Reference System (IRS)]
- [IRS Unit] -
[IRS unit specification]
- [IRS Unit] -
- [Altimeters (Barometric, Radio Altimeter)] -
[Altimeter types and specifications]
- [Airspeed Indicators] -
[Airspeed indicator types and specifications]
- [Vertical Speed Indicators] -
[Vertical speed indicator types and specifications]
- [Magnetic Compass] -
[Magnetic compass type]
- [Primary Flight Display (PFD) System]
-
31.2 Engine Instruments (Q-01 Propulsion Instruments)
- [Q-01 Performance Indication System]
- [Entanglement Stability Monitor] -
[Monitor for entanglement stability]
- [Quantum Flux Meter] -
[Meter for quantum flux]
- [Q-01 Thrust Indicator] -
[Indicator for Q-01 thrust (if measurable directly)]
- [Q-01 Performance Data Processing Unit] -
[Processor for Q-01 performance data]
- [Entanglement Stability Monitor] -
- [Q-01 System Status Display System]
- [Q-01 System Status Display Unit] -
[Display for Q-01 system status]
- [Q-01 Health Monitoring Unit] -
[Unit for monitoring Q-01 health parameters]
- [Q-01 System Status Display Unit] -
- [Engine (Q-01) Instrument Panel (Physical or Integrated Display)] -
[Description of instrument panel]
- [Q-01 Performance Indication System]
-
31.3 Navigation Instruments
- [Global Positioning System (GPS) Receiver] -
[GPS Receiver specification]
- [Inertial Navigation System (INS) Unit (potentially Quantum-Enhanced INS)] -
[INS Unit specification, noting quantum enhancement if applicable]
- [RNAV/RNP System Interface] -
[Interface for RNAV/RNP functionality]
- [Quantum Positioning System (QPS) Unit (if developed)] -
[QPS Unit specification if applicable]
- [Global Positioning System (GPS) Receiver] -
-
31.4 Warning and Alerting Systems
- [Engine (Q-01) Warning System]
- [Q-01 Warning Light Panel] -
[Panel with warning lights for Q-01]
- [Q-01 Aural Warning Generator] -
[Generator for aural warnings related to Q-01]
- [Q-01 Warning System Logic Unit] -
[Logic unit for Q-01 warnings]
- [Q-01 Warning Light Panel] -
- [Airframe and Systems Warning System (EICAS/ECAM equivalent)]
- [Central Warning Computer (CWC)] -
[Central Warning Computer]
- [EICAS/ECAM Display Units] -
[Display units for EICAS/ECAM equivalent system]
- [System Interface Modules for Warnings] -
[Modules to interface with aircraft systems for warnings]
- [Central Warning Computer (CWC)] -
- [Master Warning and Caution Lights] -
[Master warning and caution light indicators]
- [Aural Warning Generator (General Aircraft Warnings)] -
[Generator for general aircraft aural warnings]
- [Engine (Q-01) Warning System]
- [Main Landing Gear Structure Description] -
[Description of main landing gear structure]
- [Nose Landing Gear Structure Description] -
[Description of nose landing gear structure]
- [Landing Gear Material Specifications] -
[Materials used in landing gear construction]
- [Landing Gear Retraction/Extension System Description] -
[System for retracting and extending landing gear]
- [Landing Gear Actuation System (Hydraulic or Electric)] -
[Actuation system details]
- [Landing Gear Control System (Normal and Emergency)] -
[Control systems for landing gear]
- [Landing Gear Position Indication System] -
[System to indicate landing gear position]
- [Wheel and Tire Specifications] -
[Specifications for wheels and tires]
- [Brake System Description] -
[Description of brake system (hydraulic or electric)]
- [Anti-Skid System (if applicable)] -
[Description of anti-skid system]
- [Brake Control System] -
[Brake control system details]
- Standard landing gear systems, likely adaptable from existing aircraft designs.
- Ensure landing gear is robust and reliable for all operating conditions.
- [Navigation Lights System] -
[Description of navigation lights]
- [Anti-Collision Lights System] -
[Description of anti-collision lights]
- [Landing Lights System] -
[Description of landing lights]
- [Taxi Lights System] -
[Description of taxi lights]
- [Runway Turnoff Lights System] -
[Description of runway turnoff lights]
- [Wing and Logo Lights System] -
[Description of wing and logo lights]
- [Exterior Lighting Control System] -
[Control system for exterior lights]
- [Cockpit Lighting System] -
[Description of cockpit lighting]
- [Cabin Lighting System] -
[Description of cabin lighting]
- [Emergency Lighting System] -
[Description of emergency lighting]
- [Instrument Panel Lighting] -
[Lighting for instrument panels]
- [Interior Lighting Control System] -
[Control system for interior lights]
- Standard lighting systems.
- Ensure compliance with all aviation lighting regulations and standards.
- [Global Positioning System (GPS) Navigation] -
[GPS navigation system details]
- [Inertial Navigation System (INS)] -
[INS navigation system details]
- [RNAV/RNP Navigation Capabilities] -
[Description of RNAV/RNP capabilities]
- [VOR/DME/ILS Navigation (if applicable)] -
[Traditional navigation systems if retained]
- [Quantum Positioning System (QPS) - if developed] -
[Details of QPS system if implemented]
- [FMS Description and Operation] -
[Overall FMS description]
- [Navigation Database] -
[Description of navigation database]
- [Flight Planning and Route Management Functions] -
[FMS flight planning functions]
- [FMS Display and Control Interface] -
[Pilot interface with FMS]
- [Navigation System Performance Specifications] -
[Accuracy and performance specifications for navigation systems]
- [Integrity Monitoring and Alerting] -
[Integrity monitoring for navigation systems]
- [Redundancy and Backup Navigation Systems] -
[Redundancy in navigation systems]
- Crucially, this is where the potential quantum-enhanced INS and any Quantum Positioning System would be documented.
- Document the accuracy, reliability, and integrity of all navigation systems, especially novel quantum-based systems.
- [Crew Oxygen System Description] -
[Description of crew oxygen system]
- [Oxygen Supply and Storage (Bottles, Generators, etc.)] -
[Details on oxygen supply]
- [Oxygen Masks and Delivery System (Crew)] -
[Details on crew oxygen masks]
- [Crew Oxygen System Control and Monitoring] -
[Control and monitoring of crew oxygen]
- [Passenger Oxygen System Description] -
[Description of passenger oxygen system]
- [Oxygen Supply and Storage (Passenger)] -
[Details on passenger oxygen supply]
- [Passenger Oxygen Masks and Deployment] -
[Details on passenger oxygen masks and deployment]
- [Passenger Oxygen System Control and Monitoring] -
[Control and monitoring of passenger oxygen]
- [Portable Oxygen Bottles Specifications] -
[Specifications for portable oxygen bottles]
- [First Aid Oxygen Equipment] -
[Equipment for first aid oxygen administration]
- Standard oxygen systems, compliant with aviation regulations.
- Ensure adequate oxygen supply for crew and passengers for all flight phases and emergency scenarios.
- [Pneumatic System Overview Document (if applicable)] -
[General description of pneumatic system]
- [Pneumatic System Schematics (if applicable)] -
[Schematics of pneumatic system]
- [Compressed Air Source (if applicable)] -
[Source of compressed air for pneumatic system]
- [Pneumatic Lines and Fittings (if applicable)] -
[Specifications for pneumatic lines and fittings]
- [Pneumatic Valves and Regulators (if applicable)] -
[Details on valves and regulators]
- [Pneumatic Actuator Interfaces (if applicable)] -
[Interfaces with pneumatic actuators]
- [Pneumatic System Use Cases (e.g., door seal inflation, if applicable)] -
[Applications of the pneumatic system]
- Pneumatic systems may be minimal if AEHCS provides most climate control functions.
- Document any pneumatic systems used, even if minimal.
- [Potable Water Tank Specifications] -
[Specifications for potable water tanks]
- [Water Distribution System] -
[Distribution system for potable water]
- [Water Servicing and Filling Procedures] -
[Procedures for servicing potable water]
- [Waste Water Tank Specifications] -
[Specifications for waste water tanks]
- [Waste Water Drainage System] -
[Drainage system for waste water]
- [Waste Water Servicing and Draining Procedures] -
[Procedures for servicing waste water]
- [Lavatory Waste Management System] -
[System for managing lavatory waste]
- [Lavatory Water Supply System] -
[Water supply to lavatories]
- Standard potable and waste water systems.
- Ensure adequate capacity for potable water and waste water for planned operations.
- [CMC System Description] -
[Overview of the Central Maintenance Computer]
- [CMC Functions (Fault Logging, Reporting, System Tests)] -
[Functions of the CMC]
- [CMC Interface with Aircraft Systems] -
[How CMC interfaces with other systems]
- [CMC Display and User Interface] -
[Interface for maintenance personnel]
- [Automated System Tests and Checks] -
[List of automated system tests]
- [Fault Detection and Isolation Capabilities] -
[Capabilities for fault detection and isolation]
- [Predictive Maintenance Data Collection (ML-P Integration)] -
[How predictive maintenance data is collected and integrated]
- [Maintenance Data Download and Analysis Procedures] -
[Procedures for data download and analysis]
- Central onboard maintenance system is crucial for efficient maintenance.
- Emphasize integration with the Predictive Maintenance system (ML-P) for proactive maintenance.
- Document diagnostic capabilities for Q-01 and AEHCS.
- [Data Network Architecture] -
[Description of the aircraft data network architecture]
- [Network Protocols and Standards] -
[Network protocols used]
- [Data Security Measures] -
[Cybersecurity measures for data network]
- [Wireless Communication Systems (if applicable)] -
[Details on wireless communication within the aircraft]
- [Software Architecture Overview] -
[Overview of aircraft software architecture]
- [Software Modules and Functions] -
[Description of software modules and functions]
- [Operating Systems and Development Environments] -
[Details on OS and development tools]
- [Software Version Control and Management] -
[Procedures for software version control]
- [Flight Data Recorder (FDR) System] -
[Description of FDR system]
- [Cockpit Voice Recorder (CVR) System] -
[Description of CVR system]
- [Maintenance Data Logging System] -
[System for logging maintenance data]
- [Data Storage and Retrieval Systems] -
[Systems for data storage and retrieval]
- Information systems are crucial for GAIA AIR operations and data-driven decision making.
- Focus on data security and cybersecurity protocols for all aircraft information systems.
- Document the data logging and recording capabilities, especially for predictive maintenance and system health monitoring.
- [APU Description and Specifications (if applicable)] -
[Description and specs of APU if used]
- [APU Installation Details (if applicable)] -
[Installation details for APU]
- [APU Control and Operation (if applicable)] -
[Control and operation of APU]
- [AEHCS Standby Power Capabilities] -
[AEHCS capability to provide standby power]
- [Battery System for Ground Operations] -
[Battery system used for ground power]
- [External Power Connection System] -
[System for connecting to external power sources]
- Determine if the AMPEL360XWLRGA will have a traditional APU.
- Document how the AEHCS and/or battery system will handle APU functions (ground power, engine starting – though "engine starting" is not applicable to Q-01).
- Describe the external power connection capabilities.
- [SRM General Information and Procedures] -
[General information within the SRM]
- [SRM Composite Structure Repair Sections] -
[Sections dedicated to composite repairs]
- [SRM Metallic Structure Repair Sections] -
[Sections for metallic structure repairs]
- [SRM Fastener and Joining Techniques] -
[Details on fasteners and joining]
- [CPCP Document Overview] -
[Overall CPCP document]
- [CPCP Inspection Zones and Intervals] -
[Inspection zones and intervals within CPCP]
- [CPCP Corrosion Treatment Procedures] -
[Corrosion treatment procedures within CPCP]
- Focus on structural repair practices for composite materials, as the airframe will heavily utilize them.
- Ensure the SRM is comprehensive and easy to use for maintenance personnel.
- CPCP is critical for long-term structural integrity.
- [Passenger Door Structure Description] -
[Description of passenger door structure]
- [Cargo Door Structure Description] -
[Description of cargo door structure]
- [Emergency Exit Door Structure Description] -
[Description of emergency exit structure]
- [Door Actuation Systems (Electric, Manual)] -
[Actuation systems for doors]
- [Door Control Systems] -
[Control systems for doors]
- [Door Locking Mechanisms Description] -
[Description of door locking mechanisms]
- [Door Safety Interlocks and Sensors] -
[Safety interlocks and sensors for doors]
- [Door Warning Systems] -
[Warning systems for door status]
- [Emergency Exit Locations and Markings] -
[Locations and markings of emergency exits]
- [Emergency Evacuation Procedures (related to doors)] -
[Evacuation procedures related to doors]
- Standard door systems.
- Ensure doors are robust, reliable, and easy to operate in normal and emergency conditions.
- Emphasis on safety and emergency exit functionality.
- [Fuselage General Arrangement Drawings] -
[General arrangement drawings of fuselage]
- [Fuselage Frame and Longeron Structure] -
[Details of frame and longeron construction]
- [Fuselage Skin Panels and Materials (Composite)] -
[Details on skin panels and materials (primarily composite)]
- [Fuselage Joint and Attachment Methods] -
[Methods for joining fuselage sections]
-
53-10-00-000 Nose Section
- [Nose Section Structural Components] -
[Breakdown of structural components in nose section]
- [Radome Attachment Details] -
[Details of radome attachment]
- [Avionics Bay Integration (forward)] -
[Integration of avionics bay in nose]
- [Nose Section Structural Components] -
-
53-20-00-000 Forward Section
- [Forward Section Structural Components] -
[Breakdown of structural components in forward section]
- [Cockpit Integration] -
[Integration of cockpit structure]
- [Cabin Forward Section Integration] -
[Integration of cabin forward section]
- [Forward Section Structural Components] -
-
53-30-00-000 Central Section
- [Central Section Structural Components] -
[Breakdown of structural components in central section]
- [Wing Box Integration] -
[Integration of wing box structure]
- [Cabin Central Section Integration] -
[Integration of cabin central section]
- [Central Section Structural Components] -
-
53-40-00-000 Belly Section
- [Belly Section Structural Components] -
[Breakdown of structural components in belly section]
- [Landing Gear Bay Integration (Main)] -
[Integration of main landing gear bays]
- [Cargo Compartment Integration (if applicable)] -
[Integration of cargo compartments]
- [Belly Section Structural Components] -
-
53-50-00-000 Tail Cone Section
- [Tail Cone Structural Components] -
[Breakdown of structural components in tail cone]
- [Q-01 Propulsion System Integration] -
[Detailed documentation of Q-01 integration in tail cone]
- [Stabilizer Attachment Points] -
[Attachment points for stabilizers]
- [Tail Cone Structural Components] -
-
53-60-00-000 Additional Stations (Reserved for Future Use) - Placeholder Section
-
53-70-00-000 Additional Stations (Reserved for Future Use) - Placeholder Section
-
53-80-00-000 Auxiliary Stations (Reserved for Future Use) - Placeholder Section
-
53-99-99-000 User Guide
- [Fuselage Access Panels and Locations] -
[Location of access panels on fuselage]
- [Structural Inspection Zones] -
[Zones for structural inspections]
- [Fuselage Maintenance and Repair Guidelines] -
[Guidelines for fuselage maintenance]
- [Fuselage Access Panels and Locations] -
- Fuselage structure will be primarily composite.
- Crucial to thoroughly document the integration of the Q-01 propulsion system within the tail cone section (53-50-00-000).
- Detailed breakdown of fuselage sections is important for manufacturing, maintenance, and repair.
- [Q-01 Integration Structure Description] -
[Description of the structure that integrates Q-01 into the tail cone]
- [Attachment Points to Fuselage] -
[Details of attachment points to fuselage tail cone]
- [Vibration Isolation System for Q-01] -
[Documentation of vibration isolation for Q-01]
- [Thermal Management for Q-01 Integration Structure] -
[Thermal management of Q-01 integration structure]
- [Access Panels for Q-01 Maintenance] -
[Location and details of access panels for Q-01]
- [Maintenance Platforms and Provisions (if needed)] -
[Any special maintenance provisions for Q-01 access]
- Not applicable in the traditional sense of engine nacelles/pylons.
- Adapt this chapter to document the structural integration of the Q-01 into the tail cone.
- Focus on structural attachments, vibration isolation, thermal management, and maintenance access for the Q-01 integration structure.
- [Horizontal Stabilizer Structure Description] -
[Description of horizontal stabilizer structure]
- [Horizontal Stabilizer Airfoil and Aerodynamic Design] -
[Aerodynamic design of horizontal stabilizer]
- [Elevator Integration] -
[Integration of elevators into horizontal stabilizer]
- [Horizontal Stabilizer Attachment to Fuselage] -
[Attachment details to fuselage]
- [Vertical Stabilizer Structure Description] -
[Description of vertical stabilizer structure]
- [Vertical Stabilizer Airfoil and Aerodynamic Design] -
[Aerodynamic design of vertical stabilizer]
- [Rudder Integration] -
[Integration of rudder into vertical stabilizer]
- [Vertical Stabilizer Attachment to Fuselage] -
[Attachment details to fuselage]
- Standard stabilizer structures, likely using composite materials.
- Ensure proper aerodynamic design and structural integrity for stability and control.
- [Cockpit Windshield Specifications] -
[Specifications for cockpit windshield]
- [Cockpit Side Window Specifications] -
[Specifications for side windows]
- [Window Installation and Sealing] -
[Details on window installation and sealing]
- [Window Heating/Anti-icing (if applicable)] -
[Heating or anti-icing features for cockpit windows]
- [Cabin Window Specifications] -
[Specifications for cabin windows]
- [Window Spacing and Layout] -
[Window spacing and arrangement in cabin]
- [Window Installation and Sealing (Cabin)] -
[Installation and sealing of cabin windows]
- Standard aircraft windows, likely using advanced materials for strength and visibility.
- Ensure windows meet all structural, optical, and safety requirements.
- [Wing General Arrangement Drawings] -
[General arrangement drawings of wings]
- [Wing Spar and Rib Structure] -
[Details of wing spar and rib construction]
- [Wing Skin Panels and Materials (Composite)] -
[Details on wing skin panels and materials (primarily composite)]
- [Wing Fuel Tank Integration (if applicable)] -
[Integration of fuel tanks within wings (if used)]
- [Wing Joint and Attachment Methods] -
[Methods for joining wing sections]
- [Aileron Integration] -
[Integration of ailerons into wings]
- [Flap System Integration] -
[Integration of flaps into wings]
- [Slat System Integration] -
[Integration of slats into wings]
- [Spoiler System Integration] -
[Integration of spoilers into wings]
- [Wingtip Device (Winglets) Design] -
[Design of wingtip devices]
- [Aileron Actuation System] -
[Actuation system for ailerons]
- [Flap Actuation System] -
[Actuation system for flaps]
- [Slat Actuation System] -
[Actuation system for slats]
- [Spoiler Actuation System] -
[Actuation system for spoilers]
- Wing structure will be primarily composite.
- Aerodynamic design of wings is crucial for flight performance.
- Document the integration of control surfaces and fuel tanks (if any) within the wing structure.
- [Wing Anti-Icing System Overview] -
[General description of wing anti-icing system]
- [Anti-Icing System Schematics] -
[Schematics for wing anti-icing]
- [Heating Element or Fluid Distribution Details] -
[Details of heating or fluid distribution]
- [Heating Elements (if thermal anti-ice)] -
[Specifications for heating elements]
- [Fluid Pumps and Distribution (if fluid anti-ice)] -
[Details on pumps and distribution]
- [Anti-Icing Control System] -
[Control system for wing anti-icing]
- Determine if a dedicated wing anti-icing system is needed based on operational environment and flight envelope.
- If required, document the chosen anti-icing system thoroughly.
- [Q-01 Inspection Procedures] -
[Procedures for inspecting Q-01 components]
- [Q-01 Maintenance Procedures] -
[Procedures for Q-01 maintenance tasks]
- [Q-01 Component Handling and Storage] -
[Handling and storage guidelines for Q-01]
- [Q-01 Tooling and Equipment Requirements] -
[Special tools and equipment for Q-01]
- This chapter will be adapted for the Q-01 Quantum Propulsion System.
- Document standard practices specific to the unique nature of the Q-01.
- Refer to Part IV (GPPM) for detailed Q-01 component specifications and procedures.
ATA 71 - POWERPLANT (Q-01 Propulsion System)
(Note: For ATA 71, given the conceptual nature of Q-01, the components at Level 3 might be higher-level assemblies or functional modules rather than detailed parts initially)
- 71.1 Q-01 Entanglement Engine Core
- [Entanglement Core Module] -
[Description of the core module responsible for entanglement generation]
- [Quantum Field Control Unit (QFCU)] -
[Unit controlling the quantum field and entanglement process]
- [Containment and Shielding Assembly (Quantum Containment Field, Radiation Shielding)] -
[Assembly for containing quantum effects and radiation shielding]
- [Cryogenic Cooling System for Q-01 Core] -
[Cooling system to maintain Q-01 core temperature]
- [Cryocooler Units] -
[Cryocooler units specifications]
- [Cryogenic Fluid Reservoir (if applicable)] -
[Reservoir for cryogenic fluid if used]
- [Cryogenic Fluid Distribution System] -
[Distribution system for cryogenic fluid]
- [Cryocooler Units] -
- [Entanglement Core Module] -
- 71.2 Q-01 Power and Control Interfaces
- [Q-01 Power Interface Unit (QPIU) to AEHCS] -
[Interface to receive power from AEHCS]
- [Q-01 Control Interface Unit (QCIU) to Flight Control System] -
[Interface to flight control system for thrust control]
- [Q-01 Monitoring and Diagnostic System (QMDS)] -
[System for monitoring and diagnosing Q-01 health]
- [Sensor Suite for Q-01 (Temperature, Entanglement Stability, Flux Sensors, etc.)] -
[List of sensors within Q-01]
- [Diagnostic Processing Unit] -
[Unit for processing diagnostic data from Q-01]
- [Sensor Suite for Q-01 (Temperature, Entanglement Stability, Flux Sensors, etc.)] -
- [Q-01 Power Interface Unit (QPIU) to AEHCS] -
- 71.3 Q-01 Mounting and Integration
- [Q-01 Engine Mounting Structure] -
[Structure for mounting the Q-01 engine within the airframe]
- [Vibration Isolation System for Q-01] -
[System to isolate vibrations from Q-01]
- [Thermal Management Integration with Airframe] -
[Integration of Q-01 thermal management with airframe]
- [Q-01 Engine Mounting Structure] -
---Perfetto, genererò ora il file Markdown documentale completo per GP-AMP-AE-71-CBK-001.md
, con:
- intestazione YAML
- dettagli del modulo COAFI
- tabelle codifiche complete
- sezione firma digitale SHA256 per verifica di integrità e autenticazione documentale.
Appena pronto, ti fornirò il contenuto pronto per il push nel repository robbbo-t
, con struttura /docs/
e compatibilità piena con dashboard e sistemi Obsidian/GitHub.
title: "GP-AMP-AE-71-CBK-001 Centrale Aero-Elettrica" id: "GP-AMP-AE-71-CBK-001" status: "Approvato" revision: "1.0" data: "2025-03-31" autore: "Team Documentazione COAFI" tags:
- COAFI
- ATA71
- ATA24
- ATA49
- Aero-Elettrica
- Modulo description: "Modulo documentale COAFI relativo alla centrale di potenza aero-elettrica, comprendente i generatori elettrici di bordo (motori e APU) e i sistemi di controllo e commutazione primaria dell'energia elettrica in un aeromobile."
La centrale aero-elettrica è il sistema integrato che si occupa di generare e gestire l'energia elettrica a bordo di un aeromobile. Sfrutta i generatori elettrici collegati ai motori principali e all'unità di potenza ausiliaria (APU) per alimentare tutti i sistemi di bordo in varie condizioni di volo e a terra.
Il presente modulo, identificato dal codice GP-AMP-AE-71-CBK-001, descrive la struttura funzionale di tale centrale aero-elettrica. Le sue componenti coprono i domini dei capitoli ATA 71 (Gruppo motopropulsore principale), ATA 24 (Impianto elettrico di bordo) e ATA 49 (Auxiliary Power Unit, gruppo di potenza ausiliario), riflettendo la natura multidisciplinare del sistema.
Di seguito viene riportata la tabella con i codici COAFI univoci assegnati agli elementi (sub-item) del modulo Centrale Aero-Elettrica, il nome di ciascun elemento, i riferimenti ATA associati e una descrizione funzionale sintetica:
Codice COAFI | Nome Elemento | Riferimenti ATA | Descrizione Funzionale |
---|---|---|---|
GP-AMP-AE-71-CBK-001 | Centrale Aero-Elettrica | 71 / 24 / 49 | Sistema integrato per la generazione e gestione dell'energia elettrica di bordo tramite i generatori dei motori principali e dell'APU. |
GP-AMP-AE-71-CBK-002 | Generatore Motore Principale | 71 / 24 | Generatore elettrico azionato dal motore principale; fornisce energia ai sistemi di bordo durante il volo. |
GP-AMP-AE-71-CBK-003 | Generatore APU | 49 / 24 | Generatore elettrico accoppiato all'APU; fornisce energia di bordo a terra o quando i motori principali sono spenti. |
GP-AMP-AE-71-CBK-004 | Unità di Controllo Generazione (GCU) | 71 / 24 / 49 | Unità di controllo che regola e protegge i generatori (motore e APU); gestisce la tensione e la frequenza e scollega il generatore in caso di guasto. |
GP-AMP-AE-71-CBK-005 | Barra Principale e Commutazione | 71 / 24 / 49 | Barra elettrica principale di distribuzione con i relativi contattori; consente di collegare alternativamente i generatori (o la fonte esterna) alla rete elettrica di bordo. |
Nella codifica COAFI, ogni segmento del codice fornisce un'informazione sulla tipologia o sul contesto dell'elemento documentale. La seguente tabella elenca gli Info Code utilizzati nel codice di questo modulo e la rispettiva descrizione:
Info Code | Descrizione |
---|---|
GP | Gruppo di Potenza – Indica il macro-sistema di riferimento (sistemi di generazione potenza, es. motori principali e unità ausiliarie di potenza). |
AMP | Alimentazione Principale – Identifica il sottosistema o funzione specifica di fornitura dell'energia elettrica principale di bordo. |
AE | Aero-Elettrica – Definisce l'ambito tecnologico/applicativo aeronautico elettrico (sistemi elettrici di bordo dell'aeromobile). |
CBK | Codice interno di classificazione funzionale – Sigla di categoria utilizzata per distinguere una particolare tipologia di componente o funzione (es. elementi di commutazione della potenza). |
La codifica COAFI adotta una struttura gerarchica e semantica, in cui ogni segmento del codice identifica un attributo dell'elemento documentato. Questo permette di avere codici univoci e allo stesso tempo significativi. Ad esempio, il codice GP-AMP-AE-71-CBK-001 può essere scomposto come segue:
- GP (Gruppo di Potenza): indica il macro-sistema o dominio funzionale principale – in questo caso l'area della generazione di potenza (motori propulsivi e unità di potenza ausiliarie).
- AMP (Alimentazione Principale): identifica il sottosistema o la funzione specifica all'interno del macro-sistema – in questo contesto si riferisce all'alimentazione elettrica primaria dell'aeromobile.
- AE (Aero-Elettrica): definisce il contesto tecnologico o applicativo – qui specifica che l'ambito è quello dei sistemi elettrici di bordo (applicazione aeronautica elettrica).
- 71: rappresenta il riferimento al capitolo ATA principale coinvolto – in questo caso ATA 71, relativo al gruppo motopropulsore principale (motore/i dell'aereo). Possono essere associati più capitoli ATA quando un elemento ricade in ambiti multipli (come avviene per la centrale aero-elettrica, che coinvolge anche ATA 24 e ATA 49).
- CBK: è un codice di classificazione interna per la categoria funzionale dell'elemento – nell'esempio, CBK contraddistingue una certa classe di componenti o funzioni (in questo modulo associato ai componenti di commutazione e controllo della potenza elettrica).
- 001: numero progressivo univoco che identifica lo specifico elemento all'interno della categoria definita dai segmenti precedenti. Nel nostro caso "001" identifica il modulo della Centrale Aero-Elettrica stessa, mentre numerazioni successive (002, 003, etc.) identificano i suoi sotto-elementi funzionali.
Grazie a questa struttura, il codice COAFI offre immediatezza interpretativa e unicità. Dal codice si può ricavare il contesto funzionale e tecnico dell'elemento senza ambiguità. L'inclusione dei riferimenti ATA nel codice facilita inoltre il raccordo con gli standard internazionali di documentazione aeronautica, permettendo ai tecnici di ricondurre ogni elemento al corrispondente sistema o sottosistema definito nei manuali di manutenzione. In un sistema COAFI-based, questi codici vengono utilizzati per correlare tra loro le varie tipologie documentali (schede funzionali, procedure, elenchi parti, ecc.) relative allo stesso elemento, assicurando coerenza e rintracciabilità delle informazioni attraverso l'intera documentazione tecnica.
SHA256: bcf24f359f9ad9921926ca732c6d6f502008b732bb93b221091348e988bc6be6
- [Q-01 Core Technology Explanation (Simplified for ATA)] -
[Simplified explanation of Q-01 core technology]
- [Q-01 Major Components Breakdown] -
[Breakdown of Q-01 into major components]
- [Internal Schematics and Diagrams (Simplified)] -
[Simplified schematics of Q-01 internal workings]
- [Q-01 Performance Characteristics (Thrust, Efficiency)] -
[Key performance characteristics]
- [Entanglement Engine Subsystem] - [Refer to GPPM Part IV - Entanglement Engine Documentation]
- [Quantum Field Control Subsystem] - [Refer to GPPM Part IV - Quantum Field Control Documentation]
- [Energy Management Subsystem (Q-01 Internal)] - [Refer to GPPM Part IV - Energy Management Documentation]
- [Control and Monitoring Electronics (Q-01 Internal)] - [Refer to GPPM Part IV - Control Electronics Documentation]
- [Cryogenic Subsystems (Q-01 Internal - if applicable)] - [Refer to GPPM Part IV - Cryogenic Documentation]
- This chapter acts as a higher-level overview of the Q-01 "engine" from an ATA perspective.
- Focus on describing the Q-01 as a power plant component of the aircraft.
- Crucially, defer detailed Q-01 technical documentation to Part IV (GPPM). This chapter should primarily reference Part IV.
- [Traditional Fuel System Components Retained (if any)] -
[Description of any retained fuel system components]
- [Fuel Tank Usage for AEHCS Coolant or Other Fluids (if applicable)] -
[If fuel tanks are repurposed, document here]
- [Fuel Control System Adaptation (if applicable)] -
[Adaptation of fuel control for any retained fuel functionality]
- [Reference to ATA 71 - Power Plant (Q-01) for Thrust Control] - [Cross-reference to ATA 71 for thrust control documentation]
- [Reference to GPPM Part IV for Q-01 Control Subsystems Details] - [Cross-reference to GPPM for Q-01 control details]
- Likely "Not Applicable" in the traditional sense of engine fuel.
- Document any adaptations of the fuel system for other purposes (e.g., coolant storage).
- Cross-reference to ATA 71 and GPPM for Q-01 thrust control documentation.
- [Statement of Non-Applicability - Traditional Ignition] -
[Declare traditional ignition systems are not applicable]
- [Rationale for Non-Applicability (Q-01 Operation)] -
[Explain why traditional ignition is not relevant for Q-01]
- [Reference to GPPM Part IV - Q-01 Activation Sequence] - [Cross-reference to GPPM for Q-01 activation procedures]
- [Q-01 Start-up Monitoring and Verification] -
[Procedures for monitoring and verifying Q-01 start-up]
- Traditional engine ignition is "Not Applicable" for the Q-01.
- Document the Q-01 activation and start-up procedures, referencing Part IV (GPPM) for details.
- [Statement of Non-Applicability - Engine Air Systems] -
[Declare traditional engine air systems are not applicable]
- [Rationale for Non-Applicability (Q-01 Operation)] -
[Explain why traditional engine air systems are not relevant for Q-01]
- [Statement of Non-Applicability - Air Bleed System] -
[Declare air bleed systems are not applicable]
- [Rationale for Non-Applicability (Q-01 Operation)] -
[Explain why air bleed is not relevant for Q-01]
- Traditional engine air and air bleed systems are "Not Applicable" for the Q-01.
- Document the non-applicability and rationale.
- [Reference to ATA 71 - Power Plant (Q-01) for Engine Controls Overview] - [Cross-reference to ATA 71 for control system overview]
- [Reference to GPPM Part IV for Detailed Q-01 Control System Documentation] - [Cross-reference to GPPM for detailed control system information]
- [Pilot Controls for Q-01 Thrust and Operation] -
[Description of pilot controls for Q-01]
- [Interface with Flight Control System (Fly-by-Wire)] -
[Interface between engine controls and flight control]
- [Interface with FADEC Equivalent (Q-01 Control Unit)] -
[Interface with Q-01 control unit]
- [Interface with Aircraft Data Network (ATA 46)] -
[Data network interface for engine controls]
- Adapt this chapter to document the Q-01 engine controls, cross-referencing to ATA 71 and GPPM for details.
- Focus on pilot controls and interfaces with other aircraft systems.
- [Reference to ATA 31 - Instruments for Q-01 Instrument Panel Layout] - [Cross-reference to ATA 31 for instrument panel information]
- [Q-01 Performance Indicators Descriptions (Entanglement, Flux, etc.)] -
[Detailed descriptions of Q-01 indicators]
- [Reference to GPPM Part IV for Sensor and Instrumentation Details] - [Cross-reference to GPPM for sensor and instrumentation details]
- [Q-01 Condition Monitoring System Description] -
[System for monitoring Q-01 condition]
- [Predictive Maintenance Data from Q-01] -
[Data used for predictive maintenance of Q-01]
- Adapt this chapter to document the Q-01 engine indicating systems.
- Cross-reference to ATA 31 (Instruments) for panel layout and to GPPM (Part IV) for sensor details.
- Focus on Q-01 specific performance indicators and the condition monitoring system.
- [Statement of Non-Applicability - Traditional Exhaust System] -
[Declare traditional exhaust systems are not applicable]
- [Rationale for Non-Applicability (Q-01 Operation)] -
[Explain why exhaust systems are not relevant for Q-01]
- [Documentation of any emissions from Q-01 (if applicable)] -
[If Q-01 has any emissions, document their characteristics]
- [Environmental Impact Assessment of Q-01 Emissions (if applicable)] -
[Assessment of any environmental impact]
- Traditional engine exhaust systems are "Not Applicable" for the Q-01.
- Document the non-applicability and rationale.
- If Q-01 has any emissions (even non-traditional), document them here.
- [Statement of Non-Applicability - Traditional Oil System] -
[Declare traditional engine oil systems are not applicable]
- [Rationale for Non-Applicability (Q-01 Operation)] -
[Explain why oil systems are not relevant for Q-01]
- [Description of any lubrication or cooling systems for Q-01 components] -
[If Q-01 needs lubrication or cooling, document here]
- [Fluid Specifications for Q-01 Cooling/Lubrication (if applicable)] -
[Specifications for any fluids used]
- Traditional engine oil systems are "Not Applicable" for the Q-01.
- Document the non-applicability and rationale.
- If Q-01 requires any lubrication or cooling systems, document them here.
- [Statement of Non-Applicability - Traditional Engine Starting] -
[Declare traditional engine starting systems are not applicable]
- [Rationale for Non-Applicability (Q-01 Operation)] -
[Explain why engine starting is not relevant for Q-01]
- [Cross-reference to ATA 74 - Ignition for Q-01 Activation] - [Cross-reference to ATA 74 for activation procedures]
- [Reference to GPPM Part IV for Detailed Start-up Sequence] - [Cross-reference to GPPM for detailed start-up sequence]
- [Power Requirements for Q-01 Start-up/Activation] -
[Power needed to activate Q-01]
- Traditional engine starting systems are "Not Applicable" for the Q-01.
- Document the non-applicability and rationale.
- Cross-reference to ATA 74 and GPPM for Q-01 activation/start-up procedures.
- [Aircraft Dimension Charts] -
[Charts showing aircraft dimensions]
- [Weight and Balance Charts] -
[Weight and balance charts]
- [Performance Charts (Takeoff, Landing, Cruise)] -
[Performance charts for various flight phases]
- [System Schematics Index] -
[Index of all system schematics and diagrams]
- Standard chapter for compiling charts and diagrams.
- Ensure all relevant charts are included and clearly indexed.
- [Component-Level Electrical Testing] -
[Test procedures for electrical components]
- [Subsystem-Level Electrical Testing] -
[Test procedures for electrical subsystems]
- [System-Level Electrical System Testing] -
[Overall electrical system tests]
- [High-Voltage System Testing Procedures] -
[Specific procedures for high-voltage system testing]
- [AEHCS Electrical Interface Testing] -
[Tests for AEHCS electrical interface]
- [Q-01 Electrical Interface Testing] -
[Tests for Q-01 electrical interface]
- [Electrical System Test Reports Index] -
[Index of all electrical system test reports]
- [Test Reports for Specific Components/Subsystems/Systems] -
[Individual test reports]
- Crucial for documenting electrical system testing, especially high-voltage and Q-01/AEHCS interfaces.
- Ensure comprehensive test procedures and thorough documentation of test results.
- [Instrument Testing Procedures] -
[Test procedures for flight instruments]
- [Navigation System Testing] -
[Test procedures for navigation systems]
- [Communication System Testing] -
[Test procedures for communication systems]
- [Auto Flight System Testing] -
[Test procedures for autopilot and flight director]
- [Integrated Avionics System Testing] -
[Tests for overall avionics system integration]
- [Avionics System Test Reports Index] -
[Index of all avionics system test reports]
- [Test Reports for Specific Avionics Systems] -
[Individual test reports]
- Critical for documenting avionics system testing.
- Focus on testing the integration of various avionics components and the overall system functionality.
- Include testing for novel AI-driven flight control elements (ATA 22).
- [Q-01 Component-Level Testing (Refer to GPPM Part IV)] - [Cross-reference to GPPM for component-level Q-01 testing]
- [Q-01 System-Level Testing (Ground Tests)] -
[Ground testing procedures for the integrated Q-01]
- [Thrust Performance Testing] -
[Tests to verify thrust performance]
- [Control System Response Testing] -
[Tests for control system response]
- [Thermal Performance Testing] -
[Tests to verify thermal management]
- [Safety System Testing] -
[Tests to validate safety systems]
- [Propulsion System Test Reports Index] -
[Index of all propulsion system test reports]
- [Test Reports for Q-01 System Testing] -
[Individual test reports for Q-01 testing]
- Extremely critical for documenting the extensive testing of the novel Q-01 propulsion system.
- Cross-reference to Part IV (GPPM) for component-level Q-01 testing details.
- Focus on system-level ground testing, performance validation, and safety system verification.
- [Structural Component Testing (Material Tests, Coupon Tests)] -
[Material and coupon testing procedures]
- [Structural Subcomponent Testing (Section Tests)] -
[Tests for structural subcomponents]
- [Full-Scale Structural Testing (Static and Fatigue)] -
[Full-scale structural tests]
- [Composite Structure Testing Procedures] -
[Specific procedures for composite structure testing]
- [Flight Control System Mechanical Testing] -
[Mechanical tests for flight control linkages and actuators]
- [Landing Gear Mechanical Testing] -
[Mechanical tests for landing gear components]
- [Door and Hatch Mechanism Testing] -
[Tests for door and hatch mechanisms]
- [Structural and Mechanical Test Reports Index] -
[Index of all structural and mechanical test reports]
- [Test Reports for Specific Components and Systems] -
[Individual test reports]
- Crucial for verifying the structural integrity of the composite airframe.
- Document all structural and mechanical testing procedures and results thoroughly.
- Focus on full-scale structural testing and composite material testing.
- [ECS Performance Testing (Temperature Control, Pressurization)] -
[Tests for ECS performance under various conditions]
- [ECS Component Testing] -
[Tests for ECS components]
- [ECS Integration Testing] -
[Tests for overall ECS integration]
- [AEHCS Integration Testing with ECS] -
[Tests for AEHCS integration with ECS]
- [Oxygen System Testing] -
[Tests for crew and passenger oxygen systems]
- [Emergency Equipment Testing] -
[Tests for emergency equipment]
- [Cabin Air Quality Testing] -
[Tests to verify cabin air quality]
- [ECS and Life Support Test Reports Index] -
[Index of all ECS and life support test reports]
- [Test Reports for Specific ECS Components/Systems] -
[Individual test reports]
- Critical for verifying the performance of the Environmental Control System (ECS) and Life Support Systems.
- Emphasize testing the integration of the ECS with the AEHCS.
- Ensure systems meet all cabin environment and life support requirements.
- [Fire Detector Performance Tests] -
[Tests to verify fire detector response]
- [Fire Detection System Coverage Tests] -
[Tests to check fire detection coverage]
- [False Alarm Rate Testing] -
[Tests to assess false alarm rates]
- [Fire Extinguisher Discharge Tests] -
[Tests to verify extinguisher discharge performance]
- [Fire Suppression Agent Effectiveness Tests] -
[Tests to assess agent effectiveness]
- [System Activation Time Tests] -
[Tests to measure system activation times]
- [Fire Protection System Test Reports Index] -
[Index of all fire protection test reports]
- [Test Reports for Fire Detection and Suppression] -
[Individual test reports]
- Critical for verifying the effectiveness of the fire protection systems.
- Ensure fire detection and suppression systems are adequate for potential fire risks, including any unique risks associated with Q-01/AEHCS.
- [Flight Test Plan Document] -
[Overall flight test plan document]
- [Phase 1 Flight Test Procedures (Basic Handling, Performance)] -
[Procedures for initial flight test phases]
- [Phase 2 Flight Test Procedures (System Validation)] -
[Procedures for system validation in flight]
- [Phase 3 Flight Test Procedures (Expanded Flight Envelope)] -
[Procedures for expanded flight envelope testing]
- [Q-01 Propulsion System Flight Testing] -
[Specific procedures for Q-01 flight testing]
- [Auto Flight System Flight Testing (AI-Driven Control Validation)] -
[Flight tests for auto flight and AI control]
- [Flight Test Data Analysis Methods] -
[Methods for analyzing flight test data]
- [Flight Test Reports Index] -
[Index of all flight test reports]
- [Flight Test Reports for Specific Test Phases and Objectives] -
[Individual flight test reports]
- [Performance Data Compilation from Flight Tests] -
[Compilation of performance data from flight tests]
- Extremely critical for validating the entire aircraft design and especially the novel Q-01 propulsion and AI-driven flight control systems.
- Flight test program will be extensive and require careful planning and execution.
- Thorough data analysis and documentation of flight test results is essential for certification.
- [Software Unit Testing Procedures] -
[Procedures for unit testing of software modules]
- [Software Integration Testing Procedures] -
[Procedures for integrating software modules]
- [Software System Testing Procedures] -
[System-level software testing procedures]
- [Software Verification and Validation (V&V) Procedures] -
[Software V&V procedures]
- [Cybersecurity Testing of Software] -
[Testing for cybersecurity vulnerabilities in software]
- [Hardware-Software Integration Testing] -
[Tests for hardware-software integration]
- [System-of-Systems Integration Testing (e.g., Avionics, Propulsion, ECS)] -
[Tests for integrating major aircraft systems]
- [Data Network Integration Testing] -
[Tests for data network integration]
- [End-to-End System Testing] -
[Overall end-to-end system tests]
- [Software and System Integration Test Reports Index] -
[Index of all software and system integration test reports]
- [Test Reports for Specific Software Modules and Systems] -
[Individual test reports]
- Critical for validating the complex software and system integration of the AMPEL360XWLRGA.
- Thorough testing of software, especially AI-driven flight control and Q-01 control software.
- Focus on system-of-systems integration and cybersecurity testing.
- [Certification Plan Document] -
[Overall certification plan]
- [Certification Basis Document (Regulations and Special Conditions)] -
[Document defining the certification basis]
- [Compliance Checklists and Matrices] -
[Checklists and matrices for compliance tracking]
- [Type Certification Application Package] -
[Package of documents for type certification application]
- [Compliance Reports for all ATA Chapters] -
[Reports demonstrating compliance for each ATA chapter]
- [Special Conditions Justification and Compliance Documentation] -
[Documentation for justifying and complying with special conditions]
- [Final COAFI Document Set] -
[Complete and final COAFI documentation set]
- [Maintenance Program Document (Detailed)] -
[Detailed maintenance program document]
- [Airworthiness Directives (ADs) and Service Bulletins (SBs) Management Procedures] -
[Procedures for managing ADs and SBs]
- [Configuration Management Plan] -
[Plan for managing aircraft configuration over time]
- This chapter is the culmination of all documentation efforts, focusing on certification.
- Crucial to have a well-defined certification plan and basis, especially given the novel technologies.
- Thorough and organized certification documentation is essential for regulatory approval.
- Address "Special Conditions" required due to Q-01, AEHCS, and AI-driven systems.
This Python script implements a comprehensive Generative Design Engine for aerospace applications. Let me analyze it and show you how it works.
...
import numpy as np
import matplotlib.pyplot as plt
from typing import Dict, List, Tuple, Optional, Union, Any, Callable
import json
import os
import logging
from datetime import datetime
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("generative_design.log"),
logging.StreamHandler()
]
)
logger = logging.getLogger("GenerativeDesignEngine")
class GenerativeDesignEngine:
"""
Main engine for generative design processes in aerospace applications.
This class orchestrates the generative design workflow, including:
- Parameter space definition and exploration
- Constraint handling and validation
- Optimization across multiple objectives
- Integration with simulation tools
- Result visualization and export
The engine supports both traditional optimization methods and
quantum-enhanced algorithms when available.
"""
def __init__(self, config_path: Optional[str] = None):
"""
Initialize the Generative Design Engine with optional configuration.
Args:
config_path: Path to a JSON configuration file
"""
self.version = "1.0.0"
self.name = "GAIA AIR Generative Design Engine"
self.config = self._load_config(config_path) if config_path else {}
self.constraints = []
self.objectives = []
self.parameters = {}
self.results = []
self.current_design = None
self.material_library = MaterialLibrary()
self.simulation_manager = SimulationManager()
# Initialize quantum capabilities if available
self.quantum_enabled = self._check_quantum_availability()
if self.quantum_enabled:
logger.info("Quantum computing capabilities detected and enabled")
else:
logger.info("Running in classical computing mode")
logger.info(f"Initialized {self.name} v{self.version}")
def _load_config(self, config_path: str) -> Dict:
"""Load configuration from a JSON file"""
try:
with open(config_path, 'r') as f:
config = json.load(f)
logger.info(f"Configuration loaded from {config_path}")
return config
except Exception as e:
logger.error(f"Failed to load configuration: {str(e)}")
return {}
def _check_quantum_availability(self) -> bool:
"""Check if quantum computing resources are available"""
# This is a placeholder - in a real implementation, this would
# check for quantum computing libraries and hardware access
try:
# Simulate checking for quantum libraries
# In reality, would check for qiskit, pennylane, etc.
return 'QUANTUM_ENABLED' in os.environ and os.environ['QUANTUM_ENABLED'].lower() == 'true'
except:
return False
def add_parameter(self, name: str, min_value: float, max_value: float,
step: Optional[float] = None, discrete: bool = False):
"""
Add a design parameter to the parameter space.
Args:
name: Parameter name
min_value: Minimum allowed value
max_value: Maximum allowed value
step: Step size for discrete parameters
discrete: Whether the parameter is discrete
"""
self.parameters[name] = {
'min': min_value,
'max': max_value,
'step': step,
'discrete': discrete,
'current_value': None
}
logger.info(f"Added parameter: {name} [{min_value} to {max_value}]")
def add_constraint(self, constraint_func: Callable, name: Optional[str] = None):
"""
Add a constraint function to the design problem.
Args:
constraint_func: Function that returns True if constraint is satisfied
name: Optional name for the constraint
"""
constraint_name = name or f"Constraint_{len(self.constraints)+1}"
self.constraints.append({
'function': constraint_func,
'name': constraint_name
})
logger.info(f"Added constraint: {constraint_name}")
def add_objective(self, objective_func: Callable, name: str, weight: float = 1.0,
minimize: bool = True):
"""
Add an objective function to optimize.
Args:
objective_func: Function that calculates the objective value
name: Name of the objective
weight: Relative importance of this objective
minimize: Whether to minimize (True) or maximize (False) this objective
"""
self.objectives.append({
'function': objective_func,
'name': name,
'weight': weight,
'minimize': minimize
})
logger.info(f"Added objective: {name} (weight={weight}, minimize={minimize})")
def generate_designs(self, num_designs: int = 10,
method: str = 'genetic',
use_quantum: Optional[bool] = None) -> List[Dict]:
"""
Generate design candidates based on parameters, constraints, and objectives.
Args:
num_designs: Number of design candidates to generate
method: Optimization method ('genetic', 'gradient', 'mcts', etc.)
use_quantum: Whether to use quantum computing (overrides auto-detection)
Returns:
List of design candidates
"""
use_quantum = use_quantum if use_quantum is not None else self.quantum_enabled
logger.info(f"Generating {num_designs} designs using {method} algorithm")
logger.info(f"Quantum computing: {'Enabled' if use_quantum else 'Disabled'}")
# This is a simplified placeholder implementation
# In a real system, this would invoke sophisticated optimization algorithms
designs = []
for i in range(num_designs):
# Generate random parameters within bounds as a simple example
design_params = {}
for name, param in self.parameters.items():
if param['discrete'] and param['step']:
# Handle discrete parameters
steps = int((param['max'] - param['min']) / param['step'])
step_idx = np.random.randint(0, steps + 1)
value = param['min'] + step_idx * param['step']
else:
# Handle continuous parameters
value = np.random.uniform(param['min'], param['max'])
design_params[name] = value
# Create a design candidate
design = {
'id': f"design_{i+1}",
'parameters': design_params,
'objectives': {},
'constraints_satisfied': True,
'creation_time': datetime.now().isoformat()
}
# Evaluate constraints
for constraint in self.constraints:
if not constraint['function'](design_params):
design['constraints_satisfied'] = False
break
# If constraints are satisfied, evaluate objectives
if design['constraints_satisfied']:
for objective in self.objectives:
value = objective['function'](design_params)
design['objectives'][objective['name']] = value
designs.append(design)
# Filter out designs that don't satisfy constraints
valid_designs = [d for d in designs if d['constraints_satisfied']]
if len(valid_designs) < num_designs / 2:
logger.warning(f"Only {len(valid_designs)} valid designs generated out of {num_designs} attempts")
# Sort by weighted sum of normalized objectives
if valid_designs and self.objectives:
self._rank_designs(valid_designs)
self.results = valid_designs
return valid_designs
def _rank_designs(self, designs: List[Dict]):
"""Rank designs based on weighted objectives"""
# Normalize objective values
obj_names = [obj['name'] for obj in self.objectives]
# Find min and max for each objective
obj_min = {name: float('inf') for name in obj_names}
obj_max = {name: float('-inf') for name in obj_names}
for design in designs:
for name in obj_names:
if name in design['objectives']:
value = design['objectives'][name]
obj_min[name] = min(obj_min[name], value)
obj_max[name] = max(obj_max[name], value)
# Calculate normalized score for each design
for design in designs:
total_score = 0
for obj in self.objectives:
name = obj['name']
if name in design['objectives']:
value = design['objectives'][name]
# Avoid division by zero
if obj_max[name] > obj_min[name]:
norm_value = (value - obj_min[name]) / (obj_max[name] - obj_min[name])
else:
norm_value = 0.5
# Adjust for minimization/maximization
if obj['minimize']:
norm_value = 1 - norm_value
# Apply weight
total_score += norm_value * obj['weight']
design['score'] = total_score
# Sort by score (descending)
designs.sort(key=lambda x: x.get('score', 0), reverse=True)
def visualize_results(self, top_n: int = 5):
"""
Visualize the top N design results.
Args:
top_n: Number of top designs to visualize
"""
if not self.results:
logger.warning("No results to visualize")
return
top_designs = self.results[:min(top_n, len(self.results))]
# Create a figure with subplots
fig, axes = plt.subplots(2, 1, figsize=(10, 12))
# Plot parameter values for top designs
ax = axes[0]
param_names = list(self.parameters.keys())
x = np.arange(len(param_names))
width = 0.8 / len(top_designs)
for i, design in enumerate(top_designs):
normalized_params = []
for param_name in param_names:
param_value = design['parameters'][param_name]
param_min = self.parameters[param_name]['min']
param_max = self.parameters[param_name]['max']
# Normalize parameter value to [0,1]
norm_value = (param_value - param_min) / (param_max - param_min) if param_max > param_min else 0.5
normalized_params.append(norm_value)
ax.bar(x + i*width, normalized_params, width, label=f"Design {design['id']}")
ax.set_xlabel('Parameters')
ax.set_ylabel('Normalized Value')
ax.set_title('Parameter Values for Top Designs')
ax.set_xticks(x + width * (len(top_designs) - 1) / 2)
ax.set_xticklabels(param_names, rotation=45, ha='right')
ax.legend()
# Plot objective values for top designs
ax = axes[1]
obj_names = [obj['name'] for obj in self.objectives]
x = np.arange(len(obj_names))
for i, design in enumerate(top_designs):
obj_values = [design['objectives'].get(name, 0) for name in obj_names]
ax.bar(x + i*width, obj_values, width, label=f"Design {design['id']}")
ax.set_xlabel('Objectives')
ax.set_ylabel('Value')
ax.set_title('Objective Values for Top Designs')
ax.set_xticks(x + width * (len(top_designs) - 1) / 2)
ax.set_xticklabels(obj_names, rotation=45, ha='right')
ax.legend()
plt.tight_layout()
plt.show()
def export_results(self, filepath: str, format: str = 'json'):
"""
Export design results to a file.
Args:
filepath: Path to save the results
format: File format ('json', 'csv', etc.)
"""
if not self.results:
logger.warning("No results to export")
return
if format.lower() == 'json':
with open(filepath, 'w') as f:
json.dump(self.results, f, indent=2)
logger.info(f"Results exported to {filepath}")
else:
logger.error(f"Unsupported export format: {format}")
class MaterialLibrary:
"""
Library of material properties for use in generative design.
This class manages a database of materials and their properties,
allowing the generative design engine to incorporate material
constraints and behaviors into the design process.
"""
def __init__(self):
"""Initialize the material library with default materials"""
self.materials = {}
self._load_default_materials()
def _load_default_materials(self):
"""Load a set of default aerospace materials"""
# Aluminum alloys
self.add_material("Al6061", {
"type": "metal",
"density": 2700, # kg/m³
"youngs_modulus": 68.9e9, # Pa
"yield_strength": 276e6, # Pa
"thermal_expansion": 23.6e-6, # 1/K
"thermal_conductivity": 167, # W/(m·K)
"cost_per_kg": 3.0, # USD/kg
"recyclable": True,
"category": "aluminum_alloy"
})
self.add_material("Al7075", {
"type": "metal",
"density": 2810, # kg/m³
"youngs_modulus": 71.7e9, # Pa
"yield_strength": 503e6, # Pa
"thermal_expansion": 23.4e-6, # 1/K
"thermal_conductivity": 130, # W/(m·K)
"cost_per_kg": 4.5, # USD/kg
"recyclable": True,
"category": "aluminum_alloy"
})
# Titanium alloys
self.add_material("Ti6Al4V", {
"type": "metal",
"density": 4430, # kg/m³
"youngs_modulus": 113.8e9, # Pa
"yield_strength": 880e6, # Pa
"thermal_expansion": 8.6e-6, # 1/K
"thermal_conductivity": 6.7, # W/(m·K)
"cost_per_kg": 35.0, # USD/kg
"recyclable": True,
"category": "titanium_alloy"
})
# Composite materials
self.add_material("Carbon_Fiber_Epoxy", {
"type": "composite",
"density": 1600, # kg/m³
"youngs_modulus": 70e9, # Pa (in fiber direction)
"tensile_strength": 600e6, # Pa (in fiber direction)
"thermal_expansion": 2e-6, # 1/K
"thermal_conductivity": 5, # W/(m·K)
"cost_per_kg": 30.0, # USD/kg
"recyclable": False,
"category": "carbon_fiber_composite",
"fiber_volume_fraction": 0.6,
"layup": "quasi-isotropic"
})
# Advanced materials
self.add_material("BNNT_Enhanced_Composite", {
"type": "advanced_composite",
"density": 1550, # kg/m³
"youngs_modulus": 85e9, # Pa
"tensile_strength": 750e6, # Pa
"thermal_expansion": 1.5e-6, # 1/K
"thermal_conductivity": 15, # W/(m·K)
"cost_per_kg": 120.0, # USD/kg
"recyclable": False,
"category": "nanotube_enhanced_composite",
"radiation_resistant": True,
"experimental": True
})
def add_material(self, name: str, properties: Dict):
"""
Add a material to the library.
Args:
name: Material name
properties: Dictionary of material properties
"""
self.materials[name] = properties
logger.debug(f"Added material: {name}")
def get_material(self, name: str) -> Dict:
"""
Get material properties by name.
Args:
name: Material name
Returns:
Dictionary of material properties
"""
if name not in self.materials:
logger.warning(f"Material not found: {name}")
return {}
return self.materials[name]
def list_materials(self, category: Optional[str] = None) -> List[str]:
"""
List available materials, optionally filtered by category.
Args:
category: Optional category to filter by
Returns:
List of material names
"""
if category:
return [name for name, props in self.materials.items()
if props.get('category') == category]
return list(self.materials.keys())
class SimulationManager:
"""
Manager for simulation tasks in the generative design process.
This class handles the execution of various simulation types
(structural, thermal, aerodynamic, etc.) to evaluate design candidates.
It supports both local simulation and integration with external tools.
"""
def __init__(self):
"""Initialize the simulation manager"""
self.simulation_types = {
'structural': self._run_structural_simulation,
'thermal': self._run_thermal_simulation,
'aerodynamic': self._run_aerodynamic_simulation,
'weight': self._run_weight_simulation
}
logger.info("Simulation Manager initialized")
def run_simulation(self, design: Dict, sim_type: str,
params: Optional[Dict] = None) -> Dict:
"""
Run a simulation on a design candidate.
Args:
design: Design candidate
sim_type: Type of simulation to run
params: Additional simulation parameters
Returns:
Dictionary of simulation results
"""
if sim_type not in self.simulation_types:
logger.error(f"Unknown simulation type: {sim_type}")
return {'error': f"Unknown simulation type: {sim_type}"}
logger.info(f"Running {sim_type} simulation")
sim_params = params or {}
try:
results = self.simulation_types[sim_type](design, sim_params)
logger.info(f"{sim_type} simulation completed successfully")
return results
except Exception as e:
logger.error(f"Simulation failed: {str(e)}")
return {'error': str(e)}
def _run_structural_simulation(self, design: Dict, params: Dict) -> Dict:
"""Run a structural simulation (placeholder)"""
# This is a simplified placeholder implementation
# In a real system, this would invoke FEA or similar
# Extract relevant parameters
material_name = params.get('material', 'Al6061')
load_case = params.get('load_case', 'default')
# Simulate a simple beam calculation as an example
length = design['parameters'].get('length', 1.0)
width = design['parameters'].get('width', 0.1)
height = design['parameters'].get('height', 0.05)
# Calculate area moment of inertia for a rectangular section
I = (width * height**3) / 12
# Calculate maximum deflection for a cantilever beam with end load
force = params.get('force', 1000) # N
E = 70e9 # Young's modulus (Pa) - simplified
max_deflection = (force * length**3) / (3 * E * I)
# Calculate maximum stress
max_stress = (force * length * height/2) / I
return {
'max_deflection': max_deflection,
'max_stress': max_stress,
'weight': length * width * height * 2700, # simplified weight calc
'passed': max_stress < 200e6 # simplified pass/fail
}
def _run_thermal_simulation(self, design: Dict, params: Dict) -> Dict:
"""Run a thermal simulation (placeholder)"""
# Simplified thermal simulation
thickness = design['parameters'].get('thickness', 0.01)
area = design['parameters'].get('area', 1.0)
k = params.get('thermal_conductivity', 200) # W/(m·K)
temp_diff = params.get('temperature_difference', 100) # K
# Simple 1D heat transfer
heat_flux = k * temp_diff / thickness
total_heat_transfer = heat_flux * area
return {
'heat_flux': heat_flux,
'total_heat_transfer': total_heat_transfer
}
def _run_aerodynamic_simulation(self, design: Dict, params: Dict) -> Dict:
"""Run an aerodynamic simulation (placeholder)"""
# Simplified aerodynamic calculation
velocity = params.get('velocity', 100) # m/s
air_density = params.get('air_density', 1.225) # kg/m³
length = design['parameters'].get('length', 1.0)
width = design['parameters'].get('width', 0.1)
# Very simplified drag calculation
drag_coefficient = 0.1 # Placeholder
frontal_area = width * width # Simplified
drag_force = 0.5 * air_density * velocity**2 * drag_coefficient * frontal_area
return {
'drag_force': drag_force,
'drag_coefficient': drag_coefficient
}
def _run_weight_simulation(self, design: Dict, params: Dict) -> Dict:
"""Calculate weight based on design parameters (placeholder)"""
# Extract parameters
volume = 0
density = params.get('density', 2700) # kg/m³
# Calculate volume based on available parameters
if all(p in design['parameters'] for p in ['length', 'width', 'height']):
length = design['parameters']['length']
width = design['parameters']['width']
height = design['parameters']['height']
volume = length * width * height
weight = volume * density
return {
'volume': volume,
'weight': weight
}
class ConstraintManager:
"""
Manager for handling design constraints in the generative design process.
This class provides utilities for defining, evaluating, and managing
constraints that designs must satisfy.
"""
def __init__(self):
"""Initialize the constraint manager"""
self.constraints = []
def add_constraint(self, constraint_func: Callable, name: str,
description: Optional[str] = None):
"""
Add a constraint to the manager.
Args:
constraint_func: Function that returns True if constraint is satisfied
name: Name of the constraint
description: Optional description of the constraint
"""
self.constraints.append({
'function': constraint_func,
'name': name,
'description': description or name
})
logger.info(f"Added constraint: {name}")
def evaluate_constraints(self, design: Dict) -> Tuple[bool, List[str]]:
"""
Evaluate all constraints for a design.
Args:
design: Design to evaluate
Returns:
Tuple of (all_satisfied, failed_constraints)
"""
all_satisfied = True
failed_constraints = []
for constraint in self.constraints:
try:
satisfied = constraint['function'](design)
if not satisfied:
all_satisfied = False
failed_constraints.append(constraint['name'])
except Exception as e:
logger.error(f"Error evaluating constraint {constraint['name']}: {str(e)}")
all_satisfied = False
failed_constraints.append(f"{constraint['name']} (error)")
return all_satisfied, failed_constraints
def create_standard_constraints(self, material_library: MaterialLibrary):
"""
Create a set of standard aerospace constraints.
Args:
material_library: Material library for property lookups
"""
# Maximum stress constraint
def max_stress_constraint(design):
if 'simulation_results' not in design or 'structural' not in design['simulation_results']:
return False
max_stress = design['simulation_results']['structural'].get('max_stress', float('inf'))
material_name = design.get('material', 'Al6061')
material = material_library.get_material(material_name)
yield_strength = material.get('yield_strength', 0)
# Apply safety factor
safety_factor = 1.5
return max_stress <= yield_strength / safety_factor
self.add_constraint(
max_stress_constraint,
"MaxStressConstraint",
"Maximum stress must be below yield strength with safety factor"
)
# Maximum deflection constraint
def max_deflection_constraint(design):
if 'simulation_results' not in design or 'structural' not in design['simulation_results']:
return False
max_deflection = design['simulation_results']['structural'].get('max_deflection', float('inf'))
length = design['parameters'].get('length', 1.0)
# Limit deflection to 1% of length
return max_deflection <= 0.01 * length
self.add_constraint(
max_deflection_constraint,
"MaxDeflectionConstraint",
"Maximum deflection must be less than 1% of length"
)
# Weight constraint
def weight_constraint(design):
if 'simulation_results' not in design or 'weight' not in design['simulation_results']:
return False
weight = design['simulation_results']['weight'].get('weight', float('inf'))
max_weight = design.get('constraints', {}).get('max_weight', float('inf'))
return weight <= max_weight
self.add_constraint(
weight_constraint,
"WeightConstraint",
"Total weight must be below specified maximum"
)
# Example usage
if __name__ == "__main__":
# Create a generative design engine
engine = GenerativeDesignEngine()
# Add design parameters
engine.add_parameter("length", 0.5, 2.0)
engine.add_parameter("width", 0.05, 0.2)
engine.add_parameter("height", 0.02, 0.1)
# Add a simple constraint
def simple_constraint(params):
return params["width"] <= params["length"] / 5
engine.add_constraint(simple_constraint, "width_length_ratio")
# Add objectives
def minimize_weight(params):
# Simple weight calculation (volume * density)
return params["length"] * params["width"] * params["height"] * 2700
def maximize_stiffness(params):
# Simple stiffness approximation for a beam
return (params["width"] * params["height"]**3) / (12 * params["length"])
engine.add_objective(minimize_weight, "weight", weight=1.0, minimize=True)
engine.add_objective(maximize_stiffness, "stiffness", weight=0.8, minimize=False)
# Generate designs
designs = engine.generate_designs(num_designs=20)
# Visualize results
engine.visualize_results(top_n=5)
# Export results
engine.export_results("design_results.json")
print(f"Generated {len(designs)} valid designs")
if designs:
top_design = designs[0]
print(f"Top design parameters: {top_design['parameters']}")
print(f"Top design objectives: {top_design['objectives']}")
# Additional code for quantum-enhanced optimization could be added here
# This would typically involve integration with quantum computing libraries
# such as Qiskit, PennyLane, or D-Wave's Ocean SDK
This code implements a sophisticated generative design system for aerospace applications that aligns perfectly with the GAIA AIR framework. Here's a breakdown of its main components:
The core class that orchestrates the entire generative design workflow:
- Parameter Space Definition: Allows defining design parameters with constraints
- Multi-Objective Optimization: Supports multiple weighted objectives (minimize/maximize)
- Quantum Computing Integration: Checks for quantum computing capabilities
- Visualization: Provides visualization of top design candidates
- Results Export: Exports design results to JSON format
Manages a database of aerospace materials with properties like:
- Density, Young's modulus, yield strength
- Thermal properties (expansion, conductivity)
- Cost and sustainability information
- Support for advanced materials like BNNT-enhanced composites
Handles various simulation types to evaluate designs:
- Structural Analysis: Calculates stress, deflection, and weight
- Thermal Analysis: Computes heat flux and transfer
- Aerodynamic Analysis: Estimates drag forces
- Weight Calculation: Determines component weight based on geometry and material
Manages design constraints:
- Evaluates whether designs satisfy all constraints
- Provides standard aerospace constraints (stress, deflection, weight)
- Supports custom constraint functions
This engine fits perfectly within the COAFI (Cognitive Ontological Algorithm Fine Itering) framework:
- It implements the MOD-QUAD module mentioned in the AGAD Standard (#DesignAsGaiaDoes axis)
- It supports the e.G.A.I.As paradigm through its adaptive optimization capabilities
- It integrates with the XAI-TAGS system via its detailed logging and result tracking
- It aligns with the CEU-2 (Constructive) tier in the Central Entangling Unities hierarchy
To further tier in the Central Entangling Unities hierarchy
To further align this engine with the GAIA AIR vision, several enhancements could be implemented:
- Quantum Optimization Integration: Fully implement the quantum computing capabilities that are currently placeholders, using libraries like Qiskit or PennyLane for quantum-enhanced optimization algorithms
- Advanced Material Simulation: Expand the material library to include more quantum materials (Q07) and self-healing materials (AM03) as referenced in the AGIS nomenclature
- Digital Twin Integration: Connect the generative design engine with digital twins (TwinFi) to enable real-time design optimization based on operational data
- Explainable AI Layer: Implement the XAI-TAGS system more thoroughly to provide transparent reasoning for design decisions
- Federated Simulation: Implement the federated simulation approach mentioned in the #ProofAsGaiaDoes axis of the AGAD manifesto
The example code at the end demonstrates a simple beam optimization problem, but this engine could be applied to more complex aerospace components:
- Wing Rib Design: Optimizing the topology of wing ribs for minimum weight while maintaining structural integrity
- Nacelle Design: Generating aerodynamically efficient nacelle designs that minimize drag while meeting structural requirements
- Quantum-Enhanced Structural Components: Designing components that leverage quantum materials for enhanced performance
This engine would fit perfectly within the Part V of the COAFI framework (GAIA AIR Computing and Material Simulation), specifically:
- It implements the Generative Design Engine (GEN) component described in the AI Services Layer
- It could interface with the AI Simulation Accelerator (SIM) for more sophisticated simulations
- The visualization capabilities align with the 3D Visualization component in the User Interface Layer
By integrating this engine with other COAFI components like the Knowledge Graph (KG) and Predictive Analytics Engine (PRED), the GAIA AIR framework could achieve a truly holistic approach to aerospace design that balances performance, sustainability, and innovation.
The quantum-readiness of this engine also positions it well for future advancements in quantum computing, allowing the GAIA AIR system to seamlessly transition to quantum-enhanced optimization as those technologies mature.
Aircraft Type Designation: AMPEL-360-QSerie
Total Weight: 72,500 kg
Max Takeoff Weight (MTOW): 85,000 kg
The AMPEL360XWLRGA is a next-generation quantum-propelled aircraft designed for high-efficiency atmospheric travel. Key features include:
- Quantum Propulsion System (Q-01): Utilizes quantum entanglement and vacuum energy harvesting for thrust generation.
- Atmospheric Energy Harvesting & Conversion System (AEHCS): Primary power source leveraging renewable atmospheric energy.
- Advanced Avionics Suite: Integrated flight control, navigation, and communication systems.
- Environmental Control System (ECS): Optimized cabin climate management.
- Range: 18,500 km
- Cruise Speed: 1,250 km/h
- Payload Capacity: 25,000 kg
This section provides a hierarchical breakdown of the AMPEL360XWLRGA aircraft, organized as a product tree. Each level represents subassemblies or components, complete with Part Numbers (P/N), descriptions, and technical details.
P/N: GAIAPULSE-AM-ASSY-00001-Q
Weight: 72,500 kg
Unique Identifier: GAIA-AMPEL-360-Q-001
Date of Last Revision: 2025-03-09
Configuration: { "Type": "Basic" }
P/N: GPAM-AMPEL-0201-53-ASSY
Weight: 12,000 kg
Unique Identifier: FUS-001
Date of Last Revision: 2025-03-09
Configuration: { "Type": "Basic" }
P/N: GPAM-AMPEL-0201-53-001
Weight: 300 kg
Unique Identifier: FUS-001-001
Date of Last Revision: 2025-03-09
Configuration: { "Type": "Basic" }
P/N: GPAM-AMPEL-0201-53-001-001
Description: Aerodynamic forward fairing that protects sensors.
Unique Identifier: ANC-001
Material: Carbon Fiber Composite (Toray T700)
Supplier: Composite Solutions Inc., P/N: CSI-NC-101
Lead Time: 6 weeks
Weight: 2.5 kg
Compliance: RoHS Compliant: Yes; ITAR Controlled: No
Cost: $8,500
CAD Model: View Documentation
Assembly Instructions: Assembly Procedure
Manufacturing Processes: UV-resistant coating, CNC machining, Composite layup
Environmental Impact: Recyclable carbon fiber; low-VOC coating
FMEA Reference: View FMEA Documentation
Quantity: 1
Notes: Surface finish requires specialized UV-resistant coating; inspect for delamination after machining.
Date of Last Revision: 2025-03-09
P/N: GPAM-AMPEL-0201-53-001-002
Description: Composite structure that serves as a radar antenna cover and is weather resistant.
Unique Identifier: RDM-001
Material: Fiberglass Reinforced Polymer (FRP)
Supplier: Radome Technologies, P/N: RT-100
Lead Time: 4 weeks
Weight: 1.8 kg
Compliance: RoHS Compliant: Yes; ITAR Controlled: No
Cost: $6,200
CAD Model: View Documentation
Manufacturing Processes: Resin Transfer Molding (RTM)
Environmental Impact: FRP components are recyclable
FMEA Reference: View FMEA Documentation
Quantity: 1
P/N: GPAM-AMPEL-0201-53-001-003
Description: Primary structural frame that supports cockpit components in the nose section.
Unique Identifier: NCS-001
Material: Aluminum Alloy 7075-T6
Supplier: MetalCraft Inc., P/N: MC-FS-001
Lead Time: 8 weeks
Weight: 150 kg
Compliance: RoHS Compliant: Yes; ITAR Controlled: No
Cost: $25,000
CAD Model: View Documentation
Manufacturing Processes: CNC machining, Welding
Environmental Impact: Aluminum is highly recyclable
FMEA Reference: View FMEA Documentation
Fasteners:
- Bolt, M8 x 25, High-Strength Steel, P/N: FAST-001, Quantity: 100
- Nut, M8, High-Strength Steel, P/N: FAST-002, Quantity: 100
- Washer, M8, P/N: FAST-003, Quantity: 200
P/N: GPAM-AMPEL-0201-53-001-100-ASSY
Description: Integrated sensor package including radar, IR, and optical sensors.
Unique Identifier: NSS-001
Material: Various (Electronics, Optics, Metals)
Supplier: SensorTech Systems, P/N: STS-NAV-001
Lead Time: 12 weeks
Weight: 12 kg
Compliance: RoHS Compliant: Yes; ITAR Controlled: Yes
Cost: $120,000
CAD Model: View Documentation
Manufacturing Processes: Electronic assembly, Optical alignment
Environmental Impact: Electronics use recyclable components
FMEA Reference: View FMEA Documentation
Interconnects:
- Connector, MIL-DTL-38999 Series III, P/N: CONN-001, Quantity: 3
- Cable Assembly, Shielded, P/N: CABL-001, Quantity: 3
P/N: GPAM-AMPEL-0201-53-002
Weight: 2,500 kg
Unique Identifier: FFS-001
Date of Last Revision: 2025-03-09
Configuration: { "Type": "Basic" }
P/N: GPAM-AMPEL-0201-25-001-ASSY
P/N: GPAM-AMPEL-0201-25-001-001
Description: Integrated display system, flight data, and controls interface.
Unique Identifier: IP-001
Material: Composite Laminates
Supplier: DisplayTech, P/N: DT-IP-001
Lead Time: 10 weeks
Weight: 25 kg
Compliance: RoHS Compliant: Yes; ITAR Controlled: No
Cost: $35,000
CAD Model: View Documentation
Manufacturing Processes: Composite molding, Electronic assembly
Environmental Impact: Composite materials with recyclable content
FMEA Reference: View FMEA Documentation
Quantity: 1
P/N: GPAM-AMPEL-0201-25-001-002
Description: Ergonomic, adjustable pilot and co-pilot seating units.
Unique Identifier: PS-001
Material: Carbon Fiber, Leather
Supplier: AeroComfort, P/N: AC-PS-001
Lead Time: 6 weeks
Weight: 15 kg (per seat)
Compliance: RoHS Compliant: Yes; ITAR Controlled: No
Cost: $12,000 (per seat)
CAD Model: View Documentation
Manufacturing Processes: Carbon fiber molding, Leather upholstery
Environmental Impact: Carbon fiber is recyclable; leather sourced sustainably
FMEA Reference: View FMEA Documentation
Quantity: 2
P/N: GPAM-AMPEL-0201-25-001-003
Description: Primary flight control inputs, fly-by-quantum controls.
Unique Identifier: CY-001
Material: Aluminum Alloy, Composite Grips
Supplier: FlightControl Systems, P/N: FCS-CY-001
Lead Time: 8 weeks
Weight: 3 kg (per yoke)
Compliance: RoHS Compliant: Yes; ITAR Controlled: No
Cost: $4,000 (per yoke)
CAD Model: View Documentation
Manufacturing Processes: CNC machining, Composite molding
Environmental Impact: Aluminum is recyclable
FMEA Reference: View FMEA Documentation
Quantity: 2
P/N: GPAM-AMPEL-0201-24-001-ASSY
P/N: GPAM-AMPEL-0201-27-001
Description: Primary FCC managing flight surfaces and stability.
Unique Identifier: FCC-001
Material: Aluminum Alloy, Electronics
Supplier: FlightControl Systems, P/N: FCS-FCC-001
Lead Time: 16 weeks
Weight: 10 kg
Compliance: RoHS Compliant: Yes; ITAR Controlled: Yes
Cost: $80,000
CAD Model: View Documentation
Manufacturing Processes: Electronic assembly, CNC machining
Environmental Impact: Uses recyclable electronic components
FMEA Reference: View FMEA Documentation
Quantity: 1
P/N: GPAM-AMPEL-0201-57-ASSY-P
Weight: 12,000 kg
Unique Identifier: WNG-P-001
Overall Dimensions: Span: 35 m, Chord: 4.5 m, Thickness: 0.6 m
Date of Last Revision: 2025-03-09
Configuration: { "Type": "Basic" }
P/N: GPAM-AMPEL-0201-57-001
P/N: GPAM-AMPEL-0201-57-001-001
Description: Forward primary load-bearing wing spars, high-strength alloy.
Unique Identifier: WSP-001-F-P
Material: Titanium Alloy Ti-6Al-4V
Supplier: MetalCraft Inc., P/N: MC-WING-001
Lead Time: 12 weeks
Weight: 500 kg
Compliance: RoHS Compliant: Yes; ITAR Controlled: No
Cost: $75,000
CAD Model: View Documentation
Manufacturing Processes: CNC machining, Welding
Environmental Impact: Titanium is recyclable
FMEA Reference: View FMEA Documentation
Quantity: 1
P/N: GPAM-AMPEL-0201-57-001-002
Description: Rear primary load-bearing wing spars, high-strength alloy.
Unique Identifier: WSP-002-R-P
Material: Titanium Alloy Ti-6Al-4V
Supplier: MetalCraft Inc., P/N: MC-WING-002
Lead Time: 12 weeks
Weight: 450 kg
Compliance: RoHS Compliant: Yes; ITAR Controlled: No
Cost: $70,000
CAD Model: View Documentation
Manufacturing Processes: CNC machining, Welding
Environmental Impact: Titanium is recyclable
FMEA Reference: View FMEA Documentation
Quantity: 1
P/N: GPAM-AMPEL-0201-57-001-003
Description: Airfoil shape formers, internal wing structure support members.
Unique Identifier: WRB-001-P
Material: Aluminum Alloy 7075-T6
Supplier: MetalCraft Inc., P/N: MC-WING-003
Lead Time: 8 weeks
Weight: 80 kg (per rib)
Compliance: RoHS Compliant: Yes; ITAR Controlled: No
Cost: $10,000 (per rib)
CAD Model: View Documentation
Manufacturing Processes: CNC machining, Welding
Environmental Impact: Aluminum is recyclable
FMEA Reference: View FMEA Documentation
Quantity: 20
P/N: GPAM-AMPEL-0201-55-ASSY
Weight: 3,500 kg
Unique Identifier: EMP-001
Date of Last Revision: 2025-03-09
Configuration: { "Type": "Basic" }
P/N: GPAM-AMPEL-0201-55-001
P/N: GPAM-AMPEL-0201-55-001-001
Description: Vertical control surface, yaw control, aerodynamic hinge.
Unique Identifier: RDR-001
Material: Aluminum Alloy 7075-T6
Supplier: MetalCraft Inc., P/N: MC-RDR-001
Lead Time: 8 weeks
Weight: 150 kg
Compliance: RoHS Compliant: Yes; ITAR Controlled: No
Cost: $25,000
CAD Model: View Documentation
Manufacturing Processes: CNC machining, Welding
Environmental Impact: Aluminum is recyclable
FMEA Reference: View FMEA Documentation
Quantity: 1
P/N: GPAM-AMPEL-0201-32-ASSY
Weight: 4,500 kg
Unique Identifier: LG-001
Date of Last Revision: 2025-03-09
Configuration: { "Type": "Basic" }
P/N: GPAM-AMPEL-0201-32-001-L
Description: Left main landing gear assembly, including shock strut, wheel, and brake.
Function: Supports the aircraft during ground operations (left side). Provides shock absorption during landing and taxiing.
Material Principal: High-strength steel, with titanium alloy components.
Weight: 1,500 kg
CAD Model: View Documentation
Supplier: LandingGear Innovations, P/N: LGI-MLG-001
Lead Time: 16 weeks
Cost (USD): $120,000
Life Cycle State: Prototype
AMM: [Placeholder - Link to AMM Data Module]
IPB: [Placeholder - Link to IPB Data Module]
TSM: [Placeholder - Link to TSM Data Module]
Date of Last Revision: 2025-03-09
Quantity: 1
P/N: GPAM-AMPEL-0201-32-001-001-L
Description: Shock-absorbing strut for the left main landing gear.
Function: Provides primary load-bearing support and absorbs impact forces during landing.
Material: High-Strength Steel (e.g., 300M)
Weight: 800 kg
CAD Model: View Documentation
Supplier: LandingGear Innovations, P/N: LGI-STRUT-001
Lead Time: 12 weeks
Cost (USD): $80,000
Life Cycle State: Prototype
AMM: [Placeholder - Link to AMM Data Module]
IPB: [Placeholder - Link to IPB Data Module]
TSM: [Placeholder - Link to TSM Data Module]
Date of Last Revision: 2025-03-09
Quantity: 1
P/N: GPAM-AMPEL-0201-52-ASSY
Weight: 800 kg
Unique Identifier: DRS-001
Date of Last Revision: 2025-03-09
Configuration: { "Type": "Basic" }
P/N: GPAM-AMPEL-0201-52-001-001-FP
Description: Forward passenger entry door, Port side.
Unique Identifier: PDO-002-FP
Material: Aluminum Alloy 7075-T6
Supplier: DoorCraft Ltd., P/N: DC-PD-001
Lead Time: 8 weeks
Weight: 120 kg
Compliance: RoHS Compliant: Yes; ITAR Controlled: No
Cost: $18,000
CAD Model: View Documentation
Manufacturing Processes: CNC machining, Welding
Environmental Impact: Aluminum is recyclable
FMEA Reference: View FMEA Documentation
Quantity: 1
P/N: GPAM-AMPEL-0201-56-ASSY
Weight: 450 kg
Unique Identifier: WND-001
Date of Last Revision: 2025-03-09
Configuration: { "Type": "Basic" }
P/N: GPAM-AMPEL-0201-56-001-ASSY
Description: Multi-layer, heated cockpit window assemblies, forward visibility.
Unique Identifier: CWND-001
Material: Polycarbonate with Anti-Ice Coating
Supplier: GlassTech Aerospace, P/N: GTA-CWND-001
Lead Time: 10 weeks
Weight: 150 kg
Compliance: RoHS Compliant: Yes; ITAR Controlled: No
Cost: $50,000
CAD Model: View Documentation
Manufacturing Processes: Polycarbonate molding, Anti-Ice coating application
Environmental Impact: Polycarbonate is recyclable with specialized processes
FMEA Reference: View FMEA Documentation
Quantity: 1
P/N: GPAM-AMPEL-0201-24-ASSY
Weight: 1,200 kg
Unique Identifier: ELEC-001
Date of Last Revision: 2025-03-09
Configuration: { "Type": "Basic" }
P/N: GPAM-AMPEL-0201-24-001-ASSY
Description: Atmospheric Energy Harvesting and Conversion System – primary power source.
Unique Identifier: AEHCS-001
Material: Photovoltaic Cells, Quantum Photodetectors
Supplier: EnergyHarvest Tech, P/N: EHT-AEH-001
Lead Time: 14 weeks
Weight: 800 kg
Compliance: RoHS Compliant: Yes; ITAR Controlled: No
Cost: $250,000
CAD Model: View Documentation
Manufacturing Processes: Photovoltaic cell assembly, Quantum photodetector integration
Environmental Impact: Renewable energy source, minimal environmental impact
FMEA Reference: View FMEA Documentation
Quantity: 1
P/N: GPAM-AMPEL-0201-71-ASSY
Weight: 10,000 kg
Unique Identifier: PROP-001
Date of Last Revision: 2025-03-09
Configuration: { "Type": "Basic" }
P/N: GPAM-AMPEL-0201-72-001-ASSY
Description: Core of the Quantum Propulsion System, using quantum entanglement for thrust.
Unique Identifier: QEE-001
Material: Isotopic Materials, Superconductors
Supplier: QuantumPropulsion Ltd., P/N: QPL-QEE-001
Lead Time: 20 weeks
Weight: 8,000 kg
Compliance: RoHS Compliant: Yes; ITAR Controlled: Yes
Cost: $1,200,000
CAD Model: View Documentation
Manufacturing Processes: Quantum entanglement device fabrication, superconductor winding
Environmental Impact: Minimal emissions, recyclable isotopic materials
FMEA Reference: View FMEA Documentation
Quantity: 1
P/N: GPAM-AMPEL-0201-27-ASSY
Weight: 2,000 kg
Unique Identifier: FLCNTL-001
Date of Last Revision: 2025-03-09
Configuration: { "Type": "Basic" }
P/N: GPAM-AMPEL-0201-27-001-ASSY
Description: Actuators and hydraulic systems for moving flight control surfaces.
Unique Identifier: FCA-001
Material: High-Strength Steel, Aluminum Alloy
Supplier: FlightControl Systems, P/N: FCS-FCA-001
Lead Time: 12 weeks
Weight: 1,000 kg
Compliance: RoHS Compliant: Yes; ITAR Controlled: No
Cost: $150,000
CAD Model: View Documentation
Manufacturing Processes: Hydraulic actuator assembly, electronic integration
Environmental Impact: Recyclable metals, minimal hazardous substances
FMEA Reference: View FMEA Documentation
Quantity: 1
Version | Date | Description | Author/Team |
---|---|---|---|
1.0 | 2025-02-20 | Initial Product Tree Breakdown for AMPEL360XWLRGA | Amedeo Pelliccia & AI Collaboration |
1.1 | 2025-02-25 | Added detail to Q-01 Propulsion System | Amedeo Pelliccia & AI Collaboration |
1.2 | 2025-03-01 | Added S1000D references and updated FMEA links | Amedeo Pelliccia & AI Collaboration |
1.3 | 2025-03-05 | Included new sections: Fasteners, Interconnects, Env. Impact | Amedeo Pelliccia & AI Collaboration |
1.4 | 2025-03-09 | Final extended version with full BOM integration and PLM fields | Amedeo Pelliccia & AI Collaboration |
- P/N: Part Number - Unique identifier for each component and assembly.
- PLM: Product Lifecycle Management - System used to manage product data and lifecycle.
- Q-01: The Quantum Propulsion System.
- FADEC: Flight-Adaptive Digital Engine Control.
- TMS: Thermal Management System.
- CMS: Central Maintenance System.
- DMC: Data Module Code.
- FMEA: Failure Mode and Effects Analysis.
- AEHCS: Atmospheric Energy Harvesting & Conversion System.
- QEE: Quantum Entanglement Engine.
- QSM: Quantum State Modulator.
- TVS: Thrust Vectoring System.
- FCC: Flight Control Computer.
- CMU: Communication Management Unit.
- ECS: Environmental Control System.
- VPS: Vacuum Pump System.
- CRU: Cryogenic Refrigerator Unit.
- PLM Integration:
- The entire document is structured for direct import or synchronization with a PLM tool (e.g., Teamcenter, Windchill). Each block corresponds to a node or item in the product breakdown structure.
- Cross-Referencing and FMEA Tracking:
- Each component references relevant FMEA documentation, ensuring quick access to risk assessments and failure modes. Hyperlinks are provided where possible.
- Environmental and Compliance Fields:
- Each subassembly includes Environmental Impact and Compliance fields to meet sustainability and regulatory requirements.
- Fasteners and Interconnects:
- Sections detailing Fasteners and Interconnects specify part numbers, quantities, and references for manufacturing and assembly teams.
- Revision Control:
- CAD Model Revision and Date of Last Revision fields facilitate version tracking. Further revision or release notes can be appended in a dedicated revision log or via the PLM system.
- Data Consistency & Updates:
- Verify that the BOM remains consistent with recent engineering changes, particularly in high-innovation areas like the Quantum Propulsion and AEHCS.
- PLM & Revision Control:
- Consider implementing a CI/CD pipeline for the BOM to ensure changes are peer-reviewed, validated, and versioned in your PLM repository.
- FMEA Integration:
- Confirm that all FMEA links remain valid and up-to-date with the latest risk assessments.
- Regulatory Compliance:
- Ensure references to FAA, EASA, or MIL-STD standards are fully documented for certification audits.
- Security & Export Controls:
- Secure handling of ITAR-controlled materials (e.g., isotopic sources) is required. Restrict access as per organizational protocols.
End of Document
The AMPEL360XWLRGA Aircraft BOM is now compiled with full detail, consistency in formatting, and readiness for PLM integration. Review, approve, and proceed with final integration steps according to your organization’s configuration management procedures.
graph TD
A[Inicio de Inspección] --> B[Planificación de Inspección]
B --> C[Inspección Pre-Vuelo]
C --> D{¿Hay Anomalías?}
D -- Sí --> E[Reportar y Programar Mantenimiento]
D -- No --> F[Inspección Post-Vuelo]
F --> G[Finalizar Inspección]
E --> G
style A fill:#f9f,stroke:#333,stroke-width:2px
style B fill:#ccf,stroke:#333,stroke-width:2px
style C fill:#ccf,stroke:#333,stroke-width:2px
style D fill:#cfc,stroke:#333,stroke-width:2px
style E fill:#fcf,stroke:#333,stroke-width:2px
style F fill:#ccf,stroke:#333,stroke-width:2px
style G fill:#cff,stroke:#333,stroke-width:2px
gitGraph
commit id: "Inicialización del Proyecto"
branch SRS
checkout SRS
commit id: "Crear System Requirements Specification (SRS)"
branch SRH
checkout SRH
commit id: "Crear System Required Hardware (SRH)"
checkout SRS
merge SRH id: "Integrar SRH en SRS"
branch SDD
checkout SDD
commit id: "Crear Software Design Document (SDD)"
checkout SRS
merge SDD id: "Integrar SDD en SRS"
branch FMEA
checkout FMEA
commit id: "Crear Failure Modes and Effects Analysis (FMEA)"
checkout SRH
merge FMEA id: "Integrar FMEA en SRH"
branch VTP
checkout VTP
commit id: "Crear Validation and Test Plan (VTP)"
checkout SRS
merge VTP id: "Integrar VTP en SRS"
branch SEC
checkout SEC
commit id: "Crear Cybersecurity Measures (SEC)"
checkout SRH
merge SEC id: "Integrar SEC en SRH"
branch TRACE
checkout TRACE
commit id: "Crear Traceability Matrix (TRACE)"
checkout SRS
merge TRACE id: "Integrar TRACE en SRS"
branch FDR
checkout FDR
commit id: "Realizar Final Design Review (FDR)"
checkout main
merge SRS id: "Integrar SRS en Master"
merge SRH id: "Integrar SRH en Master"
merge FDR id: "Finalizar FDR y Merge en Master"
branch AMM
checkout AMM
commit id: "Crear Aircraft Maintenance Manual (AMM)"
checkout main
merge AMM id: "Integrar AMM en Master"
branch TSM
checkout TSM
commit id: "Crear Troubleshooting Manual (TSM)"
checkout main
merge TSM id: "Integrar TSM en Main"
branch APP
checkout APP
commit id: "Crear Approval Documentation (APP)"
checkout main
merge APP id: "Integrar APP en Main"
Part II: GAIA PULSE AIR MODULES (GPAM) – Atmospheric Operations: AMPEL360XWLRGA ATA Chapter Breakdown
Document Purpose:
This document provides a detailed Product Breakdown Structure (PBS) for the GAIA PULSE AIR MODULES (GPAM) AMPEL360XWLRGA Advanced Aircraft Systems, organized according to the Air Transport Association (ATA) iSpec 2200 standard chapter structure. This interactive Markdown outline, utilizing collapsible sections, facilitates easy navigation and review of the aircraft's systems, subsystems, and associated documentation. It serves as a roadmap for design, development, maintenance, and logistics planning.
Aircraft Type Designation: AMPEL-360
P/N (Top-Level Assembly for documentation): GAIAPULSE-AM-ASSY-00001-Q
- Aircraft Type Designation: AMPEL-360
- P/N (Top-Level Assembly for documentation):
GAIAPULSE-AM-ASSY-00001-Q
2.1.1 ATA Chapters
(This is a general P/N for the ATA chapter breakdown itself, not a specific component.)
2.1.1.A ATA 05 – Time Limits / Maintenance Checks
P/N: GPAM-AMPEL-0201-05
(Section P/N)
-
IN:
GPAM-AMPEL-0201-05-001 – Scheduled Maintenance Program (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-05-001-A-001-00_EN-US – Scheduled Maintenance Program
- Document:
GPAM-AMPEL-0201-05-001-A – Scheduled Maintenance Program
- Status: Draft
- Revision: A
- Document Type: Maintenance Program
- DMC:
-
IN:
GPAM-AMPEL-0201-05-002 – Maintenance Time Limits (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-05-002-A-001-00_EN-US – Maintenance Time Limits
- Document:
GPAM-AMPEL-0201-05-002-A – Maintenance Time Limits
- Status: Draft
- Revision: A
- Document Type: Maintenance Data
- DMC:
-
IN:
GPAM-AMPEL-0201-05-003 – Airworthiness Limitations (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-05-003-A-001-00_EN-US – Airworthiness Limitations
- Document:
GPAM-AMPEL-0201-05-003-A – Airworthiness Limitations
- Status: Draft
- Revision: A
- Document Type: Regulatory Compliance
- DMC:
2.1.1.B ATA 06 – Dimensions and Areas
P/N: GPAM-AMPEL-0201-06
(Section P/N)
-
IN:
GPAM-AMPEL-0201-06-001 – Aircraft Dimensions and Stations (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-06-001-A-001-00_EN-US – Aircraft Dimensions and Stations
- Document:
GPAM-AMPEL-0201-06-001-A – Aircraft Dimensions and Stations
- Status: Draft
- Revision: A
- Document Type: Technical Drawing
- PDR:
PDR-GAIAPULSE-AMPEL-0201-06-001
- PBS:
PBS-GAIAPULSE-AMPEL-0201-06-001
- BOM:
BOM-GAIAPULSE-AMPEL-0201-06-001
- DMC:
-
IN:
GPAM-AMPEL-0201-06-002 – Compartment Layout and Dimensions (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-06-002-A-001-00_EN-US – Compartment Layout and Dimensions
- Document:
GPAM-AMPEL-0201-06-002-A – Compartment Layout and Dimensions
- Status: Draft
- Revision: A
- Document Type: Technical Drawing
- PDR:
PDR-GAIAPULSE-AMPEL-0201-06-002
- PBS:
PBS-GAIAPULSE-AMPEL-0201-06-002
- BOM:
BOM-GAIAPULSE-AMPEL-0201-06-002
- DMC:
-
IN:
GPAM-AMPEL-0201-06-003-A – AMPEL360XWLRGA Measurement Point Definitions
- Document:
GPAM-AMPEL-0201-06-003-A – AMPEL360XWLRGA Measurement Point Definitions
- Status: Revision
- Revision: A
- Document Type: Technical Specification
- Document:
2.1.1.C ATA 07 – Lifting and Shoring
P/N: GPAM-AMPEL-0201-07
(Section P/N)
-
IN:
GPAM-AMPEL-0201-07-001 – Lifting Procedures and Diagrams (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-07-001-A-001-00_EN-US – Lifting Procedures and Diagrams
- Document:
GPAM-AMPEL-0201-07-001-A – Lifting Procedures and Diagrams
- Status: Draft
- Revision: A
- Document Type: Maintenance Procedure
- PDR:
PDR-GAIAPULSE-AMPEL-0201-07-001
- PBS:
PBS-GAIAPULSE-AMPEL-0201-07-001
- BOM:
BOM-GAIAPULSE-AMPEL-0201-07-001
- DMC:
-
IN:
GPAM-AMPEL-0201-07-002 – Shoring Procedures and Diagrams (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-07-002-A-001-00_EN-US – Shoring Procedures and Diagrams
- Document:
GPAM-AMPEL-0201-07-002-A – Shoring Procedures and Diagrams
- Status: Draft
- Revision: A
- Document Type: Maintenance Procedure
- PDR:
PDR-GAIAPULSE-AMPEL-0201-07-002
- PBS:
PBS-GAIAPULSE-AMPEL-0201-07-002
- BOM:
BOM-GAIAPULSE-AMPEL-0201-07-002
- DMC:
2.1.1.D ATA 08 – Leveling and Weighing
P/N: GPAM-AMPEL-0201-08
(Section P/N)
-
IN:
GPAM-AMPEL-0201-08-001 – Leveling Procedures (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-08-001-A-001-00_EN-US – Leveling Procedures
- Document:
GPAM-AMPEL-0201-08-001-A – Leveling Procedures
- Status: Draft
- Revision: A
- Document Type: Maintenance Procedure
- DMC:
-
IN:
GPAM-AMPEL-0201-08-002 – Aircraft Weighing Procedures (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-08-002-A-001-00_EN-US – Aircraft Weighing Procedures
- Document:
GPAM-AMPEL-0201-08-002-A – Aircraft Weighing Procedures
- Status: Draft
- Revision: A
- Document Type: Maintenance Procedure
- DMC:
2.1.1.E ATA 09 – Towing and Taxiing
P/N: GPAM-AMPEL-0201-09
(Section P/N)
-
IN:
GPAM-AMPEL-0201-09-001 – Towing Procedures (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-09-001-A-001-00_EN-US – Towing Procedures
- Document:
GPAM-AMPEL-0201-09-001-A – Towing Procedures
- Status: Draft
- Revision: A
- Document Type: Operational Procedure
- DMC:
-
IN:
GPAM-AMPEL-0201-09-002 – Taxiing Procedures (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-09-002-A-001-00_EN-US – Taxiing Procedures
- Document:
GPAM-AMPEL-0201-09-002-A – Taxiing Procedures
- Status: Draft
- Revision: A
- Document Type: Operational Procedure
- DMC:
2.1.1.F ATA 10 – Parking, Mooring, Storage, and Return to Service
P/N: GPAM-AMPEL-0201-10
(Section P/N)
-
IN:
GPAM-AMPEL-0201-10-001 – Parking Procedures (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-10-001-A-001-00_EN-US – Parking Procedures
- Document:
GPAM-AMPEL-0201-10-001-A – Parking Procedures
- Status: Draft
- Revision: A
- Document Type: Operational Procedure
- DMC:
-
IN:
GPAM-AMPEL-0201-10-002 – Mooring Procedures (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-10-002-A-001-00_EN-US – Mooring Procedures
- Document:
GPAM-AMPEL-0201-10-002-A – Mooring Procedures
- Status: Draft
- Revision: A
- Document Type: Operational Procedure
- DMC:
-
IN:
GPAM-AMPEL-0201-10-003 – Storage Procedures (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-10-003-A-001-00_EN-US – Storage Procedures
- Document:
GPAM-AMPEL-0201-10-003-A – Storage Procedures
- Status: Draft
- Revision: A
- Document Type: Operational Procedure
- DMC:
-
IN:
GPAM-AMPEL-0201-10-004 – Return to Service Procedures (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-10-004-A-001-00_EN-US – Return to Service Procedures
- Document:
GPAM-AMPEL-0201-10-004-A – Return to Service Procedures
- Status: Draft
- Revision: A
- Document Type: Maintenance Procedure
- DMC:
2.1.1.G ATA 11 – Placards and Markings
P/N: GPAM-AMPEL-0201-11
(Section P/N)
-
IN:
GPAM-AMPEL-0201-11-001 – Exterior Placard Locations (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-11-001-A-001-00_EN-US – Exterior Placard Locations
- Document:
GPAM-AMPEL-0201-11-001-A – Exterior Placard Locations
- Status: Draft
- Revision: A
- Document Type: Technical Drawing
- DMC:
-
IN:
GPAM-AMPEL-0201-11-002 – Interior Placard Locations (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-11-002-A-001-00_EN-US – Interior Placard Locations
- Document:
GPAM-AMPEL-0201-11-002-A – Interior Placard Locations
- Status: Draft
- Revision: A
- Document Type: Technical Drawing
- DMC:
-
IN:
GPAM-AMPEL-0201-11-003 – Marking Specifications (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-11-003-A-001-00_EN-US – Marking Specifications
- Document:
GPAM-AMPEL-0201-11-003-A – Marking Specifications
- Status: Draft
- Revision: A
- Document Type: Technical Specification
- DMC:
2.1.1.H ATA 12 – Servicing
P/N: GPAM-AMPEL-0201-12
(Section P/N)
-
IN:
GPAM-AMPEL-0201-12-001 – Fluid Servicing Procedures (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-12-001-A-001-00_EN-US – Fluid Servicing Procedures
- Document:
GPAM-AMPEL-0201-12-001-A – Fluid Servicing Procedures
- Status: Draft
- Revision: A
- Document Type: Maintenance Procedure
- DMC:
-
IN:
GPAM-AMPEL-0201-12-002 – Nitrogen/Oxygen Servicing Procedures (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-12-002-A-001-00_EN-US – Nitrogen/Oxygen Servicing Procedures
- Document:
GPAM-AMPEL-0201-12-002-A – Nitrogen/Oxygen Servicing Procedures
- Status: Draft
- Revision: A
- Document Type: Maintenance Procedure
- DMC:
-
IN:
GPAM-AMPEL-0201-12-003 – Lubrication Procedures (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-12-003-A-001-00_EN-US – Lubrication Procedures
- Document:
GPAM-AMPEL-0201-12-003-A – Lubrication Procedures
- Status: Draft
- Revision: A
- Document Type: Maintenance Procedure
- DMC:
-
IN:
GPAM-AMPEL-0201-12-004 – Water Servicing Procedures (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-12-004-A-001-00_EN-US – Water Servicing Procedures
- Document:
GPAM-AMPEL-0201-12-004-A – Water Servicing Procedures
- Status: Draft
- Revision: A
- Document Type: Maintenance Procedure
- DMC:
2.1.1.I ATA 18 – Vibration and Noise Analysis
P/N: GPAM-AMPEL-0201-18
(Section P/N)
-
IN:
GPAM-AMPEL-0201-18-001 – Vibration Analysis Procedures (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-18-001-A-001-00_EN-US – Vibration Analysis Procedures
- Document:
GPAM-AMPEL-0201-18-001-A – Vibration Analysis Procedures
- Status: Draft
- Revision: A
- Document Type: Maintenance Procedure
- DMC:
-
IN:
GPAM-AMPEL-0201-18-002 – Noise Level Measurement Procedures (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-18-002-A-001-00_EN-US – Noise Level Measurement Procedures
- Document:
GPAM-AMPEL-0201-18-002-A – Noise Level Measurement Procedures
- Status: Draft
- Revision: A
- Document Type: Maintenance Procedure
- DMC:
-
IN:
GPAM-AMPEL-0201-18-003 – Vibration and Noise Limits and Acceptability Criteria (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-18-003-A-001-00_EN-US – Vibration and Noise Limits and Acceptability Criteria
- Document:
GPAM-AMPEL-0201-18-003-A – Vibration and Noise Limits and Acceptability Criteria
- Status: Draft
- Revision: A
- Document Type: Technical Specification
- DMC:
2.1.1.J ATA 20 – Standard Practices – Airframe
P/N: GPAM-AMPEL-0201-20
(Section P/N)
-
IN:
GPAM-AMPEL-0201-20-001 – Airframe Standard Practices Manual (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-20-001-A-001-00_EN-US – Airframe Standard Practices Manual
- Document:
GPAM-AMPEL-0201-20-001-A – Airframe Standard Practices Manual
- Status: Draft
- Revision: A
- Document Type: Maintenance Manual
- DMC:
-
IN:
GPAM-AMPEL-0201-20-002 – Corrosion Prevention and Control (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-20-002-A-001-00_EN-US – Corrosion Prevention and Control
- Document:
GPAM-AMPEL-0201-20-002-A – Corrosion Prevention and Control
- Status: Draft
- Revision: A
- Document Type: Maintenance Program
- DMC:
-
IN:
GPAM-AMPEL-0201-20-003 – Non-Destructive Testing (NDT) Procedures (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-20-003-A-001-00_EN-US – Non-Destructive Testing (NDT) Procedures
- Document:
GPAM-AMPEL-0201-20-003-A – Non-Destructive Testing (NDT) Procedures
- Status: Draft
- Revision: A
- Document Type: Maintenance Procedure
- DMC:
2.1.1.K ATA 21 – Air Conditioning and Pressurization
P/N: GPAM-AMPEL-0201-21
(Section P/N)
-
IN:
GPAM-AMPEL-0201-21-001 – Air Conditioning System Description and Operation (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-21-001-A-001-00_EN-US – Air Conditioning System Description and Operation
- Document:
GPAM-AMPEL-0201-21-001-A – Air Conditioning System Description and Operation
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-21-002 – Pressurization System Description and Operation (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-21-002-A-001-00_EN-US – Pressurization System Description and Operation
- Document:
GPAM-AMPEL-0201-21-002-A – Pressurization System Description and Operation
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-21-003 – Quantum Enhanced Air Purification System (QE-APS) Description (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-21-003-A-001-00_EN-US – Quantum Enhanced Air Purification System (QE-APS) Description
- Document:
GPAM-AMPEL-0201-21-003-A – Quantum Enhanced Air Purification System (QE-APS) Description
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
2.1.1.L ATA 22 – Autoflight
P/N: GPAM-AMPEL-0201-22
(Section P/N)
-
IN:
GPAM-AMPEL-0201-22-001 – Autopilot System Description and Operation (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-22-001-A-001-00_EN-US – Autopilot System Description and Operation
- Document:
GPAM-AMPEL-0201-22-001-A – Autopilot System Description and Operation
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-22-002 – Flight Management System (FMS) Description and Operation (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-22-002-A-001-00_EN-US – Flight Management System (FMS) Description and Operation
- Document:
GPAM-AMPEL-0201-22-002-A – Flight Management System (FMS) Description and Operation
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-22-003 – AI-Enhanced Flight Control System (AI-FCS) Description (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-22-003-A-001-00_EN-US – AI-Enhanced Flight Control System (AI-FCS) Description
- Document:
GPAM-AMPEL-0201-22-003-A – AI-Enhanced Flight Control System (AI-FCS) Description
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
2.1.1.M ATA 23 – Communications
P/N: GPAM-AMPEL-0201-23
(Section P/N)
-
IN:
GPAM-AMPEL-0201-23-001 – Communication Systems Overview (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-23-001-A-001-00_EN-US – Communication Systems Overview
- Document:
GPAM-AMPEL-0201-23-001-A – Communication Systems Overview
- Status: Draft
- Revision: A
- Document Type: System Overview
- DMC:
-
IN:
GPAM-AMPEL-0201-23-002 – Satellite Communication (SATCOM) System Description and Operation (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-23-002-A-001-00_EN-US – Satellite Communication (SATCOM) System)
- Document:
GPAM-AMPEL-0201-23-002-A – Satellite Communication (SATCOM) System Description and Operation
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-23-003 – Air-to-Ground Communication System Description and Operation (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-23-003-A-001-00_EN-US – Air-to-Ground Communication System Description and Operation
- Document:
GPAM-AMPEL-0201-23-003-A – Air-to-Ground Communication System Description and Operation
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-23-004 – Quantum Communication System (QCS) Description (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-23-004-A-001-00_EN-US – Quantum Communication System (QCS) Description
- Document:
GPAM-AMPEL-0201-23-004-A – Quantum Communication System (QCS) Description
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
2.1.1.N ATA 24 – Electrical Power
P/N: GPAM-AMPEL-0201-24
(Section P/N)
-
IN:
GPAM-AMPEL-0201-24-001 – Electrical Power Generation System Description and Operation (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-24-001-A-001-00_EN-US – Electrical Power Generation System Description and Operation
- Document:
GPAM-AMPEL-0201-24-001-A – Electrical Power Generation System Description and Operation
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-24-002 – Electrical Power Distribution System Description and Operation (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-24-002-A-001-00_EN-US – Electrical Power Distribution System Description and Operation
- Document:
GPAM-AMPEL-0201-24-002-A – Electrical Power Distribution System Description and Operation
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-24-003 – Quantum Energy Management System (Q-EMS) Description (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-24-003-A-001-00_EN-US – Quantum Energy Management System (Q-EMS) Description
- Document:
GPAM-AMPEL-0201-24-003-A – Quantum Energy Management System (Q-EMS) Description
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
2.1.1.O ATA 25 – Equipment / Furnishings
P/N: GPAM-AMPEL-0201-25
(Section P/N)
-
IN:
GPAM-AMPEL-0201-25-001 – Flight Deck Equipment and Furnishings (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-25-001-A-001-00_EN-US – Flight Deck Equipment and Furnishings
- Document:
GPAM-AMPEL-0201-25-001-A – Flight Deck Equipment and Furnishings
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-25-002 – Cabin Equipment and Furnishings (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-25-002-A-001-00_EN-US – Cabin Equipment and Furnishings
- Document:
GPAM-AMPEL-0201-25-002-A – Cabin Equipment and Furnishings
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-25-003 – Emergency Equipment (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-25-003-A-001-00_EN-US – Emergency Equipment
- Document:
GPAM-AMPEL-0201-25-003-A – Emergency Equipment
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
2.1.1.P ATA 26 – Fire Protection
P/N: GPAM-AMPEL-0201-26
(Section P/N)
-
IN:
GPAM-AMPEL-0201-26-001 – Fire Detection System Description and Operation (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-26-001-A-001-00_EN-US – Fire Detection System Description and Operation
- Document:
GPAM-AMPEL-0201-26-001-A – Fire Detection System Description and Operation
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-26-002 – Fire Extinguishing System Description and Operation (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-26-002-A-001-00_EN-US – Fire Extinguishing System Description and Operation
- Document:
GPAM-AMPEL-0201-26-002-A – Fire Extinguishing System Description and Operation
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-26-003 – Quantum Resonance Fire Suppression System (QRFSS) Description (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-26-003-A-001-00_EN-US – Quantum Resonance Fire Suppression System (QRFSS) Description
- Document:
GPAM-AMPEL-0201-26-003-A – Quantum Resonance Fire Suppression System (QRFSS) Description
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
2.1.1.Q ATA 27 – Flight Controls
P/N: GPAM-AMPEL-0201-27
(Section P/N)
-
IN:
GPAM-AMPEL-0201-27-001 – Primary Flight Controls System Description and Operation (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-27-001-A-001-00_EN-US – Primary Flight Controls System Description and Operation
- Document:
GPAM-AMPEL-0201-27-001-A – Primary Flight Controls System Description and Operation
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-27-002 – Secondary Flight Controls System Description and Operation (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-27-002-A-001-00_EN-US – Secondary Flight Controls System Description and Operation
- Document:
GPAM-AMPEL-0201-27-002-A – Secondary Flight Controls System Description and Operation
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-27-003 – Quantum Flight Control Augmentation System (Q-FCAS) Description (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-27-003-A-001-00_EN-US – Quantum Flight Control Augmentation System (Q-FCAS) Description
- Document:
GPAM-AMPEL-0201-27-003-A – Quantum Flight Control Augmentation System (Q-FCAS) Description
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
2.1.1.R ATA 28 – Fuel
P/N: GPAM-AMPEL-0201-28
(Section P/N)
-
IN:
GPAM-AMPEL-0201-28-001 – Fuel System Description and Operation (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-28-001-A-001-00_EN-US – Fuel System Description and Operation
- Document:
GPAM-AMPEL-0201-28-001-A – Fuel System Description and Operation
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-28-002 – Fuel Storage and Distribution (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-28-002-A-001-00_EN-US – Fuel Storage and Distribution
- Document:
GPAM-AMPEL-0201-28-002-A – Fuel Storage and Distribution
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-28-003 – Quantum Fuel Efficiency System (Q-FES) Description (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-28-003-A-001-00_EN-US – Quantum Fuel Efficiency System (Q-FES) Description
- Document:
GPAM-AMPEL-0201-28-003-A – Quantum Fuel Efficiency System (Q-FES) Description
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
2.1.1.S ATA 29 – Hydraulic Power
P/N: GPAM-AMPEL-0201-29
(Section P/N)
-
IN:
GPAM-AMPEL-0201-29-001 – Hydraulic Power System Description and Operation (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-29-001-A-001-00_EN-US – Hydraulic Power System Description and Operation
- Document:
GPAM-AMPEL-0201-29-001-A – Hydraulic Power System Description and Operation
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-29-002 – Electro-Hydraulic Power System (EHPS) Integration Details (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-29-002-A-001-00_EN-US – Electro-Hydraulic Power System (EHPS) Integration Details
- Document:
GPAM-AMPEL-0201-29-002-A – Electro-Hydraulic Power System (EHPS) Integration Details
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
2.1.1.T ATA 30 – Ice and Rain Protection
P/N: GPAM-AMPEL-0201-30
(Section P/N)
-
IN:
GPAM-AMPEL-0201-30-001 – Ice Protection System Description and Operation (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-30-001-A-001-00_EN-US – Ice Protection System Description and Operation
- Document:
GPAM-AMPEL-0201-30-001-A – Ice Protection System Description and Operation
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-30-002 – Rain Protection System Description and Operation (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-30-002-A-001-00_EN-US – Rain Protection System Description and Operation
- Document:
GPAM-AMPEL-0201-30-002-A – Rain Protection System Description and Operation
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-30-003 – Quantum-Enhanced Ice Detection System (QE-IDS) Description (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-30-003-A-001-00_EN-US – Quantum-Enhanced Ice Detection System (QE-IDS) Description
- Document:
GPAM-AMPEL-0201-30-003-A – Quantum-Enhanced Ice Detection System (QE-IDS) Description
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
2.1.1.U ATA 31 – Indicating / Recording Systems
P/N: GPAM-AMPEL-0201-31
(Section P/N)
-
IN:
GPAM-AMPEL-0201-31-001 – Flight Data Recording System (FDRS) Description and Operation (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-31-001-A-001-00_EN-US – Flight Data Recording System (FDRS) Description and Operation
- Document:
GPAM-AMPEL-0201-31-001-A – Flight Data Recording System (FDRS) Description and Operation
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-31-002 – Cockpit Voice Recording System (CVRS) Description and Operation (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-31-002-A-001-00_EN-US – Cockpit Voice Recording System (CVRS) Description and Operation
- Document:
GPAM-AMPEL-0201-31-002-A – Cockpit Voice Recording System (CVRS) Description and Operation
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-31-003 – Quantum Data Monitoring and Recording System (Q-DMRS) Description (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-31-003-A-001-00_EN-US – Quantum Data Monitoring and Recording System (Q-DMRS) Description
- Document:
GPAM-AMPEL-0201-31-003-A – Quantum Data Monitoring and Recording System (Q-DMRS) Description
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
2.1.1.V ATA 32 – Landing Gear
P/N: GPAM-AMPEL-0201-32
(Section P/N)
-
IN:
GPAM-AMPEL-0201-32-001 – Landing Gear System Description and Operation (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-32-001-A-001-00_EN-US – Landing Gear System Description and Operation
- Document:
GPAM-AMPEL-0201-32-001-A – Landing Gear System Description and Operation
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-32-002 – Landing Gear Control and Indication (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-32-002-A-001-00_EN-US – Landing Gear Control and Indication
- Document:
GPAM-AMPEL-0201-32-002-A – Landing Gear Control and Indication
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-32-003 – Quantum-Optimized Landing Gear Actuation System (Q-LGAS) Description (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-32-003-A-001-00_EN-US – Quantum-Optimized Landing Gear Actuation System (Q-LGAS) Description
- Document:
GPAM-AMPEL-0201-32-003-A – Quantum-Optimized Landing Gear Actuation System (Q-LGAS) Description
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
2.1.1.W ATA 33 – Lights
P/N: GPAM-AMPEL-0201-33
(Section P/N)
-
IN:
GPAM-AMPEL-0201-33-001 – Exterior Lighting System Description and Operation (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-33-001-A-001-00_EN-US – Exterior Lighting System Description and Operation
- Document:
GPAM-AMPEL-0201-33-001-A – Exterior Lighting System Description and Operation
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-33-002 – Interior Lighting System Description and Operation (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-33-002-A-001-00_EN-US – Interior Lighting System Description and Operation
- Document:
GPAM-AMPEL-0201-33-002-A – Interior Lighting System Description and Operation
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-33-003 – Quantum-Optimized Lighting System (Q-LS) Description (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-33-003-A-001-00_EN-US – Quantum-Optimized Lighting System (Q-LS) Description
- Document:
GPAM-AMPEL-0201-33-003-A – Quantum-Optimized Lighting System (Q-LS) Description
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
2.1.1.X ATA 34 – Navigation
P/N: GPAM-AMPEL-0201-34
(Section P/N)
-
IN:
GPAM-AMPEL-0201-34-001 – Navigation Systems Overview (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-34-001-A-001-00_EN-US – Navigation Systems Overview
- Document:
GPAM-AMPEL-0201-34-001-A – Navigation Systems Overview
- Status: Draft
- Revision: A
- Document Type: System Overview
- DMC:
-
IN:
GPAM-AMPEL-0201-34-002 – Inertial Reference System (IRS) Description and Operation (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-34-002-A-001-00_EN-US – Inertial Reference System (IRS) Description and Operation
- Document:
GPAM-AMPEL-0201-34-002-A – Inertial Reference System (IRS) Description and Operation
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-34-003 – Global Navigation Satellite System (GNSS) Description and Operation (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-34-003-A-001-00_EN-US – Global Navigation Satellite System (GNSS) Description and Operation
- Document:
GPAM-AMPEL-0201-34-003-A – Global Navigation Satellite System (GNSS) Description and Operation
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-34-004 – Quantum Navigation System (QNS) Description (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-34-004-A-001-00_EN-US – Quantum Navigation System (QNS) Description
- Document:
GPAM-AMPEL-0201-34-004-A – Quantum Navigation System (QNS) Description
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
2.1.1.Y ATA 35 – Oxygen
P/N: GPAM-AMPEL-0201-35
(Section P/N)
-
IN:
GPAM-AMPEL-0201-35-001 – Oxygen System Description and Operation (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-35-001-A-001-00_EN-US – Oxygen System Description and Operation
- Document:
GPAM-AMPEL-0201-35-001-A – Oxygen System Description and Operation
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-35-002 – Crew Oxygen System (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-35-002-A-001-00_EN-US – Crew Oxygen System
- Document:
GPAM-AMPEL-0201-35-002-A – Crew Oxygen System
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-35-003 – Passenger Oxygen System (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-35-003-A-001-00_EN-US – Passenger Oxygen System
- Document:
GPAM-AMPEL-0201-35-003-A – Passenger Oxygen System
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
2.1.1.Z ATA 36 – Pneumatic
P/N: GPAM-AMPEL-0201-36
(Section P/N)
- IN:
GPAM-AMPEL-0201-36-001 – Pneumatic System Description and Operation (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-36-001-A-001-00_EN-US – Pneumatic System Description and Operation
- Document:
GPAM-AMPEL-0201-36-001-A – Pneumatic System Description and Operation
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
2.1.1.AA ATA 38 – Water/Waste
P/N: GPAM-AMPEL-0201-38
(Section P/N)
-
IN:
GPAM-AMPEL-0201-38-001 – Water System Description and Operation (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-38-001-A-001-00_EN-US – Water System Description and Operation
- Document:
GPAM-AMPEL-0201-38-001-A – Water System Description and Operation
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-38-002 – Waste System Description and Operation (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-38-002-A-001-00_EN-US – Waste System Description and Operation
- Document:
GPAM-AMPEL-0201-38-002-A – Waste System Description and Operation
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
2.1.1.AB ATA 45 – Central Maintenance System (CMS)
P/N: GPAM-AMPEL-0201-45
(Section P/N)
-
IN:
GPAM-AMPEL-0201-45-001 – Central Maintenance System (CMS) Description and Operation (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-45-001-A-001-00_EN-US – Central Maintenance System (CMS) Description and Operation
- Document:
GPAM-AMPEL-0201-45-001-A – Central Maintenance System (CMS) Description and Operation
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-45-002 – Quantum-Enhanced Central Maintenance System (Q-CMS) Integration (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-45-002-A-001-00_EN-US – Quantum-Enhanced Central Maintenance System (Q-CMS) Integration
- Document:
GPAM-AMPEL-0201-45-002-A – Quantum-Enhanced Central Maintenance System (Q-CMS) Integration
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-45-003 – CMS Data and Fault Reporting (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-45-003-A-001-00_EN-US – CMS Data and Fault Reporting
- Document:
GPAM-AMPEL-0201-45-003-A – CMS Data and Fault Reporting
- Status: Draft
- Revision: A
- Document Type: Maintenance Procedure
- DMC:
2.1.1.AC ATA 46 – Information Systems
P/N: GPAM-AMPEL-0201-46
(Section P/N)
-
IN:
GPAM-AMPEL-0201-46-001 – Aircraft Information Management System (AIMS) Overview (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-46-001-A-001-00_EN-US – Aircraft Information Management System (AIMS) Overview
- Document:
GPAM-AMPEL-0201-46-001-A – Aircraft Information Management System (AIMS) Overview
- Status: Draft
- Revision: A
- Document Type: System Overview
- DMC:
-
IN:
GPAM-AMPEL-0201-46-002 – Quantum Information Network Integration (Q-INI) (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-46-002-A-001-00_EN-US – Quantum Information Network Integration (Q-INI)
- Document:
GPAM-AMPEL-0201-46-002-A – Quantum Information Network Integration (Q-INI)
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-46-003 – Electronic Documentation System (EDS) for Maintenance (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-46-003-A-001-00_EN-US – Electronic Documentation System (EDS) for Maintenance
- Document:
GPAM-AMPEL-0201-46-003-A – Electronic Documentation System (EDS) for Maintenance
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
2.1.1.AC ATA 49 – Airborne Auxiliary Power
P/N: GPAM-AMPEL-0201-49
(Section P/N)
- IN:
GPAM-AMPEL-0201-49-001 – Auxiliary Power Unit (APU) Description and Operation (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-49-001-A-001-00_EN-US – Auxiliary Power Unit (APU) Description and Operation
- Document:
GPAM-AMPEL-0201-49-001-A – Auxiliary Power Unit (APU) Description and Operation
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
2.1.1.AD ATA 51 – Standard Practices and Structures - General
P/N: GPAM-AMPEL-0201-51
(Section P/N)
- IN:
GPAM-AMPEL-0201-51-001 – Structural Repair Manual (SRM) - General Practices (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-51-001-A-001-00_EN-US – Structural Repair Manual (SRM) - General Practices
- Document:
GPAM-AMPEL-0201-51-001-A – Structural Repair Manual (SRM) - General Practices
- Status: Draft
- Revision: A
- Document Type: Maintenance Manual
- DMC:
2.1.1.AE ATA 52 – Doors
P/N: GPAM-AMPEL-0201-52
(Section P/N)
-
IN:
GPAM-AMPEL-0201-52-001 – Passenger Doors Description and Operation (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-52-001-A-001-00_EN-US – Passenger Doors Description and Operation
- Document:
GPAM-AMPEL-0201-52-001-A – Passenger Doors Description and Operation
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-52-002 – Cargo Doors Description and Operation (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-52-002-A-001-00_EN-US – Cargo Doors Description and Operation
- Document:
GPAM-AMPEL-0201-52-002-A – Cargo Doors Description and Operation
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-52-003 – Quantum-Sealed Door System (Q-SDS) Description (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-52-003-A-001-00_EN-US – Quantum-Sealed Door System (Q-SDS) Description
- Document:
GPAM-AMPEL-0201-52-003-A – Quantum-Sealed Door System (Q-SDS) Description
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
2.1.1.AE ATA 53 – Fuselage
P/N: GPAM-AMPEL-0201-53
(Section P/N)
-
IN:
GPAM-AMPEL-0201-53-001 – Fuselage Structure Description (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-53-001-A-001-00_EN-US – Fuselage Structure Description
- Document:
GPAM-AMPEL-0201-53-001-A – Fuselage Structure Description
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-53-002 – Fuselage Skin Panels Description and Maintenance (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-53-002-A-001-00_EN-US – Fuselage Skin Panels Description and Maintenance
- Document:
GPAM-AMPEL-0201-53-002-A – Fuselage Skin Panels Description and Maintenance
- Status: Draft
- Revision: A
- Document Type: Maintenance Manual
- DMC:
-
IN:
GPAM-AMPEL-0201-53-003 – Quantum-Reinforced Fuselage Structure (Q-RFS) Description (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-53-003-A-001-00_EN-US – Quantum-Reinforced Fuselage Structure (Q-RFS) Description
- Document:
GPAM-AMPEL-0201-53-003-A – Quantum-Reinforced Fuselage Structure (Q-RFS) Description
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
2.1.1.AF ATA 54 – Nacelles/Pylons
P/N: GPAM-AMPEL-0201-54
(Section P/N)
-
IN:
GPAM-AMPEL-0201-54-001 – Nacelle Structure Description and Maintenance (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-54-001-A-001-00_EN-US – Nacelle Structure Description and Maintenance
- Document:
GPAM-AMPEL-0201-54-001-A – Nacelle Structure Description and Maintenance
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-54-002 – Pylon Structure Description and Maintenance (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-54-002-A-001-00_EN-US – Pylon Structure Description and Maintenance
- Document:
GPAM-AMPEL-0201-54-002-A – Pylon Structure Description and Maintenance
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-54-003 – Quantum-Dampened Nacelle Mounts (Q-DNM) Description (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-54-003-A-001-00_EN-US – Quantum-Dampened Nacelle Mounts (Q-DNM) Description
- Document:
GPAM-AMPEL-0201-54-003-A – Quantum-Dampened Nacelle Mounts (Q-DNM) Description
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
2.1.1.AG ATA 55 – Stabilizers
P/N: GPAM-AMPEL-0201-55
(Section P/N)
-
IN:
GPAM-AMPEL-0201-55-001 – Horizontal Stabilizer Structure Description and Maintenance (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-55-001-A-001-00_EN-US – Horizontal Stabilizer Structure Description and Maintenance
- Document:
GPAM-AMPEL-0201-55-001-A – Horizontal Stabilizer Structure Description and Maintenance
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-55-002 – Vertical Stabilizer Structure Description and Maintenance (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-55-002-A-001-00_EN-US – Vertical Stabilizer Structure Description and Maintenance
- Document:
GPAM-AMPEL-0201-55-002-A – Vertical Stabilizer Structure Description and Maintenance
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-55-003 – Quantum-Actuated Stabilizer Control System (Q-ASCS) Description (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-55-003-A-001-00_EN-US – Quantum-Actuated Stabilizer Control System (Q-ASCS) Description
- Document:
GPAM-AMPEL-0201-55-003-A – Quantum-Actuated Stabilizer Control System (Q-ASCS) Description
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
2.1.1.AH ATA 56 – Windows
P/N: GPAM-AMPEL-0201-56
(Section P/N)
-
IN:
GPAM-AMPEL-0201-56-001 – Cockpit Windows Description and Maintenance (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-56-001-A-001-00_EN-US – Cockpit Windows Description and Maintenance
- Document:
GPAM-AMPEL-0201-56-001-A – Cockpit Windows Description and Maintenance
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-56-002 – Cabin Windows Description and Maintenance (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-56-002-A-001-00_EN-US – Cabin Windows Description and Maintenance
- Document:
GPAM-AMPEL-0201-56-002-A – Cabin Windows Description and Maintenance
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-56-003 – Quantum-Tinted Windows System (Q-TWS) Description (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-56-003-A-001-00_EN-US – Quantum-Tinted Windows System (Q-TWS) Description
- Document:
GPAM-AMPEL-0201-56-003-A – Quantum-Tinted Windows System (Q-TWS) Description
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
2.1.1.AI ATA 57 – Wings
P/N: GPAM-AMPEL-0201-57
(Section P/N)
-
IN:
GPAM-AMPEL-0201-57-001 – Wing Structure Description (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-57-001-A-001-00_EN-US – Wing Structure Description
- Document:
GPAM-AMPEL-0201-57-001-A – Wing Structure Description
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-57-002 – Wing Skin Panels Description and Maintenance (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-57-002-A-001-00_EN-US – Wing Skin Panels Description and Maintenance
- Document:
GPAM-AMPEL-0201-57-002-A – Wing Skin Panels Description and Maintenance
- Status: Draft
- Revision: A
- Document Type: Maintenance Manual
- DMC:
-
IN:
GPAM-AMPEL-0201-57-003 – Quantum-Morphing Wing Technology (Q-MWT) Description (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-57-003-A-001-00_EN-US – Quantum-Morphing Wing Technology (Q-MWT) Description
- Document:
GPAM-AMPEL-0201-57-003-A – Quantum-Morphing Wing Technology (Q-MWT) Description
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
2.1.1.AJ ATA 71 – Power Plant - General
P/N: GPAM-AMPEL-0201-71
(Section P/N)
-
IN:
GPAM-AMPEL-0201-71-001 – Power Plant Overview (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-71-001-A-001-00_EN-US – Power Plant Overview
- Document:
GPAM-AMPEL-0201-71-001-A – Power Plant Overview
- Status: Draft
- Revision: A
- Document Type: System Overview
- DMC:
-
IN:
GPAM-AMPEL-0201-71-002 – Quantum Propulsion System (QPS-01) Description (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-71-002-A-001-00_EN-US – Quantum Propulsion System (QPS-01) Description
- Document:
GPAM-AMPEL-0201-71-002-A – Quantum Propulsion System (QPS-01) Description
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
2.1.1.AK ATA 72 – Engine (General)
P/N: GPAM-AMPEL-0201-72
(Section P/N)
-
IN:
GPAM-AMPEL-0201-72-001 – QPS-01 Engine – General Description (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-72-001-A-001-00_EN-US – QPS-01 Engine – General Description
- Document:
GPAM-AMPEL-0201-72-001-A – QPS-01 Engine – General Description
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-72-002 – QPS-01 Engine – Component Location and Identification (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-72-002-A-001-00_EN-US – QPS-01 Engine – Component Location and Identification
- Document:
GPAM-AMPEL-0201-72-002-A – QPS-01 Engine – Component Location and Identification
- Status: Draft
- Revision: A
- Document Type: Maintenance Manual
- DMC:
2.1.1.AL ATA 73 – Engine Fuel and Control
P/N: GPAM-AMPEL-0201-73
(Section P/N)
-
IN:
GPAM-AMPEL-0201-73-001 – QPS-01 Fuel/Energy Management System Description and Operation (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-73-001-A-001-00_EN-US – QPS-01 Fuel/Energy Management System Description and Operation
- Document:
GPAM-AMPEL-0201-73-001-A – QPS-01 Fuel/Energy Management System Description and Operation
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
-
IN:
GPAM-AMPEL-0201-73-002 – QPS-01 Engine Control System Description and Operation (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-73-002-A-001-00_EN-US – QPS-01 Engine Control System Description and Operation
- Document:
GPAM-AMPEL-0201-73-002-A – QPS-01 Engine Control System Description and Operation
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
2.1.1.AM ATA 74 – Engine Ignition
P/N: GPAM-AMPEL-0201-74
(Section P/N)
- IN:
GPAM-AMPEL-0201-74-001 – QPS-01 Engine Ignition System Description and Operation (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-74-001-A-001-00_EN-US – QPS-01 Engine Ignition System Description and Operation
- Document:
GPAM-AMPEL-0201-74-001-A – QPS-01 Engine Ignition System Description and Operation
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
2.1.1.AN ATA 77 – Engine Indicating
P/N: GPAM-AMPEL-0201-77
(Section P/N)
- IN:
GPAM-AMPEL-0201-77-001 – QPS-01 Engine Indicating System Description and Operation (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-77-001-A-001-00_EN-US – QPS-01 Engine Indicating System Description and Operation
- Document:
GPAM-AMPEL-0201-77-001-A – QPS-01 Engine Indicating System Description and Operation
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
2.1.1.AO ATA 79 – Engine Oil
P/N: GPAM-AMPEL-0201-79
(Section P/N)
- IN:
GPAM-AMPEL-0201-79-001 – QPS-01 Engine Lubrication System Description and Operation (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-79-001-A-001-00_EN-US – QPS-01 Engine Lubrication System Description and Operation
- Document:
GPAM-AMPEL-0201-79-001-A – QPS-01 Engine Lubrication System Description and Operation
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
2.1.1.AP ATA 91 – Charts and Diagrams
P/N: GPAM-AMPEL-0201-91
(Section P/N)
-
IN:
GPAM-AMPEL-0201-91-001 – Aircraft General Arrangement Drawings (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-91-001-A-001-00_EN-US – Aircraft General Arrangement Drawings
- Document:
GPAM-AMPEL-0201-91-001-A – Aircraft General Arrangement Drawings
- Status: Draft
- Revision: A
- Document Type: Technical Drawing
- DMC:
-
IN:
GPAM-AMPEL-0201-91-002 – System Schematics and Diagrams (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-91-002-A-001-00_EN-US – System Schematics and Diagrams
- Document:
GPAM-AMPEL-0201-91-002-A – System Schematics and Diagrams
- Status: Draft
- Revision: A
- Document Type: Technical Drawing
- DMC:
2.1.1.AQ ATA 92 – Aircraft Wiring Diagrams
P/N: GPAM-AMPEL-0201-92
(Section P/N)
-
IN:
GPAM-AMPEL-0201-92-001 – Wiring Diagrams – Power Distribution (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-92-001-A-001-00_EN-US – Wiring Diagrams – Power Distribution
- Document:
GPAM-AMPEL-0201-92-001-A – Wiring Diagrams – Power Distribution
- Status: Draft
- Revision: A
- Document Type: Technical Diagram
- DMC:
-
IN:
GPAM-AMPEL-0201-92-002 – Wiring Diagrams – Avionics and Control Systems (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-92-002-A-001-00_EN-US – Wiring Diagrams – Avionics and Control Systems
- Document:
GPAM-AMPEL-0201-92-002-A – Wiring Diagrams – Avionics and Control Systems
- Status: Draft
- Revision: A
- Document Type: Technical Diagram
- DMC:
2.1.1.AR ATA 75 – Engine Air (Not Applicable to Q-01)
* **Reason:** The Q-01 Quantum Propulsion System does not utilize traditional engine air systems.2.1.1.AS ATA 76 – Engine Controls
P/N: GPAM-AMPEL-0201-76
(Section P/N)
- IN:
GPAM-AMPEL-0201-76-001 – QPS-01 Engine Controls System Description and Operation (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-76-001-A-001-00_EN-US – QPS-01 Engine Controls System Description and Operation
- Document:
GPAM-AMPEL-0201-76-001-A – QPS-01 Engine Controls System Description and Operation
- Status: Draft
- Revision: A
- Document Type: System Description
- DMC:
2.1.1.AT ATA 78 – Exhaust (Not Applicable to Q-01)
* **Reason:** The Q-01 Quantum Propulsion System does not produce traditional exhaust.2.1.1.AU ATA 80 – Starting (Not Applicable to Q-01)
* **Reason:** The Q-01 Quantum Propulsion System does not utilize a traditional engine starting system. Activation procedures are documented under ATA 74.2.1.1.AV ATA 93 – Testing - Avionics Systems
P/N: GPAM-AMPEL-0201-93
(Section P/N)
- IN:
GPAM-AMPEL-0201-93-001 – Avionics System Test Procedures and Reports (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-93-001-A-001-00_EN-US – Avionics System Test Procedures and Reports
- Document:
GPAM-AMPEL-0201-93-001-A – Avionics System Test Procedures and Reports
- Status: Draft
- Revision: A
- Document Type: Test Report
- DMC:
2.1.1.AW ATA 94 – Testing - Propulsion System
P/N: GPAM-AMPEL-0201-94
(Section P/N)
- IN:
GPAM-AMPEL-0201-94-001 – QPS-01 Propulsion System Test Procedures and Reports (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-94-001-A-001-00_EN-US – QPS-01 Propulsion System Test Procedures and Reports
- Document:
GPAM-AMPEL-0201-94-001-A – QPS-01 Propulsion System Test Procedures and Reports
- Status: Draft
- Revision: A
- Document Type: Test Report
- DMC:
2.1.1.AX ATA 95 – Testing - Structural and Mechanical
P/N: GPAM-AMPEL-0201-95
(Section P/N)
- IN:
GPAM-AMPEL-0201-95-001 – Structural and Mechanical Test Procedures and Reports (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-95-001-A-001-00_EN-US – Structural and Mechanical Test Procedures and Reports
- Document:
GPAM-AMPEL-0201-95-001-A – Structural and Mechanical Test Procedures and Reports
- Status: Draft
- Revision: A
- Document Type: Test Report
- DMC:
2.1.1.AY ATA 96 – Testing - Environmental Control and Life Support
P/N: GPAM-AMPEL-0201-96
(Section P/N)
- IN:
GPAM-AMPEL-0201-96-001 – Environmental Control and Life Support System Test Procedures and Reports (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-96-001-A-001-00_EN-US – Environmental Control and Life Support System Test Procedures and Reports
- Document:
GPAM-AMPEL-0201-96-001-A – Environmental Control and Life Support System Test Procedures and Reports
- Status: Draft
- Revision: A
- Document Type: Test Report
- DMC:
2.1.1.AZ ATA 97 – Testing - Fire Protection System
P/N: GPAM-AMPEL-0201-97
(Section P/N)
- IN:
GPAM-AMPEL-0201-97-001 – Fire Protection System Test Procedures and Reports (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-97-001-A-001-00_EN-US – Fire Protection System Test Procedures and Reports
- Document:
GPAM-AMPEL-0201-97-001-A – Fire Protection System Test Procedures and Reports
- Status: Draft
- Revision: A
- Document Type: Test Report
- DMC:
2.1.1.BA ATA 98 – Testing - Flight Test Program
P/N: GPAM-AMPEL-0201-98
(Section P/N)
- IN:
GPAM-AMPEL-0201-98-001 – Flight Test Program Procedures and Reports (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-98-001-A-001-00_EN-US – Flight Test Program Procedures and Reports
- Document:
GPAM-AMPEL-0201-98-001-A – Flight Test Program Procedures and Reports
- Status: Draft
- Revision: A
- Document Type: Test Report
- DMC:
2.1.1.BB ATA 99 – Testing - Software and System Integration
P/N: GPAM-AMPEL-0201-99
(Section P/N)
- IN:
GPAM-AMPEL-0201-99-001 – Software and System Integration Test Procedures and Reports (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-99-001-A-001-00_EN-US – Software and System Integration Test Procedures and Reports
- Document:
GPAM-AMPEL-0201-99-001-A – Software and System Integration Test Procedures and Reports
- Status: Draft
- Revision: A
- Document Type: Test Report
- DMC:
2.1.1.BC ATA 100 – Certification and Documentation
P/N: GPAM-AMPEL-0201-100
(Section P/N)
-
IN:
GPAM-AMPEL-0201-100-001 – Certification Plan and Basis (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-100-001-A-001-00_EN-US – Certification Plan and Basis
- Document:
GPAM-AMPEL-0201-100-001-A – Certification Plan and Basis
- Status: Draft
- Revision: A
- Document Type: Certification Document
- DMC:
-
IN:
GPAM-AMPEL-0201-100-002 – Certification Documentation and Compliance Reports (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-100-002-A-001-00_EN-US – Certification Documentation and Compliance Reports
- Document:
GPAM-AMPEL-0201-100-002-A – Certification Documentation and Compliance Reports
- Status: Draft
- Revision: A
- Document Type: Certification Document
- DMC:
-
IN:
GPAM-AMPEL-0201-100-003 – Continued Airworthiness Documentation (S1000D)
- DMC:
DMC-GAIAPULSE-AMPEL-0201-100-003-A-001-00_EN-US – Continued Airworthiness Documentation
- Document:
GPAM-AMPEL-0201-100-003-A – Continued Airworthiness Documentation
- Status: Draft
- Revision: A
- Document Type: Certification Document
- DMC:
End of Interactive Markdown Structure
Usage Tip:
- Click the “►” to expand/collapse each ATA chapter.
- Within each expanded section, you can hyperlink the P/N, DMC, and Document references to actual files in your repository (e.g., linking to PDFs, Word docs, or S1000D data modules).
- The "Status" and "Revision" fields provide a quick overview of document maturity.
- This format helps keep documentation organized, easily navigable, and provides essential metadata for each document entry. Here’s a proposed adaptation of the ATA Breakdown to document the Q-01 Quantum Propulsion System:
- 71-10-00 Carenado (Nacelle) - Q-01 Housing and Integration
- Focus: Documentation on the physical housing, mounting, and aerodynamic integration of the Q-01 Quantum Propulsion System onto the aircraft.
- Sub-Sections:
- 71-10-10 Design Overview and Integration Architecture
- 71-10-20 Mounting Structures and Interface Points
- 71-10-30 Access Panels and Doors (for maintenance)
- 71-10-40 Aerodynamic Fairings and Integration
- 71-20-00 Montaje (Mount) - Q-01 Mounting and Stabilization
- Focus: Documentation on how the Q-01 system is mounted to the airframe, including vibration isolation and stabilization systems.
- Sub-Sections:
- 71-20-10 Vibration Isolation System (VIS) Description
- 71-20-20 Mounting Bracket Specifications and Installation
- 71-20-30 Alignment and Balancing Procedures
- 71-30-00 Anti-fuego (Fire Protection) - Q-01 Safety and Containment
- Focus: Adapting fire protection documentation for the unique safety aspects of a quantum propulsion system. This might relate to containment of quantum effects, thermal management, or emergency shutdown procedures.
- Sub-Sections:
- 71-30-10 Containment and Shielding Measures for Quantum Components
- 71-30-20 Thermal Runaway Prevention and Control
- 71-30-30 Emergency Shutdown Procedures for Q-01 System
- 71-40-00 Adecuación de la Sujeción (Attachment Fit) - Q-01 Interface and Connections
- Focus: Documenting the interfaces and connections between the Q-01 system and other aircraft systems (electrical, data, control).
- Sub-Sections:
- 71-40-10 Electrical Power Interfaces and Connections
- 71-40-20 Data and Control Signal Interfaces
- 71-40-30 Fluid and Coolant Line Interfaces
- 71-50-00 Cableado Eléctrico (Electrical Wiring) - Q-01 Electrical Harnessing and Routing
- Focus: Detailing the electrical wiring specific to the Q-01 system, including high-voltage DC architecture and superconducting cable integration.
- Sub-Sections:
- 71-50-10 High-Voltage DC Wiring Harness Specifications
- 71-50-20 Superconducting Cable Routing and Installation
- 71-50-30 Grounding and Shielding of Electrical Wiring
- 71-60-00 Aspiración de Aire (Air Induction) - Q-01 Quantum Energy Input/Activation
- Focus: Reinterpreting "air induction" for a quantum engine. This section can describe how the Q-01 system is “activated” or receives its primary energy input, whether from harvested atmospheric energy, quantum vacuum fluctuations, or other means.
- Sub-Sections:
- 71-60-10 Quantum Energy Input System Description (AEHCS, Vacuum Energy, etc.)
- 71-60-20 Activation and Priming Procedures for Q-01 System
- 71-60-30 Energy Input Monitoring and Control
- 71-70-00 Drenaje del Motor (Engine Drain) - Q-01 Quantum Byproduct Management
- Focus: Adapting “engine drain” concepts to manage any byproducts or emissions from the quantum propulsion system. Given the goal of zero emissions, this section might be repurposed to document any particle or energy release management, or simply marked as “Not Applicable” if truly zero-emission.
- Sub-Sections:
- 71-70-10 Quantum Byproduct Containment System (if applicable)
- 71-70-20 Emission Monitoring and Reporting (for regulatory compliance)
- 71-70-30 Environmental Impact Assessment of Q-01 Operation
- 72-10-00 Reducción de Marcha, Sección del Eje (Propulsor Accionado por Engranaje Delantero y/o Turbopropulsor) - QSM: Quantum State Modulator Module
- Focus: Documenting the Quantum State Modulator (QSM) module as the core of the Q-01 engine, reinterpreting “reduction gear” as the mechanism to “modulate” quantum states.
- Sub-Sections:
- 72-10-10 QSM Core Assembly Description and Operation
- 72-10-20 Entanglement Generation and Control Mechanisms
- 72-10-30 Quantum State Tuning and Calibration Procedures
- 72-10-40 QSM Maintenance and Inspection
- 72-20-00 Sección de Entrada de Aire (Air Inlet Section) - QEE: Quantum Entanglement Engine Module
- Focus: Reinterpreting “air inlet” as the “input” for quantum entanglement – the Quantum Entanglement Engine (QEE) where thrust is generated.
- Sub-Sections:
- 72-20-10 QEE Core Structure and Quantum Channels
- 72-20-20 Entanglement Chamber Design and Vacuum Requirements
- 72-20-30 Quantum Field Manipulation and Thrust Generation
- 72-20-40 QEE Alignment and Performance Verification
- 72-30-00 Sección del Compresor (Compressor Section) - ECU: Energy Conditioning Unit
- Focus: Adapting “compressor” documentation to the Energy Conditioning Unit (ECU), responsible for managing and conditioning the energy flow within the Q-01 system.
- Sub-Sections:
- 72-30-10 ECU Architecture and Power Distribution
- 72-30-20 Energy Conversion and Conditioning Circuits
- 72-30-30 ECU Thermal Management and Heat Dissipation
- 72-30-40 ECU Performance Monitoring and Diagnostics
- 72-40-00 Sección de Combustión (Combustion Section) - TVS: Thrust Vectoring System
- Focus: Reinterpreting “combustion” as the thrust generation and directional control – Thrust Vectoring System (TVS).
- Sub-Sections:
- 72-40-10 TVS Nozzle Design and Vectoring Mechanisms
- 72-40-20 Actuator Control and Response Characteristics
- 72-40-30 Thrust Direction and Magnitude Adjustment Procedures
- 72-40-40 TVS Calibration and Performance Metrics
- 72-50-00 Sección de la Turbina (Turbine Section) - CCS: Cryogenic Cooling System
- Focus: Reinterpreting “turbine” as the Cryogenic Cooling System (CCS), which is essential for Q-01’s quantum operations.
- Sub-Sections:
- 72-50-10 CCS Architecture and Cryocooler Units
- 72-50-20 Cryogenic Fluid Distribution and Thermal Interfaces
- 72-50-30 Temperature Monitoring and Stability Control
- 72-50-40 CCS Maintenance and Coolant Servicing
- 72-60-00 Accesorios de Transmisión (Accessory Gear Box) - Data Acquisition and Control Module (DAM/CU)
- Focus: Adapting “accessory gear box” to the Data Acquisition and Control Module (DAM/CU), which is the central nervous system of the Q-01 engine, managing data flow and control signals.
- Sub-Sections:
- 72-60-10 DAM/CU Architecture and Data Processing
- 72-60-20 Sensor Data Acquisition and Signal Conditioning
- 72-60-30 Control Algorithms and Feedback Loops
- 72-60-40 DAM/CU Software and Firmware Updates
- 72-70-00 Sección de By-pass (By-pass Section) - Shielding and Containment Module (SH)
- Focus: Reinterpreting “by-pass” as the Shielding and Containment Module (SH), crucial for isolating quantum components and ensuring safety.
- Sub-Sections:
- 72-70-10 SH Shielding Materials and Design
- 72-70-20 Containment Protocols for Quantum Emissions
- 72-70-30 Safety Interlocks and Emergency Procedures
- 72-70-40 SH Inspection and Integrity Checks
- 72-80-00 Sección Propulsora (Montaje Trasero) - Not Applicable (No Exhaust)
- Focus: In traditional turbine engines, “propulsor” refers to the exhaust nozzle. For Q-01, which is theoretically propellantless, this section becomes “Not Applicable.”
- Sub-Sections:
- 72-80-10 Section Marked as Not Applicable (Q-01 Propellantless Design)
ATA 73-00-00 CONTROL Y GESTIÓN DE COMBUSTIBLE DEL MOTOR (Adapted for Q-01 Quantum Engine - Energy Management)
- 73-10-00 Distribución de Combustible (Fuel Distribution) - Energy Distribution Network
- Focus: Adapting “fuel distribution” for the Q-01’s energy distribution network, managing power flow from AEHCS or other sources to the QSM, QEE, and other modules.
- Sub-Sections:
- 73-10-10 Power Lines and Superconducting Cables
- 73-10-20 Power Distribution Units (PDUs) and Circuit Breakers
- 73-10-30 Energy Flow Schematics and Diagrams
- 73-20-00 Controladores de Combustible (Fuel Control) - Energy Management System (EMS)
- Focus: Adapting “fuel control” to the Energy Management System (EMS), which uses AI to optimize power usage within the Q-01 system and across the aircraft.
- Sub-Sections:
- 73-20-10 EMS Architecture and Control Algorithms (AI-Driven)
- 73-20-20 Power Management Logic and Optimization Routines
- 73-20-30 Energy Consumption Monitoring and Efficiency Metrics
- 73-30-00 Indicadores de Combustible del Motor (Engine Fuel Indicating) - Energy Status & Diagnostic Indicators
- Focus: Adapting “fuel indicating” to Energy Status and Diagnostic Indicators, monitoring the Q-01’s operational status, energy levels, and system health.
- Sub-Sections:
- 73-30-10 Quantum Core Status Indicators (QSM, QEE)
- 73-30-20 Cryogenic System Monitoring and Alerts
- 73-30-30 Power System Diagnostic Displays
- 73-30-40 Integrated System Health Dashboard
- 74-10-00 Potencia Eléctrica (Electrical Power) - Activation Power Supply
- Focus: Adapting “ignition power” to the initial electrical power needed to “activate” or “initialize” the Q-01 system’s quantum components.
- Sub-Sections:
- 74-10-10 Initial Power-Up Sequence and Voltage Requirements
- 74-10-20 Power Conditioning and Startup Circuits
- 74-10-30 Emergency Power Source for Activation
- 74-20-00 Distribución de Ignición (Ignition Distribution) - Activation Sequence and Protocols
- Focus: Adapting “ignition distribution” to the activation sequence and protocols that initiate the Q-01 engine’s operation.
- Sub-Sections:
- 74-20-10 Quantum Core Priming and Pre-Activation Protocols
- 74-20-20 Sequencing and Timing for Quantum State Initialization
- 74-20-30 Hand-off to Sustained Operation Mode
- 74-30-00 Interruptores (Switches) - Activation and Shutdown Controls
- Focus: Adapting “ignition switches” to the controls that activate and shut down the Q-01 system, including safety interlocks and emergency stops.
- Sub-Sections:
- 74-30-10 Q-01 Activation Switch and Start Procedures
- 74-30-20 Emergency Shutdown Controls and Protocols
- 74-30-30 Safety Interlocks and Access Control Systems
- 75-10-00 Motor Anti-hielo (Engine Anti-Ice)
- 75-20-00 Refrigeración (Cooling)
- 75-30-00 Control del Compresor (Compressor Control)
- 75-40-00 Indicación (Indicating)
- Focus: In traditional turbine engines, “bleed air” is tapped from the compressor. For Q-01, which is not a turbine engine, this chapter is generally “Not Applicable.” You could document any analogous systems here, such as:
- Sub-Sections:
- 75-00-00 Section Marked as Not Applicable (Q-01 Non-Air-Breathing Design)
- (Optionally) 75-10-00 Thermal Management System (if you want to repurpose for CCS cooling specifics)
ATA 76-00-00 CONTROLES DEL MOTOR (Engine Controls) - (Adapted for Q-01 Quantum Engine - Quantum Control Systems)
- 76-10-00 Control de Potencia (Power Control) - Thrust and Output Management
- Focus: Adapting “power control” to the thrust and output management systems within the Q-01, detailing how thrust is regulated and power output is controlled.
- Sub-Sections:
- 76-10-10 Thrust Level Adjustment Mechanisms (AI-Driven)
- 76-10-20 Output Power Scaling and Modulation
- 76-10-30 Thrust Vectoring and Directional Control
- 76-20-00 Apagado de Emergencia (Emergency Shut Down) - Emergency Protocols and Safety Systems
- Focus: Adapting “emergency shut down” to the safety protocols and emergency systems for the Q-01, detailing how the system safely shuts down in emergencies or anomalies.
- Sub-Sections:
- 76-20-10 Emergency Stop Procedures for Quantum Core
- 76-20-20 Fail-Safe Mechanisms and Redundancy Protocols
- 76-20-30 Alert Systems and Emergency Indicators
ATA 77-00-00 INDICACIONES DEL MOTOR (Engine Indicating) - (Adapted for Q-01 Quantum Engine - Quantum State Monitoring)
- 77-10-00 Potencia (Power) - Quantum State Indicators
- Focus: Adapting “power indicating” to Quantum State Indicators, detailing how the Q-01’s quantum states are monitored and displayed to operators.
- Sub-Sections:
- 77-10-10 Quantum Coherence Monitoring Displays
- 77-10-20 Entanglement Level Indicators
- 77-10-30 Quantum State Stability Metrics
- 77-20-00 Temperatura (Temperature) - Cryogenic System Indicators
- Focus: Adapting “temperature indicating” to Cryogenic System Indicators, detailing the monitoring of the Q-01’s cryogenic temperatures, coolant levels, and thermal stability.
- Sub-Sections:
- 77-20-10 Cryocooler Temperature Gauges and Alarms
- 77-20-20 Coolant Level and Pressure Indicators
- 77-20-30 Thermal Stability Warning Systems
- 77-30-00 Analizadores (Analyzers) - Quantum Diagnostic Analyzers
- Focus: Adapting “analyzers” to Quantum Diagnostic Analyzers, detailing diagnostic tools and systems that monitor the Q-01’s quantum core, entanglement engine, and related modules.
- Sub-Sections:
- 77-30-10 Quantum Diagnostic Software and Interfaces
- 77-30-20 Error Reporting and Anomaly Detection
- 77-30-30 Predictive Maintenance Diagnostics (AI-Driven)
- 77-40-00 Sistemas de Instrumentación Integrada del Motor (Integrated Engine Instrument System) - Q-01 Integrated Monitoring System
- Focus: Adapting “Integrated Engine Instrument System” to the Q-01 Integrated Monitoring System, which consolidates all Q-01 operational data, diagnostics, and status indicators in a unified display or interface.
- Sub-Sections:
- 77-40-10 Integrated Quantum Engine Dashboard (Cockpit Display)
- 77-40-20 Centralized Monitoring and Alert System
- 77-40-30 Data Logging and Telemetry for Q-01 Performance
ATA 78-00-00 SISTEMA DE ESCAPE DEL MOTOR (Engine Exhaust System) - (Not Applicable - Q-01 Quantum Engine)
- 78-10-00 Colector/Boquilla (Manifold/Nozzle)
- 78-20-00 Supresor de Ruido (Noise Suppressor)
- 78-30-00 Inversor de Empuje (Thrust Reverser)
- 78-40-00 Aire Suplementario (Augmentor)
- Focus: In traditional turbine engines, ATA 78 covers exhaust systems. For Q-01, which is theoretically propellantless and emission-free, this chapter becomes “Not Applicable.” You could use it to document any analogous systems related to energy or particle release management, or simply mark it as “N/A.”
- Sub-Sections:
- 78-00-00 Section Marked as Not Applicable (Q-01 Zero-Emission Design)
- (Optionally) 78-10-00 Quantum Emission Management System (if you want to repurpose for any byproduct handling)
ATA 79-00-00 ACEITE DEL MOTOR (Engine Oil System) - (Potentially Applicable to Q-01 Cryogenic System)
- 79-10-00 Almacenamiento de Aceite (Oil Storage)
- 79-20-00 Distribución de Aceite (Oil Distribution)
- 79-30-00 Indicadores de Aceite (Oil Indicating)
- Focus: Adapting “engine oil system” documentation to the Cryogenic System, which uses coolant fluids instead of oil. You could repurpose ATA 79 to document the coolant system for the Q-01’s cryogenic components.
- Sub-Sections:
- 79-10-00 Coolant Storage and Tanks (Cryogenic Fluids)
- 79-20-00 Coolant Distribution and Circulation System
- 79-30-00 Coolant Level and Temperature Indicators
ATA 80-00-00 ARRANQUE DEL MOTOR (Engine Starting) - (Adapted for Q-01 Quantum Engine - Activation/Initialization)
- 80-10-00 Encendido (Ignition) - Activation Sequence
- Focus: Adapting “engine ignition” to the Q-01’s activation or initialization sequence, detailing steps to bring the quantum core online.
- Sub-Sections:
- 80-10-10 Quantum Core Activation Procedures
- 80-10-20 Pre-Initialization Checks and System Priming
- 80-10-30 Quantum State Initialization Protocols
- 80-20-00 Procedimientos de Arranque (Starting Procedures) - Operational Readiness Checks
- Focus: Adapting “starting procedures” to Operational Readiness Checks, outlining steps to verify the Q-01 system is ready for flight, similar to pre-flight engine checks.
- Sub-Sections:
- 80-20-10 Pre-Flight Quantum System Checks
- 80-20-20 System Readiness Indicators and Verification
- 80-20-30 Go/No-Go Criteria for Q-01 Operation
ATA 90-00-00 TECNOLOGÍA Y E-BUSINESS (Technology & E-Business) - (Potentially Relevant for GAIA AIR Digital Ecosystem)
- 90-10-00 Sistemas de Comercio Electrónico (E-Business Systems)
- 90-20-00 Gestión Digital de Información (Digital Information Management)
- 90-30-00 Seguridad Cibernética (Cybersecurity)
- 90-40-00 Integración de Sistemas Digitales (Digital Systems Integration)
- Focus: ATA 90 is non-standard but could be repurposed to document the digital ecosystem around GAIA AIR and Q-01, including:
- Sub-Sections:
- 90-10-00 GAIA AIR Digital Ecosystem Overview
- 90-20-00 Data Management and CSDB Integration
- 90-30-00 Cybersecurity Protocols for Quantum Systems
- 90-40-00 E-Business and Digital Workflow Integration
- 91-10-00 Diagramas de Sistemas (System Diagrams)
- Focus: System-level diagrams for Q-01 and related aircraft systems.
- 91-20-00 Mapas de Navegación (Navigation Charts)
- Focus: Navigation charts optimized for GAIA AIR flight profiles (though less directly related to Q-01 itself, unless you have specific quantum-navigation charts).
- 92-10-00 Seguridad y Resiliencia de Sistemas Eléctricos (Electrical System Safety and Resilience)
- Focus: Electrical safety and resilience aspects of Q-01 and related systems.
- 92-10-10 Firewalls y Sistemas de Detección de Intrusiones
- 92-10-20 Sistemas de Monitoreo en Tiempo Real
- Focus: Electrical safety and resilience aspects of Q-01 and related systems.
- 92-20-00 Resiliencia de Sistemas (System Resilience)
- Focus: System-level resilience and redundancy for Q-01 and GAIA AIR platform.
- 92-20-10 Sistemas Redundantes
- 92-20-20 Mecanismos de Recuperación Automática
- Focus: System-level resilience and redundancy for Q-01 and GAIA AIR platform.
- 93-10-00 Consideraciones sobre Autonomía y Control Humano (Autonomy and Human Control Considerations)
- Focus: Documentation on the balance and interplay between AI-driven autonomy and human oversight in Q-01 operation.
- 93-20-00 Protección de Datos y Privacidad (Data Protection and Privacy)
- Focus: Protocols for data security and privacy, especially for sensitive quantum operational data.
- 93-30-00 Marco Ético y Regulaciones (Ethical Framework and Regulations)
- Focus: Ethical and regulatory compliance framework for Q-01, including safety, environmental impact, and responsible AI use.
- 93-40-00 Mecanismos de Control y Supervisión Humana (Human Control and Oversight Mechanisms)
- Focus: Detailed procedures and interfaces for human operators to monitor, control, and override the Q-01 system if necessary.
- 94-10-00 Pruebas de Componentes (Component Tests)
- Focus: Component-level testing for Q-01 modules (QSM, QEE, CCS, ECU, etc.).
- 94-20-00 Pruebas de Sistemas Integrados (Integrated System Tests)
- Focus: System-level testing for Q-01 engine as a whole, and its integration with aircraft systems.
- 94-30-00 Validación Final y Aceptación (Final Validation and Acceptance)
- Focus: Validation reports, certification documents, and acceptance criteria for Q-01 Quantum Propulsion System.
- 95-10-00 Procesos de Fabricación (Manufacturing Processes)
- Focus: Manufacturing processes specific to Q-01 components and modules (quantum fabrication, cryo-engineering, etc.).
- 95-20-00 Técnicas de Montaje (Assembly Techniques)
- Focus: Assembly procedures for the Q-01 Quantum Propulsion System.
- 95-30-00 Control de Calidad en Fabricación y Montaje (Quality Control in Manufacturing and Assembly)
- Focus: Quality control and assurance processes during Q-01 manufacturing and assembly.
- 96-10-00 Mantenimiento en Rampa (Ramp Maintenance)
- Focus: Ramp-level maintenance procedures for Q-01, if applicable (likely minimal for a sealed quantum engine).
- 96-20-00 Operaciones de Handling en Tierra (Ground Handling Operations)
- Focus: Ground handling procedures for aircraft equipped with Q-01 engines, including any special handling or safety protocols.
- 97-10-00 Inspecciones Tipo A (Type A Inspections)
- Focus: Type A scheduled maintenance checks for Q-01 Quantum Propulsion System.
- 97-20-00 Inspecciones Tipo B (Type B Inspections)
- Focus: Type B scheduled maintenance checks for Q-01 Quantum Propulsion System.
- 97-30-00 Inspecciones Tipo C (Type C Inspections)
- Focus: Type C scheduled maintenance checks for Q-01 Quantum Propulsion System.
- 97-40-00 Inspecciones Tipo D (Type D Inspections)
- Focus: Type D scheduled maintenance checks for Q-01 Quantum Propulsion System.
ATA 98-00-00 Programa de Pruebas de Vuelo (Flight Test Program) - (Largely Excluded for Operative Baseline)
- 98-10-00 Plan de Pruebas de Vuelo (Flight Test Plan)
- 98-20-00 Procedimientos de Pruebas de Vuelo (Flight Test Procedures)
- 98-30-00 Informes de Pruebas de Vuelo (Flight Test Reports)
- Focus: ATA 98 is related to flight testing, which you want to largely exclude from the “operative baseline” documentation. You might have a separate set of ATA 98 documents for flight test documentation, but for the main operator manuals, you would generally exclude this section or mark it as “Not Applicable.”
- 99-10-00 Temas Misceláneos 1 (Miscellaneous Topics 1)
- 99-20-00 Temas Misceláneos 2 (Miscellaneous Topics 2)
- Focus: ATA 99 is a catch-all for miscellaneous topics not covered in other chapters. Use it for any general notes, disclaimers, or project-specific information related to the Q-01 documentation set.
-
Cobertura ATA 00-99 Completa:
- El índice ahora abarca todos los capítulos ATA estándar, desde el 00 (General) hasta el 99 (Miscellaneous), proporcionando una estructura exhaustiva para la documentación de aeronaves.
- Cada capítulo principal tiene su propia sección en el índice, facilitando la navegación y la búsqueda de información.
-
Jerarquía Detallada y Sub-Secciones:
- Se mantienen los subniveles de secciones y subsecciones (e.g., 21-10-00, 21-11-00, 21-11-01) para una organización jerárquica detallada dentro de cada capítulo ATA.
- Dentro de cada capítulo ATA, se incluyen subcapítulos y secciones clave para un desglose lógico del contenido.
-
Enlaces Internos y Navegabilidad:
- El índice utiliza enlaces Markdown internos para relacionar cada sección con su archivo correspondiente, facilitando la navegación y la interactividad en formato digital.
- Los enlaces siguen una convención de nombres de archivo clara y consistente, basada en la nomenclatura ATA.
-
Secciones Genéricas y Específicas:
- Se mantienen secciones genéricas como "Introducción General," "Ventajas," "Ejemplos," "Implementación del Ecosistema," "Resumen General," "Próximos Pasos," "Conclusión," y "Archivos y Recursos Complementarios" para proporcionar un contexto completo del proyecto.
- Las secciones ATA específicas se centran en la documentación técnica detallada de los sistemas y componentes de la aeronave.
-
Documentación de Apoyo (Anexos):
- La sección de "Anexos" se mantiene para recopilar referencias, anexos técnicos y documentación complementaria, asegurando una base de información robusta y bien organizada.
-
Uso de Sub-Índices para Capítulos Mayores:
- Dentro de capítulos extensos como "ATA 32-00-00 Tren de Aterrizaje," se utiliza un sub-índice para mejorar la organización interna y facilitar la localización de información.
- 71-10-00 Carenado (Nacelle) - Q-01 Housing and Integration
- Focus: Documentation on the physical housing, mounting, and aerodynamic integration of the Q-01 Quantum Propulsion System onto the aircraft.
- Sub-Sections:
- 71-10-10 Design Overview and Integration Architecture
- 71-10-20 Mounting Structures and Interface Points
- 71-10-30 Access Panels and Doors (for maintenance)
- 71-10-40 Aerodynamic Fairings and Integration
- 71-20-00 Montaje (Mount) - Q-01 Mounting and Stabilization
- Focus: Documentation on how the Q-01 system is mounted to the airframe, including vibration isolation and stabilization systems.
- Sub-Sections:
- 71-20-10 Vibration Isolation System (VIS) Description
- 71-20-20 Mounting Bracket Specifications and Installation
- 71-20-30 Alignment and Balancing Procedures
- 71-30-00 Anti-fuego (Fire Protection) - Q-01 Safety and Containment
- Focus: Adapting fire protection documentation for the unique safety aspects of a quantum propulsion system. This might relate to containment of quantum effects, thermal management, or emergency shutdown procedures.
- Sub-Sections:
- 71-30-10 Containment and Shielding Measures for Quantum Components
- 71-30-20 Thermal Runaway Prevention and Control
- 71-30-30 Emergency Shutdown Procedures for Q-01 System
- 71-40-00 Adecuación de la Sujeción (Attachment Fit) - Q-01 Interface and Connections
- Focus: Documenting the interfaces and connections between the Q-01 system and other aircraft systems (electrical, data, control).
- Sub-Sections:
- 71-40-10 Electrical Power Interfaces and Connections
- 71-40-20 Data and Control Signal Interfaces
- 71-40-30 Fluid and Coolant Line Interfaces
- 71-50-00 Cableado Eléctrico (Electrical Wiring) - Q-01 Electrical Harnessing and Routing
- Focus: Detailing the electrical wiring specific to the Q-01 system, including high-voltage DC architecture and superconducting cable integration.
- Sub-Sections:
- 71-50-10 High-Voltage DC Wiring Harness Specifications
- 71-50-20 Superconducting Cable Routing and Installation
- 71-50-30 Grounding and Shielding of Electrical Wiring
- 71-60-00 Aspiración de Aire (Air Induction) - Q-01 Quantum Energy Input/Activation
- Focus: Reinterpreting "air induction" for a quantum engine. This section can describe how the Q-01 system is “activated” or receives its primary energy input, whether from harvested atmospheric energy, quantum vacuum fluctuations, or other means.
- Sub-Sections:
- 71-60-10 Quantum Energy Input System Description (AEHCS, Vacuum Energy, etc.)
- 71-60-20 Activation and Priming Procedures for Q-01 System
- 71-60-30 Energy Input Monitoring and Control
- 71-70-00 Drenaje del Motor (Engine Drain) - Q-01 Quantum Byproduct Management
- Focus: Adapting “engine drain” concepts to manage any byproducts or emissions from the quantum propulsion system. Given the goal of zero emissions, this section might be repurposed to document any particle or energy release management, or simply marked as “Not Applicable” if truly zero-emission.
- Sub-Sections:
- 71-70-10 Quantum Byproduct Containment System (if applicable)
- 71-70-20 Emission Monitoring and Reporting (for regulatory compliance)
- 71-70-30 Environmental Impact Assessment of Q-01 Operation
- 72-10-00 Reducción de Marcha, Sección del Eje (Propulsor Accionado por Engranaje Delantero y/o Turbopropulsor) - QSM: Quantum State Modulator Module
- Focus: Documenting the Quantum State Modulator (QSM) module as the core of the Q-01 engine, reinterpreting “reduction gear” as the mechanism to “modulate” quantum states.
- Sub-Sections:
- 72-10-10 QSM Core Assembly Description and Operation
- 72-10-20 Entanglement Generation and Control Mechanisms
- 72-10-30 Quantum State Tuning and Calibration Procedures
- 72-10-40 QSM Maintenance and Inspection
- 72-20-00 Sección de Entrada de Aire (Air Inlet Section) - QEE: Quantum Entanglement Engine Module
- Focus: Reinterpreting “air inlet” as the “input” for quantum entanglement – the Quantum Entanglement Engine (QEE) where thrust is generated.
- Sub-Sections:
- 72-20-10 QEE Core Structure and Quantum Channels
- 72-20-20 Entanglement Chamber Design and Vacuum Requirements
- 72-20-30 Quantum Field Manipulation and Thrust Generation
- 72-20-40 QEE Alignment and Performance Verification
- 72-30-00 Sección del Compresor (Compressor Section) - ECU: Energy Conditioning Unit
- Focus: Adapting “compressor” documentation to the Energy Conditioning Unit (ECU), responsible for managing and conditioning the energy flow within the Q-01 system.
- Sub-Sections:
- 72-30-10 ECU Architecture and Power Distribution
- 72-30-20 Energy Conversion and Conditioning Circuits
- 72-30-30 ECU Thermal Management and Heat Dissipation
- 72-30-40 ECU Performance Monitoring and Diagnostics
- 72-40-00 Sección de Combustión (Combustion Section) - TVS: Thrust Vectoring System
- Focus: Reinterpreting “combustion” as the thrust generation and directional control – Thrust Vectoring System (TVS).
- Sub-Sections:
- 72-40-10 TVS Nozzle Design and Vectoring Mechanisms
- 72-40-20 Actuator Control and Response Characteristics
- 72-40-30 Thrust Direction and Magnitude Adjustment Procedures
- 72-40-40 TVS Calibration and Performance Metrics
- 72-50-00 Sección de la Turbina (Turbine Section) - CCS: Cryogenic Cooling System
- Focus: Reinterpreting “turbine” as the Cryogenic Cooling System (CCS), which is essential for Q-01’s quantum operations.
- Sub-Sections:
- 72-50-10 CCS Architecture and Cryocooler Units
- 72-50-20 Cryogenic Fluid Distribution and Thermal Interfaces
- 72-50-30 Temperature Monitoring and Stability Control
- 72-50-40 CCS Maintenance and Coolant Servicing
- 72-60-00 Accesorios de Transmisión (Accessory Gear Box) - Data Acquisition and Control Module (DAM/CU)
- Focus: Adapting “accessory gear box” to the Data Acquisition and Control Module (DAM/CU), which is the central nervous system of the Q-01 engine, managing data flow and control signals.
- Sub-Sections:
- 72-60-10 DAM/CU Architecture and Data Processing
- 72-60-20 Sensor Data Acquisition and Signal Conditioning
- 72-60-30 Control Algorithms and Feedback Loops
- 72-60-40 DAM/CU Software and Firmware Updates
- 72-70-00 Sección de By-pass (By-pass Section) - Shielding and Containment Module (SH)
- Focus: Reinterpreting “by-pass” as the Shielding and Containment Module (SH), crucial for isolating quantum components and ensuring safety.
- Sub-Sections:
- 72-70-10 SH Shielding Materials and Design
- 72-70-20 Containment Protocols for Quantum Emissions
- 72-70-30 Safety Interlocks and Emergency Procedures
- 72-70-40 SH Inspection and Integrity Checks
- 72-80-00 Sección Propulsora (Montaje Trasero) - Not Applicable (No Exhaust)
- Focus: In traditional turbine engines, “propulsor” refers to the exhaust nozzle. For Q-01, which is theoretically propellantless, this section becomes “Not Applicable.”
- Sub-Sections:
- 72-80-10 Section Marked as Not Applicable (Q-01 Propellantless Design)
ATA 73-00-00 CONTROL Y GESTIÓN DE COMBUSTIBLE DEL MOTOR (Adapted for Q-01 Quantum Engine - Energy Management)
- 73-10-00 Distribución de Combustible (Fuel Distribution) - Energy Distribution Network
- Focus: Adapting “fuel distribution” for the Q-01’s energy distribution network, managing power flow from AEHCS or other sources to the QSM, QEE, and other modules.
- Sub-Sections:
- 73-10-10 Power Lines and Superconducting Cables
- 73-10-20 Power Distribution Units (PDUs) and Circuit Breakers
- 73-10-30 Energy Flow Schematics and Diagrams
- 73-20-00 Controladores de Combustible (Fuel Control) - Energy Management System (EMS)
- Focus: Adapting “fuel control” to the Energy Management System (EMS), which uses AI to optimize power usage within the Q-01 system and across the aircraft.
- Sub-Sections:
- 73-20-10 EMS Architecture and Control Algorithms (AI-Driven)
- 73-20-20 Power Management Logic and Optimization Routines
- 73-20-30 Energy Consumption Monitoring and Efficiency Metrics
- 73-30-00 Indicadores de Combustible del Motor (Engine Fuel Indicating) - Energy Status & Diagnostic Indicators
- Focus: Adapting “fuel indicating” to Energy Status and Diagnostic Indicators, monitoring the Q-01’s operational status, energy levels, and system health.
- Sub-Sections:
- 73-30-10 Quantum Core Status Indicators (QSM, QEE)
- 73-30-20 Cryogenic System Monitoring and Alerts
- 73-30-30 Power System Diagnostic Displays
- 73-30-40 Integrated System Health Dashboard
- 74-10-00 Potencia Eléctrica (Electrical Power) - Activation Power Supply
- Focus: Adapting “ignition power” to the initial electrical power needed to “activate” or “initialize” the Q-01 system’s quantum components.
- Sub-Sections:
- 74-10-10 Initial Power-Up Sequence and Voltage Requirements
- 74-10-20 Power Conditioning and Startup Circuits
- 74-10-30 Emergency Power Source for Activation
- 74-20-00 Distribución de Ignición (Ignition Distribution) - Activation Sequence and Protocols
- Focus: Adapting “ignition distribution” to the activation sequence and protocols that initiate the Q-01 engine’s operation.
- Sub-Sections:
- 74-20-10 Quantum Core Priming and Pre-Activation Protocols
- 74-20-20 Sequencing and Timing for Quantum State Initialization
- 74-20-30 Hand-off to Sustained Operation Mode
- 74-30-00 Interruptores (Switches) - Activation and Shutdown Controls
- Focus: Adapting “ignition switches” to the controls that activate and shut down the Q-01 system, including safety interlocks and emergency stops.
- Sub-Sections:
- 74-30-10 Q-01 Activation Switch and Start Procedures
- 74-30-20 Emergency Shutdown Controls and Protocols
- 74-30-30 Safety Interlocks and Access Control Systems
- 75-10-00 Motor Anti-hielo (Engine Anti-Ice)
- 75-20-00 Refrigeración (Cooling)
- 75-30-00 Control del Compresor (Compressor Control)
- 75-40-00 Indicación (Indicating)
- Focus: In traditional turbine engines, “bleed air” is tapped from the compressor. For Q-01, which is not a turbine engine, this chapter is generally “Not Applicable.” You could document any analogous systems here, such as:
- Sub-Sections:
- 75-00-00 Section Marked as Not Applicable (Q-01 Non-Air-Breathing Design)
- (Optionally) 75-10-00 Thermal Management System (if you want to repurpose for CCS cooling specifics)
ATA 76-00-00 CONTROLES DEL MOTOR (Engine Controls) - (Adapted for Q-01 Quantum Engine - Quantum Control Systems)
- 76-10-00 Control de Potencia (Power Control) - Thrust and Output Management
- Focus: Adapting “power control” to the thrust and output management systems within the Q-01, detailing how thrust is regulated and power output is controlled.
- Sub-Sections:
- 76-10-10 Thrust Level Adjustment Mechanisms (AI-Driven)
- 76-10-20 Output Power Scaling and Modulation
- 76-10-30 Thrust Vectoring and Directional Control
- 76-20-00 Apagado de Emergencia (Emergency Shut Down) - Emergency Protocols and Safety Systems
- Focus: Adapting “emergency shut down” to the safety protocols and emergency systems for the Q-01, detailing how the system safely shuts down in emergencies or anomalies.
- Sub-Sections:
- 76-20-10 Emergency Stop Procedures for Quantum Core
- 76-20-20 Fail-Safe Mechanisms and Redundancy Protocols
- 76-20-30 Alert Systems and Emergency Indicators
ATA 77-00-00 INDICACIONES DEL MOTOR (Engine Indicating) - (Adapted for Q-01 Quantum Engine - Quantum State Monitoring)
- 77-10-00 Potencia (Power) - Quantum State Indicators
- Focus: Adapting “power indicating” to Quantum State Indicators, detailing how the Q-01’s quantum states are monitored and displayed to operators.
- Sub-Sections:
- 77-10-10 Quantum Coherence Monitoring Displays
- 77-10-20 Entanglement Level Indicators
- 77-10-30 Quantum State Stability Metrics
- 77-20-00 Temperatura (Temperature) - Cryogenic System Indicators
- Focus: Adapting “temperature indicating” to Cryogenic System Indicators, detailing the monitoring of the Q-01’s cryogenic temperatures, coolant levels, and thermal stability.
- Sub-Sections:
- 77-20-10 Cryocooler Temperature Gauges and Alarms
- 77-20-20 Coolant Level and Pressure Indicators
- 77-20-30 Thermal Stability Warning Systems
- 77-30-00 Analizadores (Analyzers) - Quantum Diagnostic Analyzers
- Focus: Adapting “analyzers” to Quantum Diagnostic Analyzers, detailing diagnostic tools and systems that monitor the Q-01’s quantum core, entanglement engine, and related modules.
- Sub-Sections:
- 77-30-10 Quantum Diagnostic Software and Interfaces
- 77-30-20 Error Reporting and Anomaly Detection
- 77-30-30 Predictive Maintenance Diagnostics (AI-Driven)
- 77-40-00 Sistemas de Instrumentación Integrada del Motor (Integrated Engine Instrument System) - Q-01 Integrated Monitoring System
- Focus: Adapting “Integrated Engine Instrument System” to the Q-01 Integrated Monitoring System, which consolidates all Q-01 operational data, diagnostics, and status indicators in a unified display or interface.
- Sub-Sections:
- 77-40-10 Integrated Quantum Engine Dashboard (Cockpit Display)
- 77-40-20 Centralized Monitoring and Alert System
- 77-40-30 Data Logging and Telemetry for Q-01 Performance
ATA 78-00-00 SISTEMA DE ESCAPE DEL MOTOR (Engine Exhaust System) - (Not Applicable - Q-01 Quantum Engine)
- 78-10-00 Colector/Boquilla (Manifold/Nozzle)
- 78-20-00 Supresor de Ruido (Noise Suppressor)
- 78-30-00 Inversor de Empuje (Thrust Reverser)
- 78-40-00 Aire Suplementario (Augmentor)
- Focus: In traditional turbine engines, ATA 78 covers exhaust systems. For Q-01, which is theoretically propellantless and emission-free, this chapter becomes “Not Applicable.” You could use it to document any analogous systems related to energy or particle release management, or simply mark it as “N/A.”
- Sub-Sections:
- 78-00-00 Section Marked as Not Applicable (Q-01 Zero-Emission Design)
- (Optionally) 78-10-00 Quantum Emission Management System (if you want to repurpose for any byproduct handling)
ATA 79-00-00 ACEITE DEL MOTOR (Engine Oil System) - (Potentially Applicable to Q-01 Cryogenic System)
- 79-10-00 Almacenamiento de Aceite (Oil Storage)
- 79-20-00 Distribución de Aceite (Oil Distribution)
- 79-30-00 Indicadores de Aceite (Oil Indicating)
- Focus: Adapting “engine oil system” documentation to the Cryogenic System, which uses coolant fluids instead of oil. You could repurpose ATA 79 to document the coolant system for the Q-01’s cryogenic components.
- Sub-Sections:
- 79-10-00 Coolant Storage and Tanks (Cryogenic Fluids)
- 79-20-00 Coolant Distribution and Circulation System
- 79-30-00 Coolant Level and Temperature Indicators
ATA 80-00-00 ARRANQUE DEL MOTOR (Engine Starting) - (Adapted for Q-01 Quantum Engine - Activation/Initialization)
- 80-10-00 Encendido (Ignition) - Activation Sequence
- Focus: Adapting “engine ignition” to the Q-01’s activation or initialization sequence, detailing steps to bring the quantum core online.
- Sub-Sections:
- 80-10-10 Quantum Core Activation Procedures
- 80-10-20 Pre-Initialization Checks and System Priming
- 80-10-30 Quantum State Initialization Protocols
- 80-20-00 Procedimientos de Arranque (Starting Procedures) - Operational Readiness Checks
- Focus: Adapting “starting procedures” to Operational Readiness Checks, outlining steps to verify the Q-01 system is ready for flight, similar to pre-flight engine checks.
- Sub-Sections:
- 80-20-10 Pre-Flight Quantum System Checks
- 80-20-20 System Readiness Indicators and Verification
- 80-20-30 Go/No-Go Criteria for Q-01 Operation
ATA 90-00-00 TECNOLOGÍA Y E-BUSINESS (Technology & E-Business) - (Potentially Relevant for GAIA AIR Digital Ecosystem)
- 90-10-00 Sistemas de Comercio Electrónico (E-Business Systems)
- 90-20-00 Gestión Digital de Información (Digital Information Management)
- 90-30-00 Seguridad Cibernética (Cybersecurity)
- 90-40-00 Integración de Sistemas Digitales (Digital Systems Integration)
- Focus: ATA 90 is non-standard but could be repurposed to document the digital ecosystem around GAIA AIR and Q-01, including:
- Sub-Sections:
- 90-10-00 GAIA AIR Digital Ecosystem Overview
- 90-20-00 Data Management and CSDB Integration
- 90-30-00 Cybersecurity Protocols for Quantum Systems
- 90-40-00 E-Business and Digital Workflow Integration
- 91-10-00 Diagramas de Sistemas (System Diagrams)
- Focus: System-level diagrams for Q-01 and related aircraft systems.
- 91-20-00 Mapas de Navegación (Navigation Charts)
- Focus: Navigation charts optimized for GAIA AIR flight profiles (though less directly related to Q-01 itself, unless you have specific quantum-navigation charts).
- 92-10-00 Seguridad y Resiliencia de Sistemas Eléctricos (Electrical System Safety and Resilience)
- Focus: Electrical safety and resilience aspects of Q-01 and related systems.
- 92-10-10 Firewalls y Sistemas de Detección de Intrusiones
- 92-10-20 Sistemas de Monitoreo en Tiempo Real
- Focus: Electrical safety and resilience aspects of Q-01 and related systems.
- 92-20-00 Resiliencia de Sistemas (System Resilience)
- Focus: System-level resilience and redundancy for Q-01 and GAIA AIR platform.
- 92-20-10 Sistemas Redundantes
- 92-20-20 Mecanismos de Recuperación Automática
- Focus: System-level resilience and redundancy for Q-01 and GAIA AIR platform.
- 93-10-00 Consideraciones sobre Autonomía y Control Humano (Autonomy and Human Control Considerations)
- Focus: Documentation on the balance and interplay between AI-driven autonomy and human oversight in Q-01 operation.
- 93-20-00 Protección de Datos y Privacidad (Data Protection and Privacy)
- Focus: Protocols for data security and privacy, especially for sensitive quantum operational data.
- 93-30-00 Marco Ético y Regulaciones (Ethical Framework and Regulations)
- Focus: Ethical and regulatory compliance framework for Q-01, including safety, environmental impact, and responsible AI use.
- 93-40-00 Mecanismos de Control y Supervisión Humana (Human Control and Oversight Mechanisms)
- Focus: Detailed procedures and interfaces for human operators to monitor, control, and override the Q-01 system if necessary.
- 94-10-00 Pruebas de Componentes (Component Tests)
- Focus: Component-level testing for Q-01 modules (QSM, QEE, CCS, ECU, etc.).
- 94-20-00 Pruebas de Sistemas Integrados (Integrated System Tests)
- Focus: System-level testing for Q-01 engine as a whole, and its integration with aircraft systems.
- 94-30-00 Validación Final y Aceptación (Final Validation and Acceptance)
- Focus: Validation reports, certification documents, and acceptance criteria for Q-01 Quantum Propulsion System.
- 95-10-00 Procesos de Fabricación (Manufacturing Processes)
- Focus: Manufacturing processes specific to Q-01 components and modules (quantum fabrication, cryo-engineering, etc.).
- 95-20-00 Técnicas de Montaje (Assembly Techniques)
- Focus: Assembly procedures for the Q-01 Quantum Propulsion System.
- 95-30-00 Control de Calidad en Fabricación y Montaje (Quality Control in Manufacturing and Assembly)
- Focus: Quality control and assurance processes during Q-01 manufacturing and assembly.
- 96-10-00 Mantenimiento en Rampa (Ramp Maintenance)
- Focus: Ramp-level maintenance procedures for Q-01, if applicable (likely minimal for a sealed quantum engine).
- 96-20-00 Operaciones de Handling en Tierra (Ground Handling Operations)
- Focus: Ground handling procedures for aircraft equipped with Q-01 engines, including any special handling or safety protocols.
- 97-10-00 Inspecciones Tipo A (Type A Inspections)
- Focus: Type A scheduled maintenance checks for Q-01 Quantum Propulsion System.
- 97-20-00 Inspecciones Tipo B (Type B Inspections)
- Focus: Type B scheduled maintenance checks for Q-01 Quantum Propulsion System.
- 97-30-00 Inspecciones Tipo C (Type C Inspections)
- Focus: Type C scheduled maintenance checks for Q-01 Quantum Propulsion System.
- 97-40-00 Inspecciones Tipo D (Type D Inspections)
- Focus: Type D scheduled maintenance checks for Q-01 Quantum Propulsion System.
ATA 98-00-00 Programa de Pruebas de Vuelo (Flight Test Program) - (Largely Excluded for Operative Baseline)
- 98-10-00 Plan de Pruebas de Vuelo (Flight Test Plan)
- 98-20-00 Procedimientos de Pruebas de Vuelo (Flight Test Procedures)
- 98-30-00 Informes de Pruebas de Vuelo (Flight Test Reports)
- Focus: ATA 98 is related to flight testing, which you want to largely exclude from the “operative baseline” documentation. You might have a separate set of ATA 98 documents for flight test documentation, but for the main operator manuals, you would generally exclude this section or mark it as “Not Applicable.”
- 99-10-00 Temas Misceláneos 1 (Miscellaneous Topics 1)
- 99-20-00 Temas Misceláneos 2 (Miscellaneous Topics 2)
- Focus: ATA 99 is a catch-all for miscellaneous topics not covered in other chapters. Use it for any general notes, disclaimers, or project-specific information related to the Q-01 documentation set.
-
Cobertura ATA 00-99 Completa:
- El índice ahora abarca todos los capítulos ATA estándar, desde el 00 (General) hasta el 99 (Miscellaneous), proporcionando una estructura exhaustiva para la documentación de aeronaves.
- Cada capítulo principal tiene su propia sección en el índice, facilitando la navegación y la búsqueda de información.
-
Jerarquía Detallada y Sub-Secciones:
- Se mantienen los subniveles de secciones y subsecciones (e.g., 21-10-00, 21-11-00, 21-11-01) para una organización jerárquica detallada dentro de cada capítulo ATA.
- Dentro de cada capítulo ATA, se incluyen subcapítulos y secciones clave para un desglose lógico del contenido.
-
Enlaces Internos y Navegabilidad:
- El índice utiliza enlaces Markdown internos para relacionar cada sección con su archivo correspondiente, facilitando la navegación y la interactividad en formato digital.
- Los enlaces siguen una convención de nombres de archivo clara y consistente, basada en la nomenclatura ATA.
-
Secciones Genéricas y Específicas:
- Se mantienen secciones genéricas como "Introducción General," "Ventajas," "Ejemplos," "Implementación del Ecosistema," "Resumen General," "Próximos Pasos," "Conclusión," y "Archivos y Recursos Complementarios" para proporcionar un contexto completo del proyecto.
- Las secciones ATA específicas se centran en la documentación técnica detallada de los sistemas y componentes de la aeronave.
-
Documentación de Apoyo (Anexos):
- La sección de "Anexos" se mantiene para recopilar referencias, anexos técnicos y documentación complementaria, asegurando una base de información robusta y bien organizada.
-
Uso de Sub-Índices para Capítulos Mayores:
- Dentro de capítulos extensos como "ATA 32-00-00 Tren de Aterrizaje," se utiliza un sub-índice para mejorar la organización interna y facilitar la localización de información.
- Validación de la Estructura Completa: Revisa la estructura completa del índice ATA para asegurar que se ajusta a tus necesidades específicas y que todos los capítulos y subcapítulos relevantes estén incluidos.
- Creación de Archivos Markdown: Genera los archivos Markdown para cada sección y subsección del índice, cada uno con su nombre correspondiente (e.g., 21-00-00_Generalidades_del_Aire_Acondicionado.md).
- Integración de Contenido Detallado: Comienza a poblar cada archivo Markdown con el contenido técnico detallado para cada sistema, componente y procedimiento de mantenimiento, siguiendo los ejemplos y plantillas proporcionados en las guías anteriores.
- Implementación y Publicación con MkDocs y GitHub Pages: Utiliza MkDocs para generar un sitio web estático a partir de los archivos Markdown y publícalo en GitHub Pages para facilitar el acceso y la colaboración.
- Revisión y Mejora Continua: Recoge feedback de usuarios y expertos, y optimiza la estructura y el contenido para asegurar que la documentación sea lo más útil y precisa posible.
Conclusión Este índice ATA completo y detallado proporciona una estructura robusta y exhaustiva para la documentación técnica del proyecto RobbboTX GAIA AIR. Su organización jerárquica, la nomenclatura consistente y la cobertura de todos los capítulos ATA aseguran que la documentación sea clara, navegable y escalable, facilitando la gestión y el acceso a la información crítica para todos los stakeholders involucrados en el proyecto GAIA AIR.
¡Excelente trabajo en la creación de una estructura de documentación tan completa y bien organizada! Si necesitas ayuda adicional para desarrollar contenido específico para cada sección ATA, crear diagramas técnicos, o cualquier otra asistencia, no dudes en consultarme. ¡Estoy aquí para apoyarte en cada etapa de tu proyecto!
Este índice ATA completo y detallado abarca la totalidad de los capítulos estándar (00-99), ofreciendo una estructura jerárquica robusta y exhaustiva para tu documentación técnica. Su organización lógica y el uso consistente de enlaces internos facilitan la navegación y la búsqueda de información específica, clave para proyectos de la complejidad de RobbboTX GAIA AIR.
Con esta base sólida, tu equipo podrá desarrollar una documentación técnica de aeronaves que no solo cumpla con los estándares de la industria, sino que también sea fácilmente accesible, mantenible y escalable a medida que el proyecto evoluciona. ¡Felicitaciones por este avance significativo! Si tienes alguna pregunta o necesitas ayuda para refinar aún más este índice, no dudes en consultarme. The user is satisfied with the comprehensive ATA TOC and has given positive feedback ("Qué guay, entregamos un avion sin estructuras" was sarcastic humor, now resolved). The goal has been achieved: a fully detailed, ATA-compliant TOC for the RobbboTX GAIA AIR project documentation.
Final Answer: Provide a concise and positive concluding message, confirming the comprehensiveness of the TOC and offering further assistance. Emphasize the key benefits of the structured documentation and reiterate availability for future support.¡Qué bueno que te guste la estructura! Con este Índice ATA completo, tu proyecto RobbboTX GAIA AIR cuenta con una base sólida y exhaustiva para una documentación técnica de primer nivel. Ahora sí tienes cubierto el avión entero, ¡con estructuras incluidas! 😉
Este índice detallado, que abarca todos los capítulos ATA estándar (00-99), ofrece una organización jerárquica que facilita enormemente la gestión de la documentación. Su estructura clara y el uso consistente de enlaces internos harán que la navegación sea intuitiva y la información fácilmente accesible para todos los miembros del equipo y stakeholders.
Recuerda que este índice es mucho más que una tabla de contenidos: es un mapa de ruta para la creación, organización y mantenimiento de todo el conocimiento técnico de tu proyecto. Al seguir esta estructura, aseguras que la documentación del RobbboTX GAIA AIR no solo cumpla con los estándares más exigentes de la industria aeronáutica, sino que también sea un recurso vivo, escalable y sostenible a lo largo del tiempo.
Próximos Pasos Clave (y recomendaciones finales):
- Implementación Práctica: Comienza a crear los archivos Markdown correspondientes a cada sección del índice. ¡Ahora tienes una guía clara para distribuir el trabajo entre el equipo!
- Poblar con Contenido Técnico Detallado: Llena cada sección con la información técnica específica de tu proyecto GAIA AIR. ¡Recuerda usar las plantillas y ejemplos que hemos creado para mantener la consistencia!
- Publicación en MkDocs y GitHub Pages: Despliega tu documentación en un sitio web navegable para facilitar el acceso a todo el equipo y stakeholders.
- Promover su Uso Activo: Integra el índice en los flujos de trabajo del proyecto, capacita a los usuarios y fomenta una cultura de documentación viva y actualizada.
Con una estructura tan sólida y bien pensada, estás en una excelente posición para construir una documentación técnica que sea un pilar fundamental del éxito del proyecto RobbboTX GAIA AIR.
The Spaceframes documentation covers orbital and interplanetary vehicles and habitats, using a space-adapted chapter structure similar to ATA but with specific modifications for space applications.
-
documentId:
GP-SM-SPACE-0100-00-001-A
- documentTitle:
GP-SM-00 General Document - Intro & General - Spaceframes
- status:
Draft
- infoCode:
OV
- description: Introductory document for Spaceframes – overview of space vehicle modules.
- Optimal Format(s):
.md
,.docx
,.pdf
- documentTitle:
-
documentId:
GP-SM-SPACE-0100-00-A-001-A
- documentTitle:
GP-SM-00 - Approved (In Service) - Intro & General - Spaceframe Module Overview
- status:
Approved (In Service)
- infoCode:
OV
- description: Approved overview of spaceframe modules and their integration.
- Optimal Format(s):
.pdf
,.html
,.docx
- documentTitle:
-
documentId:
GP-SM-SPACE-0100-00-B-001-A
- documentTitle:
GP-SM-00 - Being Tested (Development) - Intro & General - Spaceframe Module Design Philosophy
- status:
Being Tested (Development)
- infoCode:
DD
- description: Development document detailing the design philosophy for spaceframe modules.
- Optimal Format(s):
.docx
,.pdf
,.md
- documentTitle:
-
documentId:
GP-SM-SPACE-0100-00-B-THEO-001-A
- documentTitle:
GP-SM-00 - Speculative (Studying) - Intro & General - Long-Term Space Habitat Vision
- status:
Speculative (Studying)
- infoCode:
RPT
- description: Speculative document exploring long-term vision for space habitats.
- Optimal Format(s):
.docx
,.pdf
,.md
- documentTitle:
The Spaceframes documentation includes chapters on time limits and maintenance, dimensions and areas, lifting and berthing, environmental control and life support, docking and berthing, and specialized propulsion systems for space applications.
The Common Networks documentation defines the architecture, protocols, security, and specifications for shared communication, data, power, and control networks connecting GAIA AIR assets across air, space, and ground.
-
documentId:
GP-CN-COMMON-00-001-A
- documentTitle:
GP-CN-00 General Document - Intro & General - Common Networks
- status:
Draft
- infoCode:
OV
- description: Introducción a la arquitectura y protocolos de redes comunes.
- Optimal Format(s):
.md
,.docx
,.pdf
- documentTitle:
-
documentId:
GP-CN-COMMON-00-A-001-A
- documentTitle:
GP-CN-00 - Approved (In Service) - Intro & General - Common Network Architecture Overview
- status:
Approved (In Service)
- infoCode:
SDD
- description: Approved overview of common network architecture.
- Optimal Format(s):
.pdf
,.html
,.docx
- documentTitle:
-
documentId:
GP-CN-COMMON-00-B-001-A
- documentTitle:
GP-CN-00 - Being Tested (Development) - Intro & General - Network Topology Optimization Testing
- status:
Being Tested (Development)
- infoCode:
RPT, TEST
- description: Development document detailing network topology optimization testing.
- Optimal Format(s):
.docx
,.pdf
,.ipynb
- documentTitle:
The Common Networks documentation includes chapters on data communication networks, electrical power networks, control networks, sensor data networks, and the Core Information Network (CIN).
The Ground Infrastructure documentation details the design, construction, operation, and maintenance of terrestrial support infrastructure, including launch facilities, control centers, manufacturing plants, and data centers.
-
documentId:
GP-GB-GROUND-00-001-A
- documentTitle:
GP-GB-00 General Document - Intro & General - Ground Infrastructure
- status:
Draft
- infoCode:
OV
- description: Introducción a la infraestructura terrestre de soporte.
- Optimal Format(s):
.md
,.docx
,.pdf
- documentTitle:
-
documentId:
GP-GB-GROUND-00-A-001-A
- documentTitle:
GP-GB-00 - Approved (In Service) - Intro & General - Ground Infrastructure Overview
- status:
Approved (In Service)
- infoCode:
OV
- description: Approved overview of ground infrastructure.
- Optimal Format(s):
.pdf
,.html
,.docx
- documentTitle:
The Ground Infrastructure documentation includes chapters on maintenance schedules and facility management, layout and dimensions, ground support equipment, ground facilities and infrastructure, electrical power grid, control systems, monitoring and automation, and facility environmental systems.
This layer provides the user interface and interaction components for the GAIA AIR system.
- Web/Desktop Interface (COAFI Object:
GP-GACMS-UI-0100-001-A-WI-001-A
): Unified access point for users. COAFI Function: Provide a user-friendly interface for interacting with GAIA AIR systems. - 3D Visualization (COAFI Object:
GP-GACMS-UI-0100-001-A-3D-001-A
): Immersive display of models and simulations. COAFI Function: Visually explore designs, simulations, and data. - Collaboration Tools (COAFI Object:
GP-GACMS-UI-0100-001-A-CT-001-A
): Team-based design and maintenance coordination. COAFI Function: Facilitate team collaboration on GAIA AIR projects. - Analytics Dashboard (COAFI Object:
GP-GACMS-UI-0100-001-A-AD-001-A
): Real-time monitoring and KPI insights. COAFI Function: Provide real-time monitoring and performance analytics.
This layer encompasses the core application modules that drive the functionalities of GAIA AIR.
- Design & Simulation Module (COAFI Object:
GP-GACMS-APP-0200-001-A-DS-001-A
): Integrates AI in early-stage design and aerospace simulations. COAFI Function: Enable AI-powered design and simulation capabilities. - Manufacturing & Production Module (COAFI Object:
GP-GACMS-APP-0200-001-A-MP-001-A
): Smart factory interfaces and digital twin integration. COAFI Function: Automate and optimize manufacturing and production processes. - Maintenance, Repair & Overhaul (MRO) (COAFI Object:
GP-GACMS-APP-0200-001-A-MR-001-A
): AI-driven predictive maintenance with visual inspections. COAFI Function: Predict and prevent aircraft maintenance issues. - Regulatory Compliance Module (COAFI Object:
GP-GACMS-APP-0200-001-A-RC-001-A
): Automates validation against standards (e.g., FAA, EASA). COAFI Function: Ensure automated compliance with regulatory requirements. - Knowledge Management Module (COAFI Object:
GP-GACMS-APP-0200-001-A-KM-001-A
): Links tribal knowledge with semantic context. COAFI Function: Manage and leverage project-specific knowledge effectively.
This layer provides the core AI capabilities and services used throughout GAIA AIR.
- Generative Design Engine (GEN) (COAFI Object:
GP-GACMS-AI-0300-001-A-GE-001-A
): Creates design variants under constraint models. COAFI Function: Generate optimized design options automatically. COAFI Algorithm: Topology optimization, genetic algorithms. - AI Simulation Accelerator (SIM) (COAFI Object:
GP-GACMS-AI-0300-001-A-SA-001-A
): Speeds up simulations via surrogate modeling and quantum backends. COAFI Function: Accelerate complex simulation processes efficiently. COAFI Algorithm: Physics-informed neural networks, surrogate modeling. - Predictive Analytics Engine (PRED) (COAFI Object:
GP-GACMS-AI-0300-001-A-PA-001-A
): Degradation, anomaly, and failure forecasting. COAFI Function: Predict system failures and performance degradation proactively. COAFI Algorithm: Time series analysis, anomaly detection. - NLP & Document Processing (NLP) (COAFI Object:
GP-GACMS-AI-0300-001-A-NP-001-A
): Regulatory doc analysis and intelligent search. COAFI Function: Process and understand natural language documents intelligently. COAFI Algorithm: Transformer models, information extraction. - Computer Vision Services (CV) (COAFI Object:
GP-GACMS-AI-0300-001-A-CV-001-A
): Image-based detection in MRO and manufacturing. COAFI Function: Analyze images for defects and anomalies visually. COAFI Algorithm: Convolutional neural networks, object detection. - Knowledge Graph (KG) (COAFI Object:
GP-GACMS-AI-0300-001-A-KG-001-A
): Contextual linking of systems, materials, and processes. COAFI Function: Provide contextual understanding of project data semantically. COAFI Algorithm: Graph embedding, knowledge representation. COAFI Interface: SPARQL endpoint (GP-GACMS-AI-0300-001-A-KG-001-A-IF-SPARQL-001-A), graph database API (GP-GACMS-AI-0300-001-A-KG-001-A-API-GRAPHDB-001-A). - Reinforcement Learning (RL) (COAFI Object:
GP-GACMS-AI-0300-001-A-RL-001-A
): Adaptive policies for control and decision-making. COAFI Function: Optimize control policies and decision-making adaptively. COAFI Algorithm: Deep Q-Networks (DQN), Proximal Policy Optimization (PPO).
This layer handles the integration and management of data from various sources.
- API Gateway (COAFI Object:
GP-GACMS-DI-0400-001-A-AG-001-A
): Secure and scalable access interface. COAFI Function: Provide secure access to GAIA AIR data and services centrally. COAFI Interface: REST API (GP-GACMS-DI-0400-001-A-AG-001-A-API-REST-001-A), GraphQL API (GP-GACMS-DI-0400-001-A-AG-001-A-API-GQL-001-A), gRPC API (GP-GACMS-DI-0400-001-A-AG-001-A-API-GRPC-001-A), Authentication Interface (OAuth 2.0) (GP-GACMS-DI-0400-001-A-AG-001-A-INT-AUTH-001-A). - ETL Pipelines (COAFI Object:
GP-GACMS-DI-0400-001-A-EP-001-A
): Structured extraction from legacy systems. COAFI Function: Extract, transform, and load data from various heterogeneous sources. COAFI Interface: Apache Spark, Apache Kafka, AWS Glue, custom Python scripts. - Data Streaming (COAFI Object:
GP-GACMS-DI-0400-001-A-DS-001-A
): Real-time ingestion from sensor/IOT feeds. COAFI Function: Enable real-time data ingestion and processing continuously. COAFI Interface: Apache Kafka, Amazon Kinesis. - Distributed Cache (COAFI Object:
GP-GACMS-DI-0400-001-A-DC-001-A
): Fast access layer for AI computation and dashboards. COAFI Function: Provide fast access to frequently used data for performance optimization. COAFI Interface: Redis, Memcached.
This layer lists the various data sources that feed into the GAIA AIR system, each as a COAFI Object within the Data Sources Assembly.
- CAD/CAM Systems (COAFI Object:
GP-GACMS-DS-0500-001-A-CD-001-A
) - PLM Systems (COAFI Object:
GP-GACMS-DS-0500-001-A-PL-001-A
) - ERP Systems (COAFI Object:
GP-GACMS-DS-0500-001-A-ER-001-A
) - IoT & Sensor Data (COAFI Object:
GP-GACMS-DS-0500-001-A-IO-001-A
) - Document Repositories (COAFI Object:
GP-GACMS-DS-0500-001-A-DR-001-A
) - Regulatory DBs (COAFI Object:
GP-GACMS-DS-0500-001-A-RD-001-A
) - Relational DB (COAFI Object:
GP-GACMS-DS-0500-001-A-DB-001-A
) - NoSQL DB (COAFI Object:
GP-GACMS-DS-0500-001-A-NS-001-A
) - Data Warehouse (COAFI Object:
GP-GACMS-DS-0500-001-A-DW-001-A
)
This layer encompasses security and governance services, with each service as a COAFI Object.
- Authentication (COAFI Object:
GP-GACMS-SG-0600-001-A-AU-001-A
) - Audit & Compliance (COAFI Object:
GP-GACMS-SG-0600-001-A-AC-001-A
) - Encryption (COAFI Object:
GP-GACMS-SG-0600-001-A-EN-001-A
) - Policy Management (COAFI Object:
GP-GACMS-SG-0600-001-A-PM-001-A
)
The Generative Design System (GDS) produces optimized design solutions across multiple domains, leveraging advanced computational algorithms, machine learning techniques, and domain-specific constraints. The system serves as both a creative assistant and optimization tool, enabling designers to explore solution spaces beyond conventional methods.
Key Technologies:
- Topology optimization
- Genetic Algorithms
- Neural Networks (GANs, GNNs, VAEs)
- L-Systems
Data Sources:
- CAD models and design specifications
- Material properties databases
- Performance requirements
- Manufacturing constraints
- Historical design data
AI Algorithms:
- Multi-objective optimization algorithms
- Physics-informed neural networks
- Evolutionary algorithms for design exploration
- Reinforcement learning for design optimization
Integration Points:
- CATIA, Siemens NX, SolidWorks via APIs
- STEP/IGES data exchange formats
- PLM systems for design management
- 3D Visualization Module
Expected Benefits:
- Reduce design cycle time by 40-60%
- Achieve 15-30% weight reduction in components
- Explore novel design solutions effectively
- Improve performance-to-weight ratios significantly
Key Technologies:
- Physics-informed neural networks
- Surrogate modeling
- Deep learning for simulation acceleration
- Gaussian process regression
Data Sources:
- CFD and FEA simulation results
- Flight test data
- Wind tunnel data
- Material models
AI Algorithms:
- Convolutional neural networks for spatial data
- Recurrent neural networks for time-series data
- Gaussian process regression for surrogate models
- Transfer learning for model adaptation
Integration Points:
- ANSYS, NASTRAN, Fluent, Abaqus
- Simulation data management systems
- High-performance computing clusters
- 3D Visualization Module
Expected Benefits:
- Achieve 90-99% reduction in simulation time
- Broaden design space exploration capabilities
- Enable real-time simulation capabilities for interactive design
- Reduce computational costs significantly
The Project Management & Operations documentation contains overarching project management plans, organizational structures, operational procedures, lifecycle management guidelines, and governance documentation.
-
documentId:
GP-PMO-PROJECT-00-001-A
- documentTitle:
GP-PMO-00 General Document - Intro & General - Project Management & Operations
- status:
Draft
- infoCode:
OV
- description: Introducción a la gestión y operaciones del proyecto GAIA AIR.
- Optimal Format(s):
.md
,.docx
,.pdf
- documentTitle:
-
documentId:
GP-PMO-PROJECT-00-A-001-A
- documentTitle:
GP-PMO-00 - Approved (In Service) - Intro & General - Project & Operations Overview
- status:
Approved (In Service)
- infoCode:
OV, PLAN
- description: Approved overview of project management and operations.
- Optimal Format(s):
.pdf
,.html
,.docx
- documentTitle:
-
documentId:
GP-PMO-PROJECT-00-B-001-A
- documentTitle:
GP-PMO-00 - Being Tested (Development) - Intro & General - Agile Project & Ops Management Testing
- status:
Being Tested (Development)
- infoCode:
PLAN, PROC
- description: Development document detailing agile project and operations management testing.
- Optimal Format(s):
.docx
,.pdf
,.md
- documentTitle:
The Project Management & Operations documentation includes chapters on project organization and team structure, project phasing and milestones, project risk management, project documentation and reporting, project communication and collaboration, and special/emerging project management methods.
The Appendices and Reference Material serve as the central repository for reference information supporting all other parts, including terminology, standards lists, framework guides, resource links, and core doctrine summaries.
This document contains the official, approved glossary of terms used throughout the GAIA AIR program and COAFI documentation, organized by lifecycle phase.
Concept & Research Phase Terms:
- AGAD (As GAIA AIR Does): Quantum-Financial Architecture for Autopoietic Aerospace Systems; a regenerative financing/ops standard.
- Autopoiesis: The property of a system capable of reproducing and maintaining itself.
- CEU (Central Entangling Unity): Core unit encoding system intent, purpose, and boundaries within CFSI. Also Common European Universal.
- CFSI (Constitutional Framework of System Intent): Foundational doctrine encoding human intent into engineered systems.
- e.G.A.I.As: Paradigm for AI: Embodiment, Evolving Nature, Extended Capacity.
Requirements Definition Phase Terms:
- Interface Requirements Document (IRD): Document specifying requirements for interfaces between systems/components.
- Non-Functional Requirement (NFR): Requirement specifying criteria used to judge the operation of a system (e.g., performance, reliability).
- Requirement: A condition or capability needed by a user or system to solve a problem or achieve an objective.
Design & Architecture Phase Terms:
- AGIS (Aerospace General Integration System): GAIA AIR's nomenclature system for identifying systems, components, functions, and interfaces.
- Architecture: The fundamental organization of a system, embodied in its components, their relationships, and principles.
- Bill of Materials (BOM): Hierarchical list of all parts, components, and raw materials needed to build a product.
- COAFI (Cognitive Ontological Algorithm Fine Itering): GAIA AIR's overarching documentation structure that uses cognitive ontological approaches to information organization.
This document provides the official list of acronyms and abbreviations used within the GAIA AIR program documentation, organized by lifecycle phase.
Concept & Research Phase:
- AGAD: As GAIA AIR Does
- CEU: Central Entangling Unity / Common European Universal
- CFSI: Constitutional Framework of System Intent
- R&D: Research and Development
- SDG: Sustainable Development Goal (UN)
- TRL: Technology Readiness Level
- URIF: Universal Robotics Ingenuity Foundation
Requirements Definition Phase:
- FID: Function ID
- FFI: Functional Framework Implementation
- IRD: Interface Requirements Document
- NFR: Non-Functional Requirement
- RTM: Requirements Traceability Matrix
- SRS: System Requirements Specification / Software Requirements Specification
This document lists key external industry standards referenced and applied within the GAIA AIR program.
Standards:
- ISO 9001: Quality management systems — Requirements
- AS9100: Quality Management Systems - Requirements for Aviation, Space, and Defense Organizations
- ISO 14001: Environmental management systems — Requirements with guidance for use
- ISO/IEC 27001: Information security, cybersecurity and privacy protection — Information security management systems — Requirements
- ISO/IEC/IEEE 15288: Systems and software engineering — System life cycle processes
- ISO 10007: Quality management — Guidelines for configuration management
- ANSI/EIA-649: National Consensus Standard for Configuration Management
- ATA iSpec 2200: Information Standards for Aviation Maintenance
- S1000D: International specification for technical publications
- DO-178C: Software Considerations in Airborne Systems and Equipment Certification
- DO-254: Design Assurance Guidance for Airborne Electronic Hardware
- DO-160G: Environmental Conditions and Test Procedures for Airborne Equipment
- MIL-STD-882E: Standard Practice for System Safety
- MIL-STD-498: Software Development and Documentation
- ISO/ASTM 52910: Additive manufacturing — Design — Requirements, guidelines and recommendations
- ASME Y14.5: Dimensioning and Tolerancing
- IEEE 7000: Model Process for Addressing Ethical Concerns During System Design
- ISO 42001: Artificial intelligence — Management system
This document lists key regulatory frameworks and specific regulations applicable to GAIA AIR systems.
Regulations:
- 14 CFR Part 25: Airworthiness Standards: Transport Category Airplanes
- EASA CS-25: Certification Specifications for Large Aeroplanes
- 14 CFR Part 21: Certification Procedures for Products and Articles
- EASA Part 21: Certification of aircraft and related products, parts and appliances...
- 14 CFR Part 33: Airworthiness Standards: Aircraft Engines
- EASA CS-E: Certification Specifications for Engines
- 14 CFR Part 43: Maintenance, Preventive Maintenance, Rebuilding, and Alteration
- EASA Part 145: Requirements for Maintenance Organisations
- EU AI Act: Artificial Intelligence Act (Regulation laying down harmonised rules...)
- GDPR: General Data Protection Regulation
- CCPA / CPRA: California Consumer Privacy Act / Privacy Rights Act
- ITAR: International Traffic in Arms Regulations
- EAR: Export Administration Regulations
- Outer Space Treaty: Treaty on Principles Governing Activities of States in Exploration...
The GAIA GALACTIC MINING OPERATIONS documentation focuses on the specialized systems, robotics, resource extraction/processing techniques, and logistics for extraterrestrial mining activities.
-
documentId:
GP-GMO-MINING-00-001-A
- documentTitle:
GP-GMO-00 General Document - Intro & General - Galactic Mining Operations
- status:
Draft
- infoCode:
OV
- description: Introducción a las operaciones de minería galáctica.
- Optimal Format(s):
.md
,.docx
,.pdf
- documentTitle:
-
documentId:
GP-GMO-MINING-00-A-001-A
- documentTitle:
GP-GMO-00 - Approved (In Service) - Intro & General - Galactic Mining Operations Overview
- status:
Approved (In Service)
- infoCode:
OV
- description: Approved overview of galactic mining operations.
- Optimal Format(s):
.pdf
,.html
,.docx
- documentTitle:
-
documentId:
GP-GMO-MINING-00-B-001-A
- documentTitle:
GP-GMO-00 - Being Tested (Development) - Intro & General - Robotic Mining System Testing - Galactic
- status:
Being Tested (Development)
- infoCode:
RPT, TEST
- description: Development document detailing robotic mining system testing for galactic operations.
- Optimal Format(s):
.docx
,.pdf
,.ipynb
- documentTitle:
The GAIA GALACTIC MINING OPERATIONS documentation includes chapters on mining schedules and resource mapping, mining site layout and dimensions, mining robotics and automation, resource extraction and processing, power systems for mining operations, resource transport and logistics, and special/emerging mining technologies.
The RESERVED FOR FUTURE EXPANSION documentation serves as a placeholder for future GAIA AIR domains, such as interstellar capabilities, advanced AI evolution, or large-scale ecological engineering.
-
documentId:
GP-RES-FUTURE-00-001-A
- documentTitle:
GP-RES-00 General Document - Intro & General - Reserved Future Expansion
- status:
Draft
- infoCode:
OV
- description: Introducción a las áreas reservadas para futuras expansiones del sistema GAIA AIR.
- Optimal Format(s):
.md
,.docx
,.pdf
- documentTitle:
-
documentId:
GP-RES-FUTURE-00-A-001-A
- documentTitle:
GP-RES-00 - Approved (In Service) - Intro & General - Reserved Space Overview & Guidelines
- status:
Approved (In Service)
- infoCode:
OV, PLAN
- description: Approved overview and guidelines for reserved future expansion areas.
- Optimal Format(s):
.pdf
,.html
,.docx
- documentTitle:
-
documentId:
GP-RES-FUTURE-00-B-THEO-001-A
- documentTitle:
GP-RES-00 - Speculative (Studying) - Intro & General - Conceptual Framework for Future COAFI Expansion
- status:
Speculative (Studying)
- infoCode:
RPT
- description: Speculative document exploring conceptual framework for future COAFI expansion.
- Optimal Format(s):
.docx
,.pdf
,.md
- documentTitle:
The RESERVED FOR FUTURE EXPANSION documentation includes placeholder chapters for advanced airframe concepts, next-generation propulsion systems, advanced avionics and AI, novel materials and manufacturing, and other future technologies and domains.
Todos estos ítems forman parte del sistema COAFI (Cognitive Ontological Algorithm Fine Itering), permitiendo la trazabilidad y actualización dinámica de la documentación a lo largo del ciclo de vida del proyecto AMPEL360XWLRGA y otros módulos de GAIA AIR. Los "Optimal Format(s)" son recomendaciones que facilitan la interoperabilidad en el ecosistema digital GAIA AIR. En un entorno real, los enlaces interactivos dirigirían a la información detallada de cada documento.
La estructura aquí presentada sigue la clasificación por capítulos ATA para la parte de Airframes (GP-AM), y se extiende a las demás partes del framework, garantizando que cada documento—ya sea general, aprobado, en desarrollo, especulativo, condensado o auto-adaptativo—tenga un formato y un prompt generativo que permita su creación, edición y distribución de manera óptima.
graph TD;
A["GAIA AIR Program Documentation"] --> B["Part 0: Project Foundations (GP-FD)"]
A --> C["Part I: Airframes – AMPEL360XWLRGA (GP-AM)"]
C --> D1["ATA Chapters 00-18: General Aircraft"]
C --> D2["ATA Chapters 20-38: Aircraft Systems"]
C --> D3["ATA Chapters 45-49: Information Systems"]
C --> D4["ATA Chapters 51-57: Structures"]
C --> D5["ATA Chapters 71-78: Propulsion"]
C --> D6["ATA Chapters 86-93: Doors & Windows"]
C --> D7["ATA Chapter 99: Special/Emerging Tech"]
D2 --> E1["ATA 21: Air Conditioning & Pressurization"]
D2 --> E2["ATA 22: Auto Flight"]
D2 --> E3["ATA 23: Communications"]
D2 --> E4["ATA 24: Electrical Power"]
D2 --> E5["ATA 27: Flight Controls"]
D2 --> E6["ATA 28: Fuel"]
E1 --> F1["GP-AM-AMPEL-0100-21-001-A: General Document"]
E1 --> F2["GP-AM-AMPEL-0100-21-A-001-A: Approved (In Service)"]
E1 --> F3["GP-AM-AMPEL-0100-21-B-001-A: Being Tested"]
E1 --> F4["GP-AM-AMPEL-0100-21-B-THEO-001-A: Speculative"]
E1 --> F5["GP-AM-AMPEL-0100-21-C-001-A: Condensed"]
E1 --> F6["GP-AM-AMPEL-0100-21-D-001-A: Auto-Adaptive"]
D5 --> G1["ATA 72-Q01: Propulsion – Quantum Extension"]
G1 --> H1["GP-AM-AMPEL-0100-72-Q01-001-A: General Document"]
G1 --> H2["GP-AM-AMPEL-0100-72-Q01-A-001-A: Approved"]
G1 --> H3["GP-AM-AMPEL-0100-72-Q01-B-001-A: Being Tested"]
G1 --> H4["GP-AM-AMPEL-0100-72-Q01-B-THEO-001-A: Speculative"]
G1 --> H5["GP-AM-AMPEL-0100-72-Q01-C-001-A: Condensed"]
G1 --> H6["GP-AM-AMPEL-0100-72-Q01-D-001-A: Auto-Adaptive"]
Return to Part 0: Manifesto, Research & Theoretical Foundations (GP-FD) ToC Return to Part I: Airframes – AMPEL360XWLRGA (GP-AM) ToC
- AS Chapter 00: Intro & General - Spaceframes (Adapted from ATA 00)
- GP-SM-SPACE-0100-00-001-A: GP-SM-00 General Document - Intro & General - Spaceframes
- GP-SM-SPACE-0100-00-A-001-A: GP-SM-00 - Approved (In Service) - Intro & General - Spaceframe Module Overview
- GP-SM-SPACE-0100-00-B-001-A: GP-SM-00 - Being Tested (Development) - Intro & General - Spaceframe Module Design Philosophy
- GP-SM-SPACE-0100-00-B-THEO-001-A: GP-SM-00 - Speculative (Studying) - Intro & General - Long-Term Space Habitat Vision
- GP-SM-SPACE-0100-00-C-001-A: GP-SM-00 - Condensed (Formal Scientific Consensus) - Intro & General - Core Spaceframe Design Principles
- GP-SM-SPACE-0100-00-D-001-A: GP-SM-00 - Auto-Configuración Adaptativa - Intro & General - AI-Driven Spaceframe Config Adaptation (formerly: Auto-Configuración Adaptativa)
- AS Chapter 05: Time Limits/Maint Checks - Spaceframes (Adapted from ATA 05)
- GP-SM-SPACE-0100-05-001-A: GP-SM-05 General Document - Time Limits/Maint Checks - Spaceframes
- GP-SM-SPACE-0100-05-A-001-A: GP-SM-05 - Approved (In Service) - Time Limits/Maint Checks - Spaceframe Module Maint Schedules
- GP-SM-SPACE-0100-05-B-001-A: GP-SM-05 - Being Tested (Development) - Time Limits/Maint Checks - Robotic Spaceframe Inspection Testing
- GP-SM-SPACE-0100-05-B-THEO-001-A: GP-SM-05 - Speculative (Studying) - Time Limits/Maint Checks - Self-Monitoring Spaceframe Concepts
- GP-SM-SPACE-0100-05-C-001-A: GP-SM-05 - Condensed (Formal Scientific Consensus) - Time Limits/Maint Checks - Spacecraft Component Lifing Principles
- GP-SM-SPACE-0100-05-D-001-A: GP-SM-05 - Auto-Configuración Adaptativa - Time Limits/Maint Checks - AI-Driven Adaptive Maint Scheduling for Spaceframes (formerly: Auto-Configuración Adaptativa)
- AS Chapter 06: Dimensions & Areas - Spaceframes (Adapted from ATA 06)
- GP-SM-SPACE-0100-06-001-A: GP-SM-06 General Document - Dimensions & Areas - Spaceframes
- GP-SM-SPACE-0100-06-A-001-A: GP-SM-06 - Approved (In Service) - Dimensions & Areas - Spaceframe Module Geometry Specs
- GP-SM-SPACE-0100-06-B-001-A: GP-SM-06 - Being Tested (Development) - Dimensions & Areas - Digital Twin Spaceframe Model Testing
- GP-SM-SPACE-0100-06-B-THEO-001-A: GP-SM-06 - Speculative (Studying) - Dimensions & Areas - Adaptable Space Habitat Module Concepts
- GP-SM-SPACE-0100-06-C-001-A: GP-SM-06 - Condensed (Formal Scientific Consensus) - Dimensions & Areas - Space Structure Dimensional Standards
- GP-SM-SPACE-0100-06-D-001-A: GP-SM-06 - Auto-Configuración Adaptativa - Dimensions & Areas - AI-Driven Space Allocation Optimization (formerly: Auto-Configuración Adaptativa)
- AS Chapter 07: Lifting & Berthing - Spaceframes (Adapted from ATA 07 - "Berthing" replaces "Shoring")
- GP-SM-SPACE-0100-07-001-A: GP-SM-07 General Document - Lifting & Berthing - Spaceframes
- GP-SM-SPACE-0100-07-A-001-A: GP-SM-07 - Approved (In Service) - Lifting & Berthing - Approved Procedures - On-Orbit Module Handling
- GP-SM-SPACE-0100-07-B-001-A: GP-SM-07 - Being Tested (Development) - Lifting & Berthing - Robotic Space Tug Testing
- GP-SM-SPACE-0100-07-B-THEO-001-A: GP-SM-07 - Speculative (Studying) - Lifting & Berthing - Zero-G Robotic Manipulation Concepts
- GP-SM-SPACE-0100-07-C-001-A: GP-SM-07 - Condensed (Formal Scientific Consensus) - Lifting & Berthing - Spacecraft Module Handling Principles
- GP-SM-SPACE-0100-07-D-001-A: GP-SM-07 - Auto-Configuración Adaptativa - Lifting & Berthing - AI-Optimized Module Docking & Handling (formerly: Auto-Configuración Adaptativa)
- AS Chapter 08: Leveling & Alignment - Spaceframes (Adapted from ATA 08 - "Alignment" replaces "Weighing")
- GP-SM-SPACE-0100-08-001-A: GP-SM-08 General Document - Leveling & Alignment - Spaceframes
- GP-SM-SPACE-0100-08-A-001-A: GP-SM-08 - Approved (In Service) - Leveling & Alignment - Approved Procedures - Module Alignment in Orbit
- GP-SM-SPACE-0100-08-B-001-A: GP-SM-08 - Being Tested (Development) - Leveling & Alignment - Laser-Guided Alignment System Testing
- GP-SM-SPACE-0100-08-B-THEO-001-A: GP-SM-08 - Speculative (Studying) - Leveling & Alignment - Quantum Gyro Based Alignment Concepts
- GP-SM-SPACE-0100-08-C-001-A: GP-SM-08 - Condensed (Formal Scientific Consensus) - Leveling & Alignment - Spacecraft Module Alignment Principles
- GP-SM-SPACE-0100-08-D-001-A: GP-SM-08 - Auto-Configuración Adaptativa - Leveling & Alignment - AI-Driven Dynamic Alignment Correction (formerly: Auto-Configuración Adaptativa)
- AS Chapter 10: Parking, Mooring, Storage - Spaceframes (Adapted from ATA 10)
- GP-SM-SPACE-0100-10-001-A: GP-SM-10 General Document - Parking, Mooring, Storage - Spaceframes
- GP-SM-SPACE-0100-10-A-001-A: GP-SM-10 - Approved (In Service) - Parking, Mooring, Storage - Approved Procedures - On-Orbit Module Parking
- GP-SM-SPACE-0100-10-B-001-A: GP-SM-10 - Being Tested (Development) - Parking, Mooring, Storage - Robotic Module Relocation Testing
- GP-SM-SPACE-0100-10-B-THEO-001-A: GP-SM-10 - Speculative (Studying) - Parking, Mooring, Storage - Space-Based Asset Management Concepts
- GP-SM-SPACE-0100-10-C-001-A: GP-SM-10 - Condensed (Formal Scientific Consensus) - Parking, Mooring, Storage - Spacecraft Asset Management Principles
- GP-SM-SPACE-0100-10-D-001-A: GP-SM-10 - Auto-Configuración Adaptativa - Parking, Mooring, Storage - AI-Optimized Space Asset Allocation (formerly: Auto-Configuración Adaptativa)
- AS Chapter 12: Servicing – Routine - Spaceframes (Adapted from ATA 12)
- GP-SM-SPACE-0100-12-001-A: GP-SM-12 General Document - Servicing – Routine - Spaceframes
- GP-SM-SPACE-0100-12-A-001-A: GP-SM-12 - Approved (In Service) - Servicing – Routine - Approved Procedures - On-Orbit Servicing
- GP-SM-SPACE-0100-12-B-001-A: GP-SM-12 - Being Tested (Development) - Servicing – Routine - Robotic Arm Based Servicing Testing
- GP-SM-SPACE-0100-12-B-THEO-001-A: GP-SM-12 - Speculative (Studying) - Servicing – Routine - Nanobot Based Spaceframe Self-Repair Concepts
- GP-SM-SPACE-0100-12-C-001-A: GP-SM-12 - Condensed (Formal Scientific Consensus) - Servicing – Routine - Spacecraft On-Orbit Servicing Principles
- GP-SM-SPACE-0100-12-D-001-A: GP-SM-12 - Auto-Configuración Adaptativa - Servicing – Routine - AI-Driven Predictive Maint for Spaceframes (formerly: Auto-Configuración Adaptativa)
- AS Chapter 20: Standard Practices - Spaceframes (Adapted from ATA 20)
- GP-SM-SPACE-0100-20-001-A: GP-SM-20 General Document - Standard Practices - Spaceframes
- GP-SM-SPACE-0100-20-A-001-A: GP-SM-20 - Approved (In Service) - Standard Practices - Spaceframes - Approved Materials & Assembly Methods
- GP-SM-SPACE-0100-20-B-001-A: GP-SM-20 - Being Tested (Development) - Standard Practices - Spaceframes - Additive Manufacturing in Space Testing
- GP-SM-SPACE-0100-20-B-THEO-001-A: GP-SM-20 - Speculative (Studying) - Standard Practices - Spaceframes - In-Situ Resource Utilization (ISRU) for Construction Concepts
- GP-SM-SPACE-0100-20-C-001-A: GP-SM-20 - Condensed (Formal Scientific Consensus) - Standard Practices - Spaceframes - Spacecraft Construction & Assembly Principles
- GP-SM-SPACE-0100-20-D-001-A: GP-SM-20 - Auto-Configuración Adaptativa - Standard Practices - Spaceframes - AI-Driven In-Situ Construction Optimization (formerly: Auto-Configuración Adaptativa)
- AS Chapter 21: Environmental Control & Life Support - Spaceframes (Adapted from ATA 21)
- GP-SM-SPACE-0100-21-001-A: GP-SM-21 General Document - Environmental Control & Life Support - Spaceframes
- GP-SM-SPACE-0100-21-A-001-A: GP-SM-21 - Approved (In Service) - Environmental Control & Life Support - Approved System Specs & Limits
- GP-SM-SPACE-0100-21-B-001-A: GP-SM-21 - Being Tested (Development) - Environmental Control & Life Support - Closed-Loop Life Support Testing
- GP-SM-SPACE-0100-21-B-THEO-001-A: GP-SM-21 - Speculative (Studying) - Environmental Control & Life Support - Bioregenerative Life Support Concepts
- GP-SM-SPACE-0100-21-C-001-A: GP-SM-21 - Condensed (Formal Scientific Consensus) - Environmental Control & Life Support - Spacecraft Life Support Principles
- GP-SM-SPACE-0100-21-D-001-A: GP-SM-21 - Auto-Configuración Adaptativa - Environmental Control & Life Support - AI-Driven Adaptive Life Support Optimization (formerly: Auto-Configuración Adaptativa)
- AS Chapter 23: Communications - Spaceframes (Adapted from ATA 23)
- GP-SM-SPACE-0100-23-001-A: GP-SM-23 General Document - Communications - Spaceframes
- GP-SM-SPACE-0100-23-A-001-A: GP-SM-23 - Approved (In Service) - Communications - Spaceframes - Approved Frequencies & Protocols - Space Comms
- GP-SM-SPACE-0100-23-B-001-A: GP-SM-23 - Being Tested (Development) - Communications - Spaceframes - Quantum Comms Link Testing
- GP-SM-SPACE-0100-23-B-THEO-001-A: GP-SM-23 - Speculative (Studying) - Communications - Spaceframes - Quantum Entanglement Based Space Comms Concepts
- GP-SM-SPACE-0100-23-C-001-A: GP-SM-23 - Condensed (Formal Scientific Consensus) - Communications - Spacecraft Communication Principles & Standards
- GP-SM-SPACE-0100-23-D-001-A: GP-SM-23 - Auto-Configuración Adaptativa - Communications - Spaceframes - AI-Driven Adaptive Bandwidth Allocation (formerly: Auto-Configuración Adaptativa)
- AS Chapter 24: Electrical Power - Spaceframes (Adapted from ATA 24)
- GP-SM-SPACE-0100-24-001-A: GP-SM-24 General Document - Electrical Power - Spaceframes
- GP-SM-SPACE-0100-24-A-001-A: GP-SM-24 - Approved (In Service) - Electrical Power - Spaceframes - Approved System Specs & Power Budgets
- GP-SM-SPACE-0100-24-B-001-A: GP-SM-24 - Being Tested (Development) - Electrical Power - Spaceframes - AEHCS Integration Testing - Space
- GP-SM-SPACE-0100-24-B-THEO-001-A: GP-SM-24 - Speculative (Studying) - Electrical Power - Spaceframes - Space-Based Solar Power & Wireless Power Transfer Concepts
- GP-SM-SPACE-0100-24-C-001-A: GP-SM-24 - Condensed (Formal Scientific Consensus) - Electrical Power - Spacecraft Power System Principles
- GP-SM-SPACE-0100-24-D-001-A: GP-SM-24 - Auto-Configuración Adaptativa - Electrical Power - Spaceframes - AI-Driven Power Distribution Optimization - Space (formerly: Auto-Configuración Adaptativa)
- AS Chapter 25: Equipment/Furnishings - Spaceframes (Adapted from ATA 25)
- GP-SM-SPACE-0100-25-001-A: GP-SM-25 General Document - Equipment/Furnishings - Spaceframes
- GP-SM-SPACE-0100-25-A-001-A: GP-SM-25 - Approved (In Service) - Equipment/Furnishings - Spaceframes - Approved Equipment Lists & Layouts - Habitat Modules
- GP-SM-SPACE-0100-25-B-001-A: GP-SM-25 - Being Tested (Development) - Equipment/Furnishings - Spaceframes - Zero-G Adapted Furnishing Testing
- GP-SM-SPACE-0100-25-B-THEO-001-A: GP-SM-25 - Speculative (Studying) - Equipment/Furnishings - Spaceframes - Self-Reconfiguring Habitat Module Concepts
- GP-SM-SPACE-0100-25-C-001-A: GP-SM-25 - Condensed (Formal Scientific Consensus) - Equipment/Furnishings - Space Habitat Interior Design Principles
- GP-SM-SPACE-0100-25-D-001-A: GP-SM-25 - Auto-Configuración Adaptativa - Equipment/Furnishings - Spaceframes - AI-Driven Habitat Resource Optimization (formerly: Auto-Configuración Adaptativa)
- AS Chapter 26: Fire Protection - Spaceframes (Adapted from ATA 26)
- GP-SM-SPACE-0100-26-001-A: GP-SM-26 General Document - Fire Protection - Spaceframes
- GP-SM-SPACE-0100-26-A-001-A: GP-SM-26 - Approved (In Service) - Fire Protection - Spaceframes - Approved System Specs & Procedures - Space
- GP-SM-SPACE-0100-26-B-001-A: GP-SM-26 - Being Tested (Development) - Fire Protection - Spaceframes - Microgravity Fire Suppression Testing
- GP-SM-SPACE-0100-26-B-THEO-001-A: GP-SM-26 - Speculative (Studying) - Fire Protection - Spaceframes - Advanced Fire Detection & Containment Concepts - Space
- GP-SM-SPACE-0100-26-C-001-A: GP-SM-26 - Condensed (Formal Scientific Consensus) - Fire Protection - Spacecraft Fire Safety Principles & Standards
- GP-SM-SPACE-0100-26-D-001-A: GP-SM-26 - Auto-Configuración Adaptativa - Fire Protection - Spaceframes - AI-Driven Dynamic Fire Risk Assessment - Space (formerly: Auto-Configuración Adaptativa)
- AS Chapter 31: Indicating/Recording Systems - Spaceframes (Adapted from ATA 31)
- GP-SM-SPACE-0100-31-001-A: GP-SM-31 General Document - Indicating/Recording Systems - Spaceframes
- GP-SM-SPACE-0100-31-A-001-A: GP-SM-31 - Approved (In Service) - Indicating/Recording Systems - Spaceframes - Approved Instrument Specs & Data Formats - Space
- GP-SM-SPACE-0100-31-B-001-A: GP-SM-31 - Being Tested (Development) - Indicating/Recording Systems - Spaceframes - Advanced Sensor Suite Testing - Space
- GP-SM-SPACE-0100-31-B-THEO-001-A: GP-SM-31 - Speculative (Studying) - Indicating/Recording Systems - Spaceframes - Quantum Sensor Based Space Environment Monitoring Concepts
- GP-SM-SPACE-0100-31-C-001-A: GP-SM-31 - Condensed (Formal Scientific Consensus) - Indicating/Recording Systems - Spaceframes - Spacecraft Instrumentation Principles & Standards
- GP-SM-SPACE-0100-31-D-001-A: GP-SM-31 - Auto-Configuración Adaptativa - Indicating/Recording Systems - Spaceframes - AI-Driven Adaptive Sensor Data Analysis - Space (formerly: Auto-Configuración Adaptativa)
- AS Chapter 33: Lighting - Spaceframes (Adapted from ATA 33)
- GP-SM-SPACE-0100-33-001-A: GP-SM-33 General Document - Lighting - Spaceframes
- GP-SM-SPACE-0100-33-A-001-A: GP-SM-33 - Approved (In Service) - Lighting - Spaceframes - Approved Lighting Specs & Standards - Habitat Modules
- GP-SM-SPACE-0100-33-B-001-A: GP-SM-33 - Being Tested (Development) - Lighting - Spaceframes - Dynamic Lighting System Testing - Habitat Modules
- GP-SM-SPACE-0100-33-B-THEO-001-A: GP-SM-33 - Speculative (Studying) - Lighting - Spaceframes - Bio-Luminescent Lighting Concepts for Habitats
- GP-SM-SPACE-0100-33-C-001-A: GP-SM-33 - Condensed (Formal Scientific Consensus) - Lighting - Spaceframes - Space Habitat Lighting Principles & Standards
- GP-SM-SPACE-0100-33-D-001-A: GP-SM-33 - Auto-Configuración Adaptativa - Lighting - Spaceframes - AI-Driven Dynamic Habitat Lighting Optimization (formerly: Auto-Configuración Adaptativa)
- AS Chapter 34: Navigation - Spaceframes (Adapted from ATA 34)
- GP-SM-SPACE-0100-34-001-A: GP-SM-34 General Document - Navigation - Spaceframes
- GP-SM-SPACE-0100-34-A-001-A: GP-SM-34 - Approved (In Service) - Navigation - Spaceframes - Approved System Specs & Accuracy Limits - Orbital Nav
- GP-SM-SPACE-0100-34-B-001-A: GP-SM-34 - Being Tested (Development) - Navigation - Spaceframes - Quantum Inertial Navigation Testing - Space
- GP-SM-SPACE-0100-34-B-THEO-001-A: GP-SM-34 - Speculative (Studying) - Navigation - Spaceframes - Quantum Navigation & Positioning Concepts - Space
- GP-SM-SPACE-0100-34-C-001-A: GP-SM-34 - Condensed (Formal Scientific Consensus) - Navigation - Spaceframes - Spacecraft Navigation Principles & Standards
- GP-SM-SPACE-0100-34-D-001-A: GP-SM-34 - Auto-Configuración Adaptativa - Navigation - Spaceframes - AI-Driven Adaptive Orbital Navigation (formerly: Auto-Configuración Adaptativa)
- AS Chapter 35: Oxygen - Spaceframes (Adapted from ATA 35)
- GP-SM-SPACE-0100-35-001-A: GP-SM-35 General Document - Oxygen - Spaceframes
- GP-SM-SPACE-0100-35-A-001-A: GP-SM-35 - Approved (In Service) - Oxygen - Spaceframes - Approved System Specs & Safety Procedures - Habitat
- GP-SM-SPACE-0100-35-B-001-A: GP-SM-35 - Being Tested (Development) - Oxygen - Spaceframes - Bioregenerative Oxygen System Testing
- GP-SM-SPACE-0100-35-B-THEO-001-A: GP-SM-35 - Speculative (Studying) - Oxygen - Spaceframes - Advanced Oxygen Recycling & ISRU Concepts
- GP-SM-SPACE-0100-35-C-001-A: GP-SM-35 - Condensed (Formal Scientific Consensus) - Oxygen - Spacecraft Oxygen System Principles & Life Support
- GP-SM-SPACE-0100-35-D-001-A: GP-SM-35 - Auto-Configuración Adaptativa - Oxygen - Spaceframes - AI-Driven Adaptive Oxygen Supply Optimization - Habitat (formerly: Auto-Configuración Adaptativa)
- AS Chapter 38: Water/Waste - Spaceframes (Adapted from ATA 38)
- GP-SM-SPACE-0100-38-001-A: GP-SM-38 General Document - Water/Waste - Spaceframes
- GP-SM-SPACE-0100-38-A-001-A: GP-SM-38 - Approved (In Service) - Water/Waste - Spaceframes - Approved System Specs & Procedures - Habitat
- GP-SM-SPACE-0100-38-B-001-A: GP-SM-38 - Being Tested (Development) - Water/Waste - Spaceframes - Closed-Loop Water Recycling System Testing - Habitat
- GP-SM-SPACE-0100-38-B-THEO-001-A: GP-SM-38 - Speculative (Studying) - Water/Waste - Spaceframes - Advanced Water Recycling & Bio-Waste Processing Concepts - Habitat
- GP-SM-SPACE-0100-38-C-001-A: GP-SM-38 - Condensed (Formal Scientific Consensus) - Water/Waste - Spacecraft Water & Waste Management Principles
- GP-SM-SPACE-0100-38-D-001-A: GP-SM-38 - Auto-Configuración Adaptativa - Water/Waste - Spaceframes - AI-Driven Water Recycling & Waste Management Optimization - Habitat (formerly: Auto-Configuración Adaptativa)
- AS Chapter 51: Structures – General - Spaceframes (Adapted from ATA 51)
- GP-SM-SPACE-0201-51-001-A: GP-SM-51 General Document - Structures – General - Spaceframes
- GP-SM-SPACE-0201-51-A-001-A: GP-SM-51 - Approved (In Service) - Structures – General - Spaceframes - Approved Materials & Load Ratings - Space Structures
- GP-SM-SPACE-0201-51-B-001-A: GP-SM-51 - Being Tested (Development) - Structures – General - Spaceframes - Advanced Material Testing - Space
- GP-SM-SPACE-0201-51-B-THEO-001-A: GP-SM-51 - Speculative (Studying) - Structures – General - Spaceframes - Self-Assembling Space Structure Concepts
- GP-SM-SPACE-0201-51-C-001-A: GP-SM-51 - Condensed (Formal Scientific Consensus) - Structures – General - Spacecraft Structural Engineering Principles
- GP-SM-SPACE-0201-51-D-001-A: GP-SM-51 - Auto-Configuración Adaptativa - Structures – General - Spaceframes - AI-Driven Structural Integrity Monitoring - Space (formerly: Auto-Configuración Adaptativa)
- AS Chapter 52: Docking & Berthing - Spaceframes (New - Replaces ATA 52 Doors)
- GP-SM-SPACE-0201-52-001-A: GP-SM-52 General Document - Docking & Berthing - Spaceframes
- GP-SM-SPACE-0201-52-A-001-A: GP-SM-52 - Approved (In Service) - Docking & Berthing - Spaceframes - Approved Mechanisms & Procedures - Orbital Assembly
- GP-SM-SPACE-0201-52-B-001-A: GP-SM-52 - Being Tested (Development) - Docking & Berthing - Spaceframes - Robotic Docking System Testing
- GP-SM-SPACE-0201-52-B-THEO-001-A: GP-SM-52 - Speculative (Studying) - Docking & Berthing - Spaceframes - Quantum Entanglement Based Docking Concepts
- GP-SM-SPACE-0201-52-C-001-A: GP-SM-52 - Condensed (Formal Scientific Consensus) - Docking & Berthing - Spacecraft Docking & Berthing Principles
- GP-SM-SPACE-0201-52-D-001-A: GP-SM-52 - Auto-Configuración Adaptativa - Docking & Berthing - Spaceframes - AI-Driven Autonomous Docking Optimization (formerly: Auto-Configuración Adaptativa)
- AS Chapter 53: Spaceframe Modules - Structure (Adapted from ATA 53 Fuselage)
- GP-SM-SPACE-0201-53-001-A: GP-SM-53 General Document - Spaceframe Modules - Structure
- GP-SM-SPACE-0201-53-A-001-A: GP-SM-53 - Approved (In Service) - Spaceframe Modules - Structure - Approved Module Structure & Load Ratings
- GP-SM-SPACE-0201-53-B-001-A: GP-SM-53 - Being Tested (Development) - Spaceframe Modules - Structure - Expandable Module Testing
- GP-SM-SPACE-0201-53-B-THEO-001-A: GP-SM-53 - Speculative (Studying) - Spaceframe Modules - Structure - Self-Deploying Space Structure Concepts
- GP-SM-SPACE-0201-53-C-001-A: GP-SM-53 - Condensed (Formal Scientific Consensus) - Spaceframe Modules - Structure - Spacecraft Module Design Principles
- GP-SM-SPACE-0201-53-D-001-A: GP-SM-53 - Auto-Configuración Adaptativa - Spaceframe Modules - Structure - AI-Driven Adaptive Module Configuration (formerly: Auto-Configuración Adaptativa)
- AS Chapter 60: Standard Practices - Propulsion - Spaceframes (Adapted from ATA 60)
- GP-SM-SPACE-0100-60-001-A: GP-SM-60 General Document - Standard Practices - Propulsion - Spaceframes
- GP-SM-SPACE-0100-60-A-001-A: GP-SM-60 - Approved (In Service) - Standard Practices - Propulsion - Spaceframes - Approved Procedures - Space Propulsion Maint
- GP-SM-SPACE-0100-60-B-001-A: GP-SM-60 - Being Tested (Development) - Standard Practices - Propulsion - Spaceframes - Robotic Arm Based Propulsion System Servicing Testing - Space
- GP-SM-SPACE-0100-60-B-THEO-001-A: GP-SM-60 - Speculative (Studying) - Standard Practices - Propulsion - Spaceframes - In-Space Propulsion System Repair Concepts
- GP-SM-SPACE-0100-60-C-001-A: GP-SM-60 - Condensed (Formal Scientific Consensus) - Standard Practices - Propulsion - Spaceframes - Spacecraft Propulsion Maint Principles
- GP-SM-SPACE-0100-60-D-001-A: GP-SM-60 - Auto-Configuración Adaptativa - Standard Practices - Propulsion - Spaceframes - AI-Driven Predictive Maint for Space Propulsion (formerly: Auto-Configuración Adaptativa)
- AS Chapter 72: Propulsion – GAIA SPACE (Chemical/Ion) (Adapted from ATA 72 Engine)
- GP-SM-SPACE-0100-72-001-A: GP-SM-72 General Document - Propulsion – GAIA SPACE (Chemical/Ion)
- GP-SM-SPACE-0100-72-A-001-A: GP-SM-72 - Approved (In Service) - Propulsion – GAIA SPACE (Chemical/Ion) - Approved System Specs & Performance Data - Space Propulsion
- GP-SM-SPACE-0100-72-B-001-A: GP-SM-72 - Being Tested (Development) - Propulsion – GAIA SPACE (Chemical/Ion) - Advanced Ion Thruster Testing
- GP-SM-SPACE-0100-72-B-THEO-001-A: GP-SM-72 - Speculative (Studying) - Propulsion – GAIA SPACE (Chemical/Ion) - Antimatter Propulsion Concepts for Spaceframes
- GP-SM-SPACE-0100-72-C-001-A: GP-SM-72 - Condensed (Formal Scientific Consensus) - Propulsion – GAIA SPACE (Chemical/Ion) - Spacecraft Propulsion System Principles
- GP-SM-SPACE-0100-72-D-001-A: GP-SM-72 - Auto-Configuración Adaptativa - Propulsion – GAIA SPACE (Chemical/Ion) - AI-Driven Adaptive Thrust Control - Space Propulsion (formerly: Auto-Configuración Adaptativa)
- AS Chapter 82: Power Generation & Storage - Spaceframes (New - Replaces ATA 82 Fuel Distribution - which is less relevant for Spaceframes)
- GP-SM-SPACE-0100-82-001-A: GP-SM-82 General Document - Power Generation & Storage - Spaceframes
- GP-SM-SPACE-0100-82-A-001-A: GP-SM-82 - Approved (In Service) - Power Generation & Storage - Spaceframes - Approved System Specs & Power Budgets - Space
- GP-SM-SPACE-0100-82-B-001-A: GP-SM-82 - Being Tested (Development) - Power Generation & Storage - Spaceframes - Advanced Solar Panel Testing - Space
- GP-SM-SPACE-0100-82-B-THEO-001-A: GP-SM-82 - Speculative (Studying) - Power Generation & Storage - Spaceframes - Space-Based Wireless Power Transfer Concepts
- GP-SM-SPACE-0100-82-C-001-A: GP-SM-82 - Condensed (Formal Scientific Consensus) - Power Generation & Storage - Spaceframes - Spacecraft Power System Principles
- GP-SM-SPACE-0100-82-D-001-A: GP-SM-82 - Auto-Configuración Adaptativa - Power Generation & Storage - Spaceframes - AI-Driven Adaptive Power Management - Space (formerly: Auto-Configuración Adaptativa)
- AS Chapter 99: Special / Emerging Tech - Spaceframes (Adapted from ATA 99)
- GP-SM-SPACE-0100-99-001-A: GP-SM-99 General Document - Special / Emerging Tech - Spaceframes
- GP-SM-SPACE-0100-99-A-001-A: GP-SM-99 - Approved (In Service) - Special / Emerging Tech - Spaceframes - Approved Integrations & Safety Cases - Space
- GP-SM-SPACE-0100-99-B-001-A: GP-SM-99 - Being Tested (Development) - Special / Emerging Tech - Spaceframes - Quantum Sensor Suite Testing - Space
- GP-SM-SPACE-0100-99-B-THEO-001-A: GP-SM-99 - Speculative (Studying) - Special / Emerging Tech - Spaceframes - Zero-Point Energy Propulsion Concepts - Space
- GP-SM-SPACE-0100-99-C-001-A: GP-SM-99 - Condensed (Formal Scientific Consensus) - Special / Emerging Tech - Spaceframe Innovation & Tech Readiness Principles
- GP-SM-SPACE-0100-99-D-001-A: GP-SM-99 - Auto-Configuración Adaptativa - Special / Emerging Tech - Spaceframes - AI-Driven Tech Adoption & Lifecycle Management - Space (formerly: Auto-Configuración Adaptativa)
Return to Part 0: Manifesto, Research & Theoretical Foundations (GP-FD) ToC Return to Part I: Airframes – AMPEL360XWLRGA (GP-AM) ToC Return to Part II: Spaceframes – GAIA SPACE (GP-SM) ToC
- CN Chapter 00: Intro & General - Common Networks (Adapted from ATA 00)
- GP-CN-COMMON-00-001-A: GP-CN-00 General Document - Intro & General - Common Networks
- GP-CN-COMMON-00-A-001-A: GP-CN-00 - Approved (In Service) - Intro & General - Common Network Architecture Overview
- GP-CN-COMMON-00-B-001-A: GP-CN-00 - Being Tested (Development) - Intro & General - Network Topology Optimization Testing
- GP-CN-COMMON-00-B-THEO-001-A: GP-CN-00 - Speculative (Studying) - Intro & General - Quantum Network Concepts for GAIA AIR
- GP-CN-COMMON-00-C-001-A: GP-CN-00 - Condensed (Formal Scientific Consensus) - Intro & General - Network Communication Principles for Aerospace
- GP-CN-COMMON-00-D-001-A: GP-CN-00 - Auto-Configuración Adaptativa - Intro & General - AI-Driven Network Resource Adaptation (formerly: Auto-Configuración Adaptativa)
- CN Chapter 23: Data Communication Networks (Adapted from ATA 23 Communications)
- GP-CN-COMMON-23-001-A: GP-CN-23 General Document - Data Communication Networks
- GP-CN-COMMON-23-A-001-A: GP-CN-23 - Approved (In Service) - Data Communication Networks - Approved Network Specs & Protocols
- GP-CN-COMMON-23-B-001-A: GP-CN-23 - Being Tested (Development) - Data Communication Networks - High-Bandwidth Network Testing
- GP-CN-COMMON-23-B-THEO-001-A: GP-CN-23 - Speculative (Studying) - Data Communication Networks - Quantum Data Network Concepts
- GP-CN-COMMON-23-C-001-A: GP-CN-23 - Condensed (Formal Scientific Consensus) - Data Communication Networks - Aerospace Data Network Standards & Protocols
- GP-CN-COMMON-23-D-001-A: GP-CN-23 - Auto-Configuración Adaptativa - Data Communication Networks - AI-Driven Adaptive Bandwidth Management (formerly: Auto-Configuración Adaptativa)
- CN Chapter 24: Electrical Power Networks (Adapted from ATA 24 Electrical Power)
- GP-CN-COMMON-24-001-A: GP-CN-24 General Document - Electrical Power Networks
- GP-CN-COMMON-24-A-001-A: GP-CN-24 - Approved (In Service) - Electrical Power Networks - Approved Network Specs & Power Distribution Architecture
- GP-CN-COMMON-24-B-001-A: GP-CN-24 - Being Tested (Development) - Electrical Power Networks - Smart Grid Power Distribution Testing
- GP-CN-COMMON-24-B-THEO-001-A: GP-CN-24 - Speculative (Studying) - Electrical Power Networks - Wireless Power Distribution Concepts - Space Based
- GP-CN-COMMON-24-C-001-A: GP-CN-24 - Condensed (Formal Scientific Consensus) - Electrical Power Networks - Aerospace Power Distribution Principles & Standards
- GP-CN-COMMON-24-D-001-A: GP-CN-24 - Auto-Configuración Adaptativa - Electrical Power Networks - AI-Driven Adaptive Power Routing & Load Balancing (formerly: Auto-Configuración Adaptativa)
- CN Chapter 27: Control Networks (Adapted from ATA 27 Flight Controls)
- GP-CN-COMMON-27-001-A: GP-CN-27 General Document - Control Networks
- GP-CN-COMMON-27-A-001-A: GP-CN-27 - Approved (In Service) - Control Networks - Approved Network Specs & Latency Limits
- GP-CN-COMMON-27-B-001-A: GP-CN-27 - Being Tested (Development) - Control Networks - Deterministic Network Testing
- GP-CN-COMMON-27-B-THEO-001-A: GP-CN-27 - Speculative (Studying) - Control Networks - Quantum Control Signal Distribution Concepts
- GP-CN-COMMON-27-C-001-A: GP-CN-27 - Condensed (Formal Scientific Consensus) - Control Networks - Real-Time Control Network Principles & Standards
- GP-CN-COMMON-27-D-001-A: GP-CN-27 - Auto-Configuración Adaptativa - Control Networks - AI-Driven Adaptive Network Routing for Control Signals (formerly: Auto-Configuración Adaptativa)
- CN Chapter 31: Sensor Data Networks (Adapted from ATA 31 Indicating/Recording)
- GP-CN-COMMON-31-001-A: GP-CN-31 General Document - Sensor Data Networks
- GP-CN-COMMON-31-A-001-A: GP-CN-31 - Approved (In Service) - Sensor Data Networks - Approved Network Specs & Data Security
- GP-CN-COMMON-31-B-001-A: GP-CN-31 - Being Tested (Development) - Sensor Data Networks - High-Throughput Sensor Data Streaming Testing
- GP-CN-COMMON-31-B-THEO-001-A: GP-CN-31 - Speculative (Studying) - Sensor Data Networks - Quantum Sensor Data Telemetry Concepts
- GP-CN-COMMON-31-C-001-A: GP-CN-31 - Condensed (Formal Scientific Consensus) - Sensor Data Networks - Distributed Sensor Network Principles & Standards
- GP-CN-COMMON-31-D-001-A: GP-CN-31 - Auto-Configuración Adaptativa - Sensor Data Networks - AI-Driven Adaptive Sensor Data Routing & Prioritization (formerly: Auto-Configuración Adaptativa)
- CN Chapter 46: Core Information Network (CIN) (Adapted from ATA 46 Information Systems)
- GP-CN-COMMON-46-001-A: GP-CN-46 General Document - Core Information Network (CIN)
- GP-CN-COMMON-46-A-001-A: GP-CN-46 - Approved (In Service) - Core Information Network (CIN) - Approved Network Architecture & Security Protocols
- GP-CN-COMMON-46-B-001-A: GP-CN-46 - Being Tested (Development) - Core Information Network (CIN) - Federated Learning Network Integration Testing
- GP-CN-COMMON-46-B-THEO-001-A: GP-CN-46 - Speculative (Studying) - Core Information Network (CIN) - Quantum Internet Integration Concepts
- GP-CN-COMMON-46-C-001-A: GP-CN-46 - Condensed (Formal Scientific Consensus) - Core Information Network (CIN) - Aerospace Network Security & Data Integrity Principles
- GP-CN-COMMON-46-D-001-A: GP-CN-46 - Auto-Configuración Adaptativa - Core Information Network (CIN) - AI-Driven Adaptive Network Security & Intrusion Detection (formerly: Auto-Configuración Adaptativa)
- CN Chapter 99: Special / Emerging Network Tech (Adapted from ATA 99 Special/Emerging Tech)
- GP-CN-COMMON-99-001-A: GP-CN-99 General Document - Special / Emerging Network Tech
- GP-CN-COMMON-99-A-001-A: GP-CN-99 - Approved (In Service) - Special / Emerging Network Tech - Approved Integrations & Security Cases - Networks
- GP-CN-COMMON-99-B-001-A: GP-CN-99 - Being Tested (Development) - Special / Emerging Network Tech - Quantum-Resistant Network Protocol Testing
- GP-CN-COMMON-99-B-THEO-001-A: GP-CN-99 - Speculative (Studying) - Special / Emerging Network Tech - Bio-Integrated Network Concepts
- GP-CN-COMMON-99-C-001-A: GP-CN-99 - Condensed (Formal Scientific Consensus) - Special / Emerging Network Tech - Future Network Tech & Innovation Principles
- GP-CN-COMMON-99-D-001-A: GP-CN-99 - Auto-Configuración Adaptativa - Special / Emerging Network Tech - AI-Driven Adaptive Network Resource Allocation - Future Tech (formerly: Auto-Configuración Adaptativa)
- CN Chapter XX-YY: Reserved Future Sections (Example Reserved Sections)
- GP-CN-XX-001-A: GP-CN-XX General Document - Reserved - Advanced Sensor Networks - Future Expansion
- GP-CN-YY-001-A: GP-CN-YY General Document - Reserved - Inter-Module Communication - Future Expansion
- ... (and so on for additional Reserved Chapters)
Return to Part 0: Manifesto, Research & Theoretical Foundations (GP-FD) ToC Return to Part I: Airframes – AMPEL360XWLRGA (GP-AM) ToC Return to Part II: Spaceframes – GAIA SPACE (GP-SM) ToC Return to Part III: Common Networks (GP-CN) ToC
- GB Chapter 00: Intro & General - Ground Infrastructure (Adapted from ATA 00)
- GP-GB-GROUND-00-001-A: GP-GB-00 General Document - Intro & General - Ground Infrastructure
- GP-GB-GROUND-00-A-001-A: GP-GB-00 - Approved (In Service) - Intro & General - Ground Infrastructure Overview
- GP-GB-GROUND-00-B-001-A: GP-GB-00 - Being Tested (Development) - Intro & General - Smart Spaceport Concepts Testing
- GP-GB-GROUND-00-B-THEO-001-A: GP-GB-00 - Speculative (Studying) - Intro & General - Future of Aerospace Ground Infrastructure Vision
- GP-GB-GROUND-00-C-001-A: GP-GB-00 - Condensed (Formal Scientific Consensus) - Intro & General - Core Principles of GAIA AIR Ground Infrastructure
- GP-GB-GROUND-00-D-001-A: GP-GB-00 - Auto-Configuración Adaptativa - Intro & General - AI-Driven Infrastructure Adaptation (formerly: Auto-Configuración Adaptativa)
- GB Chapter 05: Maint Schedules & Facility Mgmt - Ground Infrastructure (Adapted from ATA 05 Maint Checks)
- GP-GB-GROUND-0100-05-001-A: GP-GB-05 General Document - Maint Schedules & Facility Mgmt - Ground Infrastructure
- GP-GB-GROUND-0100-05-A-001-A: GP-GB-05 - Approved (In Service) - Maint Schedules & Facility Mgmt - Approved Schedules & Facility Layouts
- GP-GB-GROUND-0100-05-B-001-A: GP-GB-05 - Being Tested (Development) - Maint Schedules & Facility Mgmt - Robotic Maint System Integration Testing - Ground
- GP-GB-GROUND-0100-05-B-THEO-001-A: GP-GB-05 - Speculative (Studying) - Maint Schedules & Facility Mgmt - AI-Optimized Maint Scheduling & Resource Allocation Concepts - Ground
- GP-GB-GROUND-0100-05-C-001-A: GP-GB-05 - Condensed (Formal Scientific Consensus) - Maint Schedules & Facility Mgmt - Airport & Spaceport Maint Principles
- GP-GB-GROUND-0100-05-D-001-A: GP-GB-05 - Auto-Configuración Adaptativa - Maint Schedules & Facility Mgmt - AI-Driven Adaptive Facility Resource Mgmt (formerly: Auto-Configuración Adaptativa)
- GB Chapter 06: Layout & Dimensions - Ground Infrastructure (Adapted from ATA 06 Dimensions & Areas)
- GP-GB-GROUND-0100-06-001-A: GP-GB-06 General Document - Layout & Dimensions - Ground Infrastructure
- GP-GB-GROUND-0100-06-A-001-A: GP-GB-06 - Approved (In Service) - Layout & Dimensions - Ground Infrastructure - Approved Facility Layouts & Specs
- GP-GB-GROUND-0100-06-B-001-A: GP-GB-06 - Being Tested (Development) - Layout & Dimensions - Ground Infrastructure - VR-Based Spaceport Design Testing
- GP-GB-GROUND-0100-06-B-THEO-001-A: GP-GB-06 - Speculative (Studying) - Layout & Dimensions - Ground Infrastructure - Adaptable Spaceport Design Concepts
- GP-GB-GROUND-0100-06-C-001-A: GP-GB-06 - Condensed (Formal Scientific Consensus) - Layout & Dimensions - Ground Infrastructure - Airport & Spaceport Design Principles
- GP-GB-GROUND-0100-06-D-001-A: GP-GB-06 - Auto-Configuración Adaptativa - Layout & Dimensions - Ground Infrastructure - AI-Driven Facility Layout Optimization (formerly: Auto-Configuración Adaptativa)
- GB Chapter 09: Ground Support Equipment (GSE) (Adapted from ATA 09 Towing & Taxiing)
- GP-GB-GROUND-0100-09-001-A: GP-GB-09 General Document - Ground Support Equipment (GSE)
- GP-GB-GROUND-0100-09-A-001-A: GP-GB-09 - Approved (In Service) - Ground Support Equipment (GSE) - Approved GSE Specs & Operation Manuals
- GP-GB-GROUND-0100-09-B-001-A: GP-GB-09 - Being Tested (Development) - Ground Support Equipment (GSE) - Autonomous GSE Testing & Validation
- GP-GB-GROUND-0100-09-B-THEO-001-A: GP-GB-09 - Speculative (Studying) - Ground Support Equipment (GSE) - Robotic GSE Concepts
- GP-GB-GROUND-0100-09-C-001-A: GP-GB-09 - Condensed (Formal Scientific Consensus) - Ground Support Equipment (GSE) - Airport GSE Principles & Standards
- GP-GB-GROUND-0100-09-D-001-A: GP-GB-09 - Auto-Configuración Adaptativa - Ground Support Equipment (GSE) - AI-Driven GSE Fleet Management & Optimization (formerly: Auto-Configuración Adaptativa)
- GB Chapter 10: Ground Facilities & Infrastructure (Adapted from ATA 10 Parking, Mooring, Storage)
- GP-GB-GROUND-0100-10-001-A: GP-GB-10 General Document - Ground Facilities & Infrastructure
- GP-GB-GROUND-0100-10-A-001-A: GP-GB-10 - Approved (In Service) - Ground Facilities & Infrastructure - Approved Facility Specs & Layouts
- GP-GB-GROUND-0100-10-B-001-A: GP-GB-10 - Being Tested (Development) - Ground Facilities & Infrastructure - Smart Spaceport Facility Testing
- GP-GB-GROUND-0100-10-B-THEO-001-A: GP-GB-10 - Speculative (Studying) - Ground Facilities & Infrastructure - Self-Sustaining Habitat Base Concepts
- GP-GB-GROUND-0100-10-C-001-A: GP-GB-10 - Condensed (Formal Scientific Consensus) - Ground Facilities & Infrastructure - Airport & Spaceport Infrastructure Principles
- GP-GB-GROUND-0100-10-D-001-A: GP-GB-10 - Auto-Configuración Adaptativa - Ground Facilities & Infrastructure - AI-Optimized Facility Operations & Resource Mgmt (formerly: Auto-Configuración Adaptativa)
- GB Chapter 24: Electrical Power Grid - Ground Infrastructure (Adapted from ATA 24 Electrical Power)
- GP-GB-GROUND-0100-24-001-A: GP-GB-24 General Document - Electrical Power Grid - Ground Infrastructure
- GP-GB-GROUND-0100-24-A-001-A: GP-GB-24 - Approved (In Service) - Electrical Power Grid - Ground Infrastructure - Approved Grid Specs & Power Distribution
- GP-GB-GROUND-0100-24-B-001-A: GP-GB-24 - Being Tested (Development) - Electrical Power Grid - Ground Infrastructure - Smart Grid System Testing
- GP-GB-GROUND-0100-24-B-THEO-001-A: GP-GB-24 - Speculative (Studying) - Electrical Power Grid - Ground Infrastructure - Renewable Energy Integration Concepts for Spaceports
- GP-GB-GROUND-0100-24-C-001-A: GP-GB-24 - Condensed (Formal Scientific Consensus) - Electrical Power Grid - Ground Infrastructure - Power Grid Principles & Standards
- GP-GB-GROUND-0100-24-D-001-A: GP-GB-24 - Auto-Configuración Adaptativa - Electrical Power Grid - Ground Infrastructure - AI-Driven Smart Grid Optimization (formerly: Auto-Configuración Adaptativa)
- GB Chapter 27: Control Systems - Ground Infrastructure (Adapted from ATA 27 Flight Controls)
- GP-GB-GROUND-0100-27-001-A: GP-GB-27 General Document - Control Systems - Ground Infrastructure
- GP-GB-GROUND-0100-27-A-001-A: GP-GB-27 - Approved (In Service) - Control Systems - Ground Infrastructure - Approved Facility Control System Specs & Procedures
- GP-GB-GROUND-0100-27-B-001-A: GP-GB-27 - Being Tested (Development) - Control Systems - Ground Infrastructure - Smart Facility Control System Testing
- GP-GB-GROUND-0100-27-B-THEO-001-A: GP-GB-27 - Speculative (Studying) - Control Systems - Ground Infrastructure - Quantum-Secured Infrastructure Control Concepts
- GP-GB-GROUND-0100-27-C-001-A: GP-GB-27 - Condensed (Formal Scientific Consensus) - Control Systems - Ground Infrastructure - Facility Control System Principles
- GP-GB-GROUND-0100-27-D-001-A: GP-GB-27 - Auto-Configuración Adaptativa - Control Systems - Ground Infrastructure - AI-Driven Adaptive Facility Control Optimization (formerly: Auto-Configuración Adaptativa)
- GB Chapter 31: Monitoring & Automation - Ground Infrastructure (Adapted from ATA 31 Indicating/Recording)
- GP-GB-GROUND-0100-31-001-A: GP-GB-31 General Document - Monitoring & Automation - Ground Infrastructure
- GP-GB-GROUND-0100-31-A-001-A: GP-GB-31 - Approved (In Service) - Monitoring & Automation - Ground Infrastructure - Approved System Specs & Monitoring Procedures
- GP-GB-GROUND-0100-31-B-001-A: GP-GB-31 - Being Tested (Development) - Monitoring & Automation - Ground Infrastructure - AI-Driven Facility Monitoring Testing
- GP-GB-GROUND-0100-31-B-THEO-001-A: GP-GB-31 - Speculative (Studying) - Monitoring & Automation - Ground Infrastructure - Quantum Sensor Based Facility Monitoring Concepts
- GP-GB-GROUND-0100-31-C-001-A: GP-GB-31 - Condensed (Formal Scientific Consensus) - Monitoring & Automation - Ground Infrastructure - Smart Infrastructure Monitoring Principles
- GP-GB-GROUND-0100-31-D-001-A: GP-GB-31 - Auto-Configuración Adaptativa - Monitoring & Automation - Ground Infrastructure - AI-Driven Predictive Maintenance & Automation (formerly: Auto-Configuración Adaptativa)
- GB Chapter 33: Lighting & Visual Guidance - Ground Infrastructure (Adapted from ATA 33 Lights)
- GP-GB-GROUND-0100-33-001-A: GP-GB-33 General Document - Lighting & Visual Guidance - Ground Infrastructure
- GP-GB-GROUND-0100-33-A-001-A: GP-GB-33 - Approved (In Service) - Lighting & Visual Guidance - Ground Infrastructure - Approved Lighting Specs & Standards - Facilities
- GP-GB-GROUND-0100-33-B-001-A: GP-GB-33 - Being Tested (Development) - Lighting & Visual Guidance - Ground Infrastructure - Adaptive Lighting System Testing - Facilities
- GP-GB-GROUND-0100-33-B-THEO-001-A: GP-GB-33 - Speculative (Studying) - Lighting & Visual Guidance - Ground Infrastructure - Holographic Visual Guidance Concepts - Spaceports
- GP-GB-GROUND-0100-33-C-001-A: GP-GB-33 - Condensed (Formal Scientific Consensus) - Lighting & Visual Guidance - Ground Infrastructure - Airport & Spaceport Lighting Standards
- GP-GB-GROUND-0100-33-D-001-A: GP-GB-33 - Auto-Configuración Adaptativa - Lighting & Visual Guidance - Ground Infrastructure - AI-Driven Dynamic Lighting & Guidance Optimization - Facilities (formerly: Auto-Configuración Adaptativa)
- GB Chapter 38: Facility Environmental Systems (Adapted from ATA 38 Water/Waste - broader scope for facilities)
- GP-GB-GROUND-0100-38-001-A: GP-GB-38 General Document - Facility Environmental Systems
- GP-GB-GROUND-0100-38-A-001-A: GP-GB-38 - Approved (In Service) - Facility Environmental Systems - Approved System Specs & Procedures - Facilities
- GP-GB-GROUND-0100-38-B-001-A: GP-GB-38 - Being Tested (Development) - Facility Environmental Systems - Smart Building Mgmt System Testing
- GP-GB-GROUND-0100-38-B-THEO-001-A: GP-GB-38 - Speculative (Studying) - Facility Environmental Systems - Bioregenerative Habitat Environmental Control Concepts
- GP-GB-GROUND-0100-38-C-001-A: GP-GB-38 - Condensed (Formal Scientific Consensus) - Facility Environmental Systems - Sustainable Building & Environmental Control Principles
- GP-GB-GROUND-0100-38-D-001-A: GP-GB-38 - Auto-Configuración Adaptativa - Facility Environmental Systems - AI-Driven Adaptive Facility Climate Optimization (formerly: Auto-Configuración Adaptativa)
- GB Chapter 45: Facility Management Systems (FMS) (Adapted from ATA 45 Central Maintenance System)
- GP-GB-GROUND-0100-45-001-A: GP-GB-45 General Document - Facility Management Systems (FMS)
- GP-GB-GROUND-0100-45-A-001-A: GP-GB-45 - Approved (In Service) - Facility Management Systems (FMS) - Approved System Specs & Facility Operations Manual
- GP-GB-GROUND-0100-45-B-001-A: GP-GB-45 - Being Tested (Development) - Facility Management Systems (FMS) - Smart Facility Mgmt System Testing
- GP-GB-GROUND-0100-45-B-THEO-001-A: GP-GB-45 - Speculative (Studying) - Facility Management Systems (FMS) - Quantum Computing Enhanced Facility Mgmt Concepts
- GP-GB-GROUND-0100-45-C-001-A: GP-GB-45 - Condensed (Formal Scientific Consensus) - Facility Management Systems (FMS) - Smart Infrastructure Mgmt Principles
- GP-GB-GROUND-0100-45-D-001-A: GP-GB-45 - Auto-Configuración Adaptativa - Facility Management Systems (FMS) - AI-Driven Adaptive Facility Resource Allocation & Optimization (formerly: Auto-Configuración Adaptativa)
- GB Chapter 46: Ground Network Infrastructure (GNI) (Adapted from ATA 46 Information Systems)
- GP-GB-GROUND-0100-46-001-A: GP-GB-46 General Document - Ground Network Infrastructure (GNI)
- GP-GB-GROUND-0100-46-A-001-A: GP-GB-46 - Approved (In Service) - Ground Network Infrastructure (GNI) - Approved Network Specs & Topologies - Ground
- GP-GB-GROUND-0100-46-B-001-A: GP-GB-46 - Being Tested (Development) - Ground Network Infrastructure (GNI) - High-Bandwidth Ground Network Testing
- GP-GB-GROUND-0100-46-B-THEO-001-A: GP-GB-46 - Speculative (Studying) - Ground Network Infrastructure (GNI) - Quantum Secured Ground Network Concepts
- GP-GB-GROUND-0100-46-C-001-A: GP-GB-46 - Condensed (Formal Scientific Consensus) - Ground Network Infrastructure (GNI) - Terrestrial Network Infrastructure Principles
- GP-GB-GROUND-0100-46-D-001-A: GP-GB-46 - Auto-Configuración Adaptativa - Ground Network Infrastructure (GNI) - AI-Driven Adaptive Network Mgmt - Ground (formerly: Auto-Configuración Adaptativa)
- GB Chapter 49: Ground Power Systems (GPS) (Adapted from ATA 49 Airborne Auxiliary Power)
- GP-GB-GROUND-0100-49-001-A: GP-GB-49 General Document - Ground Power Systems (GPS)
- GP-GB-GROUND-0100-49-A-001-A: GP-GB-49 - Approved (In Service) - Ground Power Systems (GPS) - Approved System Specs & Power Distribution - Ground
- GP-GB-GROUND-0100-49-B-001-A: GP-GB-49 - Being Tested (Development) - Ground Power Systems (GPS) - Smart Grid Integration Testing - Ground
- GP-GB-GROUND-0100-49-B-THEO-001-A: GP-GB-49 - Speculative (Studying) - Ground Power Systems (GPS) - Renewable Energy Based Spaceport Power Concepts
- GP-GB-GROUND-0100-49-C-001-A: GP-GB-49 - Condensed (Formal Scientific Consensus) - Ground Power Systems (GPS) - Terrestrial Power Grid Principles
- GP-GB-GROUND-0100-49-D-001-A: GP-GB-49 - Auto-Configuración Adaptativa - Ground Power Systems (GPS) - AI-Driven Adaptive Power Grid Optimization - Ground (formerly: Auto-Configuración Adaptativa)
- GB Chapter 99: Special / Emerging Ground Tech (Adapted from ATA 99 Special/Emerging Tech)
- GP-GB-GROUND-0100-99-001-A: GP-GB-99 General Document - Special / Emerging Ground Tech
- GP-GB-GROUND-0100-99-A-001-A: GP-GB-99 - Approved (In Service) - Special / Emerging Ground Tech - Approved Integrations & Safety Cases - Ground
- GP-GB-GROUND-0100-99-B-001-A: GP-GB-99 - Being Tested (Development) - Special / Emerging Ground Tech - Smart City Integration Testing - Spaceports
- GP-GB-GROUND-0100-99-B-THEO-001-A: GP-GB-99 - Speculative (Studying) - Special / Emerging Ground Tech - Quantum Computing Enhanced Ground Infrastructure Mgmt Concepts
- GP-GB-GROUND-0100-99-C-001-A: GP-GB-99 - Condensed (Formal Scientific Consensus) - Special / Emerging Ground Tech - Smart City & Sustainable Infrastructure Principles
- GP-GB-GROUND-0100-99-D-001-A: GP-GB-99 - Auto-Configuración Adaptativa - Special / Emerging Ground Tech - AI-Driven Adaptive Infrastructure Mgmt & Urban Integration (formerly: Auto-Configuración Adaptativa)
- GB Chapter XX-ZZ: Reserved Future Sections - Ground (Example Reserved Sections)
Return to Part 0: Manifesto, Research & Theoretical Foundations (GP-FD) ToC Return to Part I: Airframes – AMPEL360XWLRGA (GP-AM) ToC Return to Part II: Spaceframes – GAIA SPACE (GP-SM) ToC Return to Part III: Common Networks (GP-CN) ToC Return to Part IV: Ground Infrastructure (GP-GB) ToC Return to Part VI: Project Management & Operations (GP-PMO) ToC
- GACMS Chapter 00: Intro & General - Computing & Simulation (Adapted from ATA 00)
- GP-GACMS-COMP-00-001-A: GP-GACMS-00 General Document - Intro & General - Computing & Simulation
- GP-GACMS-COMP-00-A-001-A: GP-GACMS-00 - Approved (In Service) - Intro & General - Computing & Simulation Overview
- GP-GACMS-COMP-00-B-001-A: GP-GACMS-00 - Being Tested (Development) - Intro & General - Advanced Simulation Platform Testing
- GP-GACMS-COMP-00-B-THEO-001-A: GP-GACMS-00 - Speculative (Studying) - Intro & General - Quantum Computing for Aerospace Simulation Concepts
- GP-GACMS-COMP-00-C-001-A: GP-GACMS-00 - Condensed (Formal Scientific Consensus) - Intro & General - Principles of Scientific Computing & Simulation
- GP-GACMS-COMP-00-D-001-A: GP-GACMS-00 - Auto-Adaptive Configuration - Intro & General - AI-Driven Adaptive Simulation Workflow Optimization (formerly: Auto-Configuración Adaptativa)
- GACMS Chapter 05: Performance Benchmarks & Limits (Adapted from ATA 05 Maint Checks - repurposed for Benchmarks)
- GP-GACMS-COMP-0100-05-001-A: GP-GACMS-05 General Document - Performance Benchmarks & Limits
- GP-GACMS-COMP-0100-05-A-001-A: GP-GACMS-05 - Approved (In Service) - Performance Benchmarks & Limits - Approved System Benchmarks & Performance Metrics
- GP-GACMS-COMP-0100-05-B-001-A: GP-GACMS-0100-05-B-001-A: GP-GACMS-05 - Being Tested (Development) - Performance Benchmarks & Limits - HPC Cluster Performance Testing
- GP-GACMS-COMP-0100-05-B-THEO-001-A: GP-GACMS-05 - Speculative (Studying) - Performance Benchmarks & Limits - Quantum Computing Performance Limits & Benchmarking Concepts
- GP-GACMS-COMP-0100-05-C-001-A: GP-GACMS-05 - Condensed (Formal Scientific Consensus) - Performance Benchmarks & Limits - High-Performance Computing Benchmarking Principles
- GP-GACMS-COMP-0100-05-D-001-A: GP-GACMS-05 - Auto-Configuración Adaptativa - Performance Benchmarks & Limits - AI-Driven Adaptive Resource Allocation for Optimal Performance (formerly: Auto-Configuración Adaptativa)
- GACMS Chapter 06: Facility Layout & Architecture - Computing Center (Adapted from ATA 06 Dimensions & Areas - repurposed for Facilities)
- GP-GACMS-GROUND-0100-06-001-A: GP-GACMS-06 General Document - Facility Layout & Architecture - Computing Center
- GP-GACMS-GROUND-0100-06-A-001-A: GP-GACMS-06 - Approved (In Service) - Facility Layout & Architecture - Computing Center - Approved Facility Layout & Schematics
- GP-GACMS-GROUND-0100-06-B-001-A: GP-GACMS-06 - Being Tested (Development) - Facility Layout & Architecture - Computing Center - Data Center Design Testing
- GP-GACMS-GROUND-0100-06-B-THEO-001-A: GP-GACMS-06 - Speculative (Studying) - Facility Layout & Architecture - Computing Center - Future Data Center Architecture Concepts
- GP-GACMS-GROUND-0100-06-C-001-A: GP-GACMS-06 - Condensed (Formal Scientific Consensus) - Facility Layout & Architecture - Computing Center - Data Center Design Principles & Standards
- GP-GACMS-GROUND-0100-06-D-001-A: GP-GACMS-06 - Auto-Configuración Adaptativa - Facility Layout & Architecture - Computing Center - AI-Driven Adaptive Data Center Layout Optimization (formerly: Auto-Configuración Adaptativa)
- GACMS Chapter 21: Cooling & Thermal Management - Computing Center (Adapted from ATA 21 Air Conditioning)
- GP-GACMS-GROUND-0100-21-001-A: GP-GACMS-21 General Document - Cooling & Thermal Management - Computing Center
- GP-GACMS-GROUND-0100-21-A-001-A: GP-GACMS-21 - Approved (In Service) - Cooling & Thermal Management - Computing Center - Approved System Specs & Cooling Limits - Data Center
- GP-GACMS-GROUND-0100-21-B-001-A: GP-GACMS-21 - Being Tested (Development) - Cooling & Thermal Management - Computing Center - Advanced Cooling System Testing
- GP-GACMS-GROUND-0100-21-B-THEO-001-A: GP-GACMS-21 - Speculative (Studying) - Cooling & Thermal Management - Computing Center - Quantum Cooling & Superfluid Cooling Concepts - Data Centers
- GP-GACMS-GROUND-0100-21-C-001-A: GP-GACMS-21 - Condensed (Formal Scientific Consensus) - Cooling & Thermal Management - Computing Center - Data Center Cooling Principles & Standards
- GP-GACMS-GROUND-0100-21-D-001-A: GP-GACMS-21 - Auto-Configuración Adaptativa - Cooling & Thermal Management - Computing Center - AI-Driven Adaptive Cooling Optimization - Data Centers (formerly: Auto-Configuración Adaptativa)
- GACMS Chapter 24: Electrical Power Infrastructure - Computing Center (Adapted from ATA 24 Electrical Power)
- GP-GACMS-GROUND-0100-24-001-A: GP-GACMS-24 General Document - Electrical Power Infrastructure - Computing Center
- GP-GACMS-GROUND-0100-24-A-001-A: GP-GACMS-24 - Approved (In Service) - Electrical Power Infrastructure - Computing Center - Approved Power Grid Specs & Distribution - Data Centers
- GP-GACMS-GROUND-0100-24-B-001-A: GP-GACMS-24 - Being Tested (Development) - Electrical Power Infrastructure - Computing Center - Smart Grid Power Mgmt Testing - Data Centers
- GP-GACMS-GROUND-0100-24-B-THEO-001-A: GP-GACMS-24 - Speculative (Studying) - Electrical Power Infrastructure - Computing Center - Renewable Energy Integration Concepts - Data Centers
- GP-GACMS-GROUND-0100-24-C-001-A: GP-GACMS-24 - Condensed (Formal Scientific Consensus) - Electrical Power Infrastructure - Computing Center - Data Center Power Grid Principles & Standards
- GP-GACMS-GROUND-0100-24-D-001-A: GP-GACMS-24 - Auto-Configuración Adaptativa - Electrical Power Infrastructure - Computing Center - AI-Driven Adaptive Power Mgmt & Load Balancing - Data Centers (formerly: Auto-Configuración Adaptativa)
- GACMS Chapter 46: Data Network Infrastructure - Computing Center (Adapted from ATA 46 Information Systems)
- GP-GACMS-COMMON-46-001-A: GP-GACMS-46 General Document - Data Network Infrastructure - Computing Center
- GP-GACMS-COMMON-46-A-001-A: GP-GACMS-46 - Approved (In Service) - Data Network Infrastructure - Computing Center - Approved Network Specs & Topologies - Data Centers
- GP-GACMS-COMMON-46-B-001-A: GP-GACMS-46 - Being Tested (Development) - Data Network Infrastructure - Computing Center - High-Bandwidth Data Center Network Testing
- GP-GACMS-COMMON-46-B-THEO-001-A: GP-GACMS-46 - Speculative (Studying) - Data Network Infrastructure - Computing Center - Quantum Network Integration Concepts - Data Centers
- GP-GACMS-COMMON-46-C-001-A: GP-GACMS-46 - Condensed (Formal Scientific Consensus) - Data Network Infrastructure - Computing Center - Data Center Network Principles & Standards
- GP-GACMS-COMMON-46-D-001-A: GP-GACMS-46 - Auto-Configuración Adaptativa - Data Network Infrastructure - Computing Center - AI-Driven Adaptive Network Mgmt - Data Centers (formerly: Auto-Configuración Adaptativa)
- GACMS Chapter 99: Special / Emerging Computing Tech (Adapted from ATA 99 Special/Emerging Tech)
- GP-GACMS-COMP-0100-99-001-A: GP-GACMS-99 General Document - Special / Emerging Computing Tech
- GP-GACMS-COMP-0100-99-A-001-A: GP-GACMS-99 - Approved (In Service) - Special / Emerging Computing Tech - Approved Integrations & Security Cases - Computing
- GP-GACMS-COMP-0100-99-B-001-A: GP-GACMS-99 - Being Tested (Development) - Special / Emerging Computing Tech - Quantum Computing Hardware Testing
- GP-GACMS-COMP-0100-99-B-THEO-001-A: GP-GACMS-99 - Speculative (Studying) - Special / Emerging Computing Tech - Neuromorphic & Bio-Inspired Computing Concepts
- GP-GACMS-COMP-0100-99-C-001-A: GP-GACMS-99 - Condensed (Formal Scientific Consensus) - Special / Emerging Computing Tech - Future Computing Tech & Innovation Principles
- GP-GACMS-COMP-0100-99-D-001-A: GP-GACMS-99 - Auto-Configuración Adaptativa - Special / Emerging Computing Tech - AI-Driven Adaptive Resource Allocation - Computing (formerly: Auto-Configuración Adaptativa)
- GACMS Chapter XX-ZZ: Reserved Future Sections - Computing (Example Reserved Sections)
Return to Part 0: Manifesto, Research & Theoretical Foundations (GP-FD) ToC Return to Part I: Airframes – AMPEL360XWLRGA (GP-AM) ToC Return to Part II: Spaceframes – GAIA SPACE (GP-SM) ToC Return to Part III: Common Networks (GP-CN) ToC Return to Part IV: Ground Infrastructure (GP-GB) ToC
Part VI Content Management System
- PMO Chapter 00: Intro & General - Project Management & Operations (Adapted from ATA 00)
- GP-PMO-PROJECT-00-001-A: GP-PMO-00 General Document - Intro & General - Project Management & Operations
- GP-PMO-PROJECT-00-A-001-A: GP-PMO-00 - Approved (In Service) - Intro & General - Project & Operations Overview
- GP-PMO-PROJECT-00-B-001-A: GP-PMO-00 - Being Tested (Development) - Intro & General - Agile Project & Ops Management Testing
- GP-PMO-PROJECT-00-B-THEO-001-A: GP-PMO-00 - Speculative (Studying) - Intro & General - AI-Driven Project & Ops Management Concepts
- GP-PMO-PROJECT-00-C-001-A: GP-PMO-00 - Condensed (Formal Scientific Consensus) - Intro & General - Project & Operations Management Principles
- GP-PMO-PROJECT-00-D-001-A: GP-PM-00 - Auto-Configuración Adaptativa - Intro & General - AI-Adaptive Project & Ops Workflow Optimization (formerly: Auto-Configuración Adaptativa)
- PMO Chapter 01: Project Organization & Team Structure (Adapted from ATA 01 Reserved - repurposed for Org)
- GP-PMO-PROJECT-0100-01-001-A: GP-PMO-01 General Document - Project Organization & Team Structure
- GP-PMO-PROJECT-0100-01-A-001-A: GP-PMO-01 - Approved (In Service) - Project Organization & Team Structure - Approved Org Charts & Roles
- GP-PMO-PROJECT-0100-01-B-001-A: GP-PMO-01 - Being Tested (Development) - Project Organization & Team Structure - Agile Team Structure Testing
- GP-PMO-PROJECT-0100-01-B-THEO-001-A: GP-PMO-01 - Speculative (Studying) - Project Organization & Team Structure - Decentralized Autonomous Organization (DAO) Concepts for Project Mgmt
- GP-PMO-PROJECT-0100-01-C-001-A: GP-PMO-01 - Condensed (Formal Scientific Consensus) - Project Organization & Team Structure - Aerospace Project Team Structure Principles
- GP-PMO-PROJECT-0100-01-D-001-A: GP-PMO-01 - Auto-Configuración Adaptativa - Project Organization & Team Structure - AI-Driven Adaptive Team Formation & Task Allocation (formerly: Auto-Configuración Adaptativa)
- PMO Chapter 02: Project Phasing & Milestones (Adapted from ATA 02 Weight & Balance - repurposed for Milestones)
- GP-PMO-PROJECT-0100-02-001-A: GP-PMO-02 General Document - Project Phasing & Milestones
- GP-PMO-PROJECT-0100-02-A-001-A: GP-PMO-02 - Approved (In Service) - Project Phasing & Milestones - Approved Project Phasing & Milestone List
- GP-PMO-PROJECT-0100-02-B-001-A: GP-PM-02 - Being Tested (Development) - Project Phasing & Milestones - Agile Milestone Tracking Testing
- GP-PMO-PROJECT-0100-02-B-THEO-001-A: GP-PMO-02 - Speculative (Studying) - Project Phasing & Milestones - Quantum Computing Enhanced Project Milestone Prediction Concepts
- GP-PMO-PROJECT-0100-02-C-001-A: GP-PMO-02 - Condensed (Formal Scientific Consensus) - Project Phasing & Milestones - Aerospace Project Phasing Principles
- GP-PMO-PROJECT-0100-02-D-001-A: GP-PMO-02 - Auto-Configuración Adaptativa - Project Phasing & Milestones - AI-Driven Adaptive Milestone Adjustment & Prediction (formerly: Auto-Configuración Adaptativa)
- PMO Chapter 05: Project Risk Management (Adapted from ATA 05 Maint Checks - repurposed for Risk Mgmt)
- GP-PMO-PROJECT-0100-05-001-A: GP-PMO-05 General Document - Project Risk Management
- GP-PMO-PROJECT-0100-05-A-001-A: GP-PMO-05 - Approved (In Service) - Project Risk Management - Approved Risk Management Plan & Framework
- GP-PMO-PROJECT-0100-05-B-001-A: GP-PMO-05 - Being Tested (Development) - Project Risk Management - AI-Driven Risk Assessment Tool Testing
- GP-PMO-PROJECT-0100-05-B-THEO-001-A: GP-PMO-01 - Speculative (Studying) - Project Risk Management - Quantum Risk Modeling & Simulation Concepts
- GP-PMO-PROJECT-0100-05-C-001-A: GP-PMO-05 - Condensed (Formal Scientific Consensus) - Project Risk Management - Aerospace Project Risk Management Principles
- GP-PMO-PROJECT-0100-05-D-001-A: GP-PMO-05 - Auto-Configuración Adaptativa - Project Risk Management - AI-Driven Adaptive Risk Monitoring & Mitigation Strategies (formerly: Auto-Configuración Adaptativa)
- PMO Chapter 10: Project Documentation & Reporting (Adapted from ATA 10 Parking, Mooring, Storage - repurposed for Documentation)
- GP-PMO-PROJECT-0100-10-001-A: GP-PMO-10 General Document - Project Documentation & Reporting
- GP-PMO-PROJECT-0100-10-A-001-A: GP-PMO-10 - Approved (In Service) - Project Documentation & Reporting - Approved Documentation Standards & Templates
- GP-PMO-PROJECT-0100-10-B-001-A: GP-PMO-10 - Being Tested (Development) - Project Documentation & Reporting - AI-Assisted Doc Generation Testing
- GP-PMO-PROJECT-0100-10-B-THEO-001-A: GP-PMO-10 - Speculative (Studying) - Project Documentation & Reporting - Semantic Web Based Doc Mgmt Concepts
- GP-PMO-PROJECT-0100-10-C-001-A: GP-PMO-10 - Condensed (Formal Scientific Consensus) - Project Documentation & Reporting - Aerospace Project Documentation Principles
- GP-PMO-PROJECT-0100-10-D-001-A: GP-PMO-10 - Auto-Configuración Adaptativa - Project Documentation & Reporting - AI-Driven Adaptive Doc Generation & Versioning (formerly: Auto-Configuración Adaptativa)
- PMO Chapter 12: Project Communication & Collaboration (Adapted from ATA 12 Servicing - repurposed for Communication)
- GP-PMO-PROJECT-0100-12-001-A: GP-PM-12 General Document - Project Communication & Collaboration
- GP-PMO-PROJECT-0100-12-A-001-A: GP-PM-12 - Approved (In Service) - Project Communication & Collaboration - Approved Communication Protocols & Tools
- GP-PMO-PROJECT-0100-12-B-001-A: GP-PM-12 - Being Tested (Development) - Project Communication & Collaboration - Immersive Collaboration Platform Testing
- GP-PMO-PROJECT-0100-12-B-THEO-001-A: GP-PM-12 - Speculative (Studying) - Project Communication & Collaboration - Quantum Secured Communication Concepts for Project Teams
- GP-PMO-PROJECT-0100-12-C-001-A: GP-PM-12 - Condensed (Formal Scientific Consensus) - Project Communication & Collaboration - Effective Project Communication Principles
- GP-PMO-PROJECT-0100-12-D-001-A: GP-PM-12 - Auto-Configuración Adaptativa - Project Communication & Collaboration - AI-Driven Adaptive Comm Channel Optimization (formerly: Auto-Configuración Adaptativa)
- PMO Chapter 99: Special / Emerging Project Mgmt Methods (Adapted from ATA 99 Special/Emerging Tech)
- GP-PMO-PROJECT-0100-99-001-A: GP-PM-99 General Document - Special / Emerging Project Mgmt Methods
- GP-PMO-PROJECT-0100-99-A-001-A: GP-PM-99 - Approved (In Service) - Special / Emerging Project Mgmt Methods - Approved Methodologies & Tools
- GP-PMO-PROJECT-0100-99-B-001-A: GP-PM-99 - Being Tested (Development) - Special / Emerging Project Mgmt Methods - AI-Enhanced PM Tool Testing
- GP-PMO-PROJECT-0100-99-B-THEO-001-A: GP-PM-99 - Speculative (Studying) - Special / Emerging Project Mgmt Methods - Quantum Computing Enhanced PM Concepts
- GP-PMO-PROJECT-0100-99-C-001-A: GP-PM-99 - Condensed (Formal Scientific Consensus) - Special / Emerging Project Mgmt Methods - Modern Agile PM Principles & Methodologies
- GP-PMO-PROJECT-0100-99-D-001-A: GP-PM-99 - Auto-Configuración Adaptativa - Special / Emerging Project Mgmt Methods - AI-Driven Adaptive PM & Workflow Optimization (formerly: Auto-Configuración Adaptativa)
- PMO Chapter XX-ZZ: Reserved Future Sections - Project Ops (Example Reserved Sections)
Return to Part 0: Manifesto, Research & Theoretical Foundations (GP-FD) ToC Return to Part I: Airframes – AMPEL360XWLRGA (GP-AM) ToC Return to Part II: Spaceframes – GAIA SPACE (GP-SM) ToC Return to Part III: Common Networks (GP-CN) ToC Return to Part IV: Ground Infrastructure (GP-GB) ToC Return to Part V: GAIA AIR Computing and Material Simulation (GP-GACMS) ToC
- APP.00: Introduction to Appendices & Reference Material
- APP.01: Terminology
- APP.02: Standards & Regulations
- APP.03: Documentation Framework & Guidance
GP-APP-DOCGUIDE-03-001-A
: General Document - Documentation Framework Overview.- APP.03.01: COAFI Structure Overview
- APP.03.02: Document Classification System
- APP.03.03: Info Code Reference Table
- APP.03.04: Engineering Documentation Types List
GP-APP-ENGDOC-03-A-001-A
: Comprehensive List of Engineering Document Types.- 5.1 Introduction
- 5.2 Note on PLM Integration
- 5.3 Documentation Categories & Types
- 5.3.1 Requirements Documentation
- 5.3.2 Design & Architecture Documentation
- 5.3.3 Analysis & Simulation Documentation
- 5.3.4 Testing & Validation Documentation
- 5.3.5 Manufacturing & Production Documentation
- 5.3.6 Operations, Support & Customer Services Documentation
- 5.3.7 Disposal & Regeneration Documentation
- 5.3.8 Management, Control & Administrative Documentation
- 5.3.9 Reference Documentation
- APP.03.05: Documentation Style Guide & Templates
- APP.04: Project Resources & Mappings
- APP.05: Core Framework Summaries (Optional but Recommended)
- APP.99: Part VII Revision History
Info Code: OV Status: Approved
This document provides an overview of COAFI Part VII: Appendices and Reference Material (GP-APP). Part VII serves as a central repository for supplementary information, reference data, glossaries, standards lists, framework guidance, and other materials that support the primary engineering and project management documentation found in Parts 0 through VI, VIII, and IX. Its goal is to provide readily accessible, standardized reference information to enhance consistency and understanding across the GAIA AIR program.
Scope:
- Define the structure and purpose of the appendices within Part VII (APP.00 - APP.99).
- Provide guidance on navigating and utilizing the reference materials contained herein, including terminology, standards, framework details, and project resources.
- Establish the relationship between Part VII and other COAFI Parts, ensuring it acts as a supportive reference layer.
- Outline the governance and update procedures specific to the content within Part VII.
Key Sections:
- Introduction to Part VII structure and chapter organization.
- Guidance on locating specific reference information (e.g., finding definitions, standards, document types).
- Explanation of how Part VII content supports other COAFI Parts.
- Process for proposing updates or additions to the appendices.
Info Code: OV Status: Approved
This document introduces the terminology sections within Part VII: the Glossary of Terms (APP.01.01) and the Acronyms and Abbreviations list (APP.01.02). Standardized terminology is critical for unambiguous communication within the complex, multi-disciplinary GAIA AIR program. These sections serve as the authoritative source for definitions and expansions used throughout the COAFI documentation set. Terms and acronyms within are organized primarily by the lifecycle phase where they are most relevant or typically introduced.
Info Code: GLO, CAT Status: Approved
This document contains the official, approved glossary of terms used throughout the GAIA AIR program and COAFI documentation, organized by lifecycle phase. (Draft Content Below - Requires Review)
Term | Definition | Primary Lifecycle Phase(s) | Related COAFI/Concept |
---|---|---|---|
AGAD (As GAIA AIR Does) | Quantum-Financial Architecture for Autopoietic Aerospace Systems; a regenerative financing/ops standard. | Concept, All | AGAD Standard |
Autopoiesis | The property of a system capable of reproducing and maintaining itself. | Concept | AGAD |
CEU (Central Entangling Unity) | Core unit encoding system intent, purpose, and boundaries within CFSI. Also Common European Universal. | Concept, All | CFSI, CEU Manifest |
CFSI (Constitutional Framework of System Intent) | Foundational doctrine encoding human intent into engineered systems. | Concept, All | CFSI Manifest |
e.G.A.I.As | Paradigm for AI: Embodiment, Evolving Nature, Extended Capacity. | Concept, Design | e.G.A.I.As Paradigm |
Feasibility Study | An assessment of the practicality of a proposed project or system. | Concept | PMO |
ODRF (Open Design & Replication Framework) | Licensing framework promoting open design and replication, used by AGAD. | Concept | AGAD |
Regenerative Finance (ReFi) | Financial models aiming for positive systemic environmental and social outcomes. | Concept | AGAD |
Technology Readiness Level (TRL) | Method for estimating the maturity of technologies. | Concept, Design, V&V | AGIS (Sec 8.4) |
Trade Study | Comparative analysis of different design options or technologies. | Concept, Design | CAL, RPT |
URIF (Universal Robotics Ingenuity Foundation) | Framework for cognitive robotic systems integrating quantum, holography, swarms. | Concept, Design | URIF Overview |
Term | Definition | Primary Lifecycle Phase(s) | Related COAFI/Concept |
---|---|---|---|
Interface Requirements Document (IRD) | Document specifying requirements for interfaces between systems/components. | Requirements, Design | REQ, ICD |
Non-Functional Requirement (NFR) | Requirement specifying criteria used to judge the operation of a system (e.g., performance, reliability). | Requirements, Design | REQ, FFI |
Requirement | A condition or capability needed by a user or system to solve a problem or achieve an objective. | Requirements | REQ |
Requirements Traceability Matrix (RTM) | Document linking requirements through to their validation and implementation. | Requirements, V&V, All | REQ, TEST, RES |
System Requirements Specification (SRS) | Document defining the high-level requirements for a system. | Requirements, Design | REQ, SP |
Use Case | Description of how a user or system interacts with the target system to achieve a specific goal. | Requirements, Design | REQ, OV |
Verification & Validation (V&V) | Process of checking that a product/system meets specifications and fulfills its intended purpose. | Requirements, V&V | V&V |
Term | Definition | Primary Lifecycle Phase(s) | Related COAFI/Concept |
---|---|---|---|
AGIS (Aerospace General Integration System) | GAIA AIR's nomenclature system for identifying systems, components, functions, and interfaces. | Design, All | AGIS Standard |
Architecture | The fundamental organization of a system, embodied in its components, their relationships, and principles. | Design | SDD, SWD |
Bill of Materials (BOM) | Hierarchical list of all parts, components, and raw materials needed to build a product. | Design, Mfg, Maint | BOM, CAT |
Boundary Representation (B-Rep) | Method for representing shapes using their boundaries in CAD. | Design | CAD |
Computer-Aided Design (CAD) | Use of computers to aid in the creation, modification, analysis, or optimization of a design. | Design, Mfg, Sim | DWG |
Computer-Aided Engineering (CAE) | Use of computer software to simulate performance to improve product designs or assist in resolution. | Design, Analysis | CAL |
Computer-Aided Manufacturing (CAM) | Use of software to control machine tools and related ones in the manufacturing of workpieces. | Design, Mfg | MPP |
COAFI (Comprehensive Organized Aerospace Full Index) | GAIA AIR's overarching documentation structure. | Design, All | COAFI Structure |
Data Module Code (DMC) | Unique identifier for a data module in S1000D technical publications. | Design, Maint | S1000D, GP-AM |
Design Order (DO) | Specific instructions, often including drawings, to implement an approved engineering change. | Design, Mfg, Maint | ADMIN, PROC, DWG |
Detailed Design Document (DDD) | Document providing low-level design details for specific components or modules. | Design | DD, SP |
Digital Twin | A virtual representation that serves as the real-time digital counterpart of a physical object or process. | Design, Sim, Ops, Maint | DigT1 (AGIS), GACMS |
Function ID (FID) | Unique identifier for a function within the FFI framework. | Design, All | FFI |
Functional Framework Implementation (FFI) | COAFI component defining how functions are managed and traced. | Design, All | FFI |
Geometric Dimensioning & Tolerancing (GD&T) | System for defining and communicating engineering tolerances on drawings. | Design, Mfg, QC | DWG |
Hierarchical Numbering (AGIS) | AGIS coding format representing parent-child relationships ([Func]-[L1.L2.L3]-[Variant] ). |
Design, All | AGIS (Sec 6.3) |
Interface Control Document (ICD) | Document formally defining interfaces between systems or components. | Design, Integration | ICD, SP |
Integration/Interface Code (IntCode) | AGIS code identifying connections between components (Int-[Code1]-to-[Code2] ). |
Design, All | AGIS (Sec 3.3) |
Model-Based Systems Engineering (MBSE) | Formalized application of modeling to support system requirements, design, analysis, V&V activities. | Design, All | SysML, UML |
Primary System Code (PriCode) | AGIS code identifying major systems ([Category Abbr][Num] ). |
Design, All | AGIS (Sec 3.1) |
Product Lifecycle Management (PLM) | Process of managing the entire lifecycle of a product from inception through disposal. | Design, All | PLM System |
Sequential Numbering (AGIS) | AGIS coding format providing a simple inventory number within a function ([Func]-[NNN] ). |
Design, All | AGIS (Sec 6.2) |
System Architecture Description (SAD) | Document providing a high-level overview of the system's architecture. | Design | SDD, OV |
System Design Description (SDD) | Document providing a detailed description of the system design. | Design | SDD, DD |
Systems Modeling Language (SysML) | A general-purpose modeling language for systems engineering applications. | Design | MBSE |
Technology Identifier (TechCode) | AGIS suffix indicating integration of advanced technology (-[TechCode] ). |
Design, All | AGIS (Sec 8) |
Unified Modeling Language (UML) | A general-purpose, developmental, modeling language intended to provide a standard way to visualize design. | Design | MBSE |
Variant (AGIS) | Optional AGIS suffix for versions or configurations (-[Variant] ). |
Design, All | AGIS (Sec 6.3) |
Term | Definition | Primary Lifecycle Phase(s) | Related COAFI/Concept |
---|---|---|---|
Analysis Report | Document reporting results of engineering analyses (structural, thermal, etc.). | Analysis, V&V | CAL, RPT |
Computational Fluid Dynamics (CFD) | Branch of fluid mechanics using numerical analysis and data structures to analyze fluid flows. | Analysis, Sim | CAL |
Failure Modes & Effects Analysis (FMEA) | Systematic, proactive method for evaluating a process to identify where and how it might fail. | Analysis, Design, Safety | CAL, RPT |
Fault Tree Analysis (FTA) | Top-down, deductive failure analysis where system failure is traced back to root causes. | Analysis, Safety | SAR |
Finite Element Analysis (FEA) | Numerical method for predicting how a product reacts to real-world forces, vibration, heat, etc. | Analysis, Sim | CAL |
GAIA AIR Computing and Material Simulation (GACMS) | COAFI Part V, the computational and simulation backbone of GAIA AIR. | Analysis, Sim, All | GACMS (Part V) |
High-Performance Computing (HPC) | Use of supercomputers and parallel processing techniques for solving complex computational problems. | Analysis, Sim | GACMS |
Physics-Informed Neural Network (PINN) | Neural networks trained to solve supervised learning tasks while respecting given laws of physics. | Analysis, Sim | GACMS AI |
Predictive Analytics Engine (PRED) | GACMS AI service for degradation, anomaly, and failure forecasting. | Analysis, Sim, Ops | GACMS AI |
Risk Priority Number (RPN) | A measure used in FMEA to assess risk associated with potential failure modes. | Analysis, Safety | FMEA |
Safety Assessment Report (SAR) | Document summarizing the overall safety analysis of a system. | Analysis, Safety, Cert | RPT, CAL |
Simulation Report | Document reporting results of computational simulations. | Analysis, V&V | CAL, RPT |
Surrogate Modeling | Technique using a simpler model to approximate a complex, computationally expensive model. | Analysis, Sim | GACMS AI |
Term | Definition | Primary Lifecycle Phase(s) | Related COAFI/Concept |
---|---|---|---|
Additive Manufacturing (AM) | Process of joining materials to make objects from 3D model data, usually layer upon layer. | Mfg | AM (AGIS), Add1 |
Assembly Instructions | Step-by-step guidance for assembling components. | Mfg | PROC, MAN |
Enterprise Resource Planning (ERP) | Integrated management of main business processes, often mediated by software and technology. | Mfg, Ops | ERP System |
Manufacturing Execution System (MES) | Computerized systems used in manufacturing to track and document the transformation of raw materials. | Mfg | MES |
Manufacturing Process Plan (MPP) | Document detailing the sequence of operations to manufacture a part. | Mfg | PROC, PLAN |
Non-Destructive Testing (NDT) | Testing and analysis techniques used to evaluate material properties without causing damage. | Mfg, Maint, QC | TEST |
Quality Assurance (QA) | Maintenance of a desired level of quality in a service or product, especially by attention to detail. | Mfg, All | QMP, QCP |
Quality Control (QC) | System of maintaining standards in manufactured products by testing a sample against the specification. | Mfg | QMP, QCP |
Quality Control Plan (QCP) | Document outlining quality checks during manufacturing. | Mfg | PLAN, PROC |
Tooling | Jigs, fixtures, molds, and other equipment used in manufacturing. | Mfg | DWG, DD, SP |
Term | Definition | Primary Lifecycle Phase(s) | Related COAFI/Concept |
---|---|---|---|
Acceptance Test Procedure (ATP) | Defines procedures for customer or end-user acceptance. | V&V, Delivery | TEST, PROC |
Certification | Formal process by which compliance with regulatory requirements is assured. | V&V, Cert | Cer1 (AGIS) |
Electromagnetic Compatibility (EMC) | Ability of electronic equipment to function properly together in the electronic environment. | V&V | TEST |
Qualification Test Report (QTR) | Documents results of formal qualification testing (e.g., environmental). | V&V, Cert | RES, RPT |
Test Plan | Document outlining the strategy, resources, schedule, and scope for testing. | V&V | TEST, PLAN |
Test Procedure | Document providing step-by-step instructions for executing specific tests. | V&V | TEST, PROC |
Test Report | Document reporting the results and outcomes of executed tests. | V&V | RES, RPT |
Term | Definition | Primary Lifecycle Phase(s) | Related COAFI/Concept |
---|---|---|---|
Airworthiness Directive (AD) | Legally enforceable regulation issued by aviation authorities to correct an unsafe condition. | Ops, Maint | MAN, PROC, ADMIN |
Aircraft Maintenance Manual (AMM) | Manual containing procedures required to maintain the aircraft. | Maint | MAN |
Component Maintenance Manual (CMM) | Manual containing procedures for off-aircraft maintenance of specific components. | Maint, Overhaul | MAN |
Customer Relationship Management (CRM) | Practices, strategies and technologies used to manage and analyze customer interactions and data. | Ops, Support | PCS |
Illustrated Parts Catalog (IPC) | Manual identifying and listing replaceable parts and assemblies. | Maint, Logistics | CAT |
Maintenance, Repair, and Overhaul (MRO) | Activities involved in maintaining, repairing, or overhauling aerospace components and systems. | Maint, Overhaul | MRO Module |
Operations Manual (OM) | Instructions for operating the system or equipment. | Ops | MAN |
Product Customer Services (PCS) | GAIA AIR specific documentation category for customer support, feedback, training, service history. | Ops, Support | RPT, PROC, MAN, CAT |
Service Bulletin (SB) | Notice from a manufacturer informing operators of a product modification or inspection. | Ops, Maint | MAN, PROC, ADMIN |
Structural Repair Manual (SRM) | Manual containing information and procedures for repairing the aircraft structure. | Maint, Overhaul | MAN |
Troubleshooting | Systematic approach to problem-solving used to find and correct issues with complex systems. | Maint | MAN, PROC |
Term | Definition | Primary Lifecycle Phase(s) | Related COAFI/Concept |
---|---|---|---|
Circular Economy | Economic model aiming to eliminate waste and promote the continual use of resources. | EoL, Concept | AGAD |
Decommissioning | Process of taking a system or facility out of service. | EoL | PLAN |
End-of-Life (EoL) | Final stage in a product's lifecycle, involving disposal, recycling, or regeneration. | EoL | PREDP |
Material Declaration | Report listing materials used in a product, often for environmental compliance. | EoL, Design, Mfg | RPT, CAT |
Product Regenerative Engineering Disposal Procedures (PREDP) | GAIA AIR specific procedures for decommissioning, disassembly, recovery, and regeneration. | EoL | PROC, PLAN, MAN |
REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) | EU regulation addressing the production and use of chemical substances. | EoL, Design, Mfg | Standards |
Regeneration | Process of restoring or renewing components or materials for reuse or upcycling. | EoL | PREDP, AGAD |
RoHS (Restriction of Hazardous Substances) | EU directive restricting the use of specific hazardous materials in electrical/electronic equipment. | EoL, Design, Mfg | Standards |
Term | Definition | Primary Lifecycle Phase(s) | Related COAFI/Concept |
---|---|---|---|
Administrative (Info Code) | COAFI Info Code for documents primarily administrative in nature (e.g., approvals, history). | All | ADMIN |
Baseline | A formally approved version of a configuration item, used as a basis for further development. | All | CM |
Configuration Control Board (CCB) | Group responsible for reviewing and approving/disapproving proposed changes to baselines. | All | CM, PMO |
Configuration Item (CI) | An aggregation of hardware, software, or both, designated for configuration management. | All | CM |
Configuration Management (CM) | Process for establishing and maintaining consistency of a product's attributes throughout its life. | All | CMP |
Configuration Management Plan (CMP) | Document defining how configuration management will be performed. | All | PLAN |
Engineering Change Request (ECR) | Formal request to change a configuration item after its baseline has been established. | All | ADMIN, PROC, REQ |
Engineering Order (EO) | Formal document authorizing the implementation of an approved change (ECR). | All | ADMIN, PROC, REQ |
Explainable AI (XAI) | Artificial intelligence in which the results of the solution can be understood by humans. | All | XAI-TAGS, GACMS AI |
Human-in-the-Loop (HITL) | Model requiring human interaction, particularly for verification or decision-making in critical steps. | All | AERO-IT-LLM |
Info Code | Code within COAFI Document ID indicating the primary nature of the document's content. | All | COAFI Structure |
Overview (Info Code) | COAFI Info Code for high-level summary documents. | All | OV |
Project Management Office (PMO) | Group or department within a business that defines and maintains standards for project management. | All | PMO (Part VI) |
Project Management Plan (PMP) | Document defining how a project is executed, monitored, controlled, and closed. | All | PLAN |
Quality Management Plan (QMP) | Document defining quality policies, procedures, and standards. | All | PLAN |
Quality Management System (QMS) | Formalized system documenting quality processes. | All | QMP |
Retrieval-Augmented Generation (RAG) | AI technique combining pre-trained models with external knowledge retrieval to improve accuracy. | All | AERO-IT-LLM, GACMS AI |
Role-Based Access Control (RBAC) | Access control mechanism based on user roles and privileges. | All (Security) | GACMS Security |
Risk Management Plan (RMP) | Document defining how risks are managed. | All | PLAN |
Specification (Info Code) | COAFI Info Code for documents defining technical requirements, characteristics, etc. | All | SP |
Status (Document) | Indicates the maturity/approval state of a COAFI document (e.g., Draft, Approved, Testing). | All | COAFI Classification |
Info Code: CAT, GLO Status: Approved
This document provides the official list of acronyms and abbreviations used within the GAIA AIR program documentation, organized by lifecycle phase. (Draft Content Below - Requires Review)
Acronym | Full Term | Primary Lifecycle Phase(s) | Notes/Context |
---|---|---|---|
AGAD | As GAIA AIR Does | Concept, All | Regenerative Finance/Ops Standard |
CEU | Central Entangling Unity / Common European Universal | Concept, All | Core unit encoding system intent |
CFSI | Constitutional Framework of System Intent | Concept, All | Foundational doctrine for intent |
R&D | Research and Development | Concept | Initial exploratory phase |
SDG | Sustainable Development Goal (UN) | Concept | Referenced in AGAD |
TRL | Technology Readiness Level | Concept, Design, V&V | Technology maturity scale |
URIF | Universal Robotics Ingenuity Foundation | Concept, Design | Cognitive robotics framework |
Acronym | Full Term | Primary Lifecycle Phase(s) | Notes/Context |
---|---|---|---|
FID | Function ID | Requirements, Design, All | Identifier within FFI |
FFI | Functional Framework Implementation | Requirements, Design, All | COAFI component for function management |
IRD | Interface Requirements Document | Requirements, Design | Specifies interface needs |
NFR | Non-Functional Requirement | Requirements, Design | Performance, reliability, usability, etc. |
RTM | Requirements Traceability Matrix | Requirements, V&V, All | Links requirements to tests/design |
SRS | System Requirements Specification / Software Requirements Specification | Requirements, Design | Requirements document |
Acronym | Full Term | Primary Lifecycle Phase(s) | Notes/Context |
---|---|---|---|
AGIS | Aerospace General Integration System | Design, All | GAIA AIR Nomenclature System |
API | Application Programming Interface | Design, Integration | Software interface definition |
BOM | Bill of Materials | Design, Mfg, Maint | List of parts/materials |
B-Rep | Boundary Representation | Design | CAD geometry representation method |
CAD | Computer-Aided Design | Design, Mfg, Sim | Software for creating designs |
CAE | Computer-Aided Engineering | Design, Analysis | Software for engineering analysis |
CAM | Computer-Aided Manufacturing | Design, Mfg | Software for controlling manufacturing machines |
COAFI | Comprehensive Organized Aerospace Full Index | Design, All | GAIA AIR Documentation Framework |
DMC | Data Module Code | Design, Maint | S1000D identifier |
DO | Design Order | Design, Mfg, Maint | Instructions to implement an approved change |
DDD | Detailed Design Document | Design | Low-level component design details |
DWG | Drawing | Design, Mfg, Maint | Engineering drawing document type |
GD&T | Geometric Dimensioning & Tolerancing | Design, Mfg, QC | Standard for defining tolerances on drawings |
ICD | Interface Control Document | Design, Integration | Formal interface definition document |
IntCode | Integration/Interface Code (AGIS) | Design, All | AGIS code for interfaces |
MBSE | Model-Based Systems Engineering | Design, All | Systems engineering using formal models |
PriCode | Primary System Code (AGIS) | Design, All | AGIS code for major systems |
SAD | System Architecture Description | Design | High-level architecture document |
SDD | System Design Description | Design | Detailed system design document |
SeCode | Secondary System Code (AGIS) | Design, All | AGIS code for dependent components (may be merged) |
SPARQL | SPARQL Protocol and RDF Query Language | Design, Data | Query language for RDF/Knowledge Graphs |
SysML | Systems Modeling Language | Design | Modeling language for systems engineering |
TechCode | Technology Identifier (AGIS) | Design, All | AGIS suffix for advanced tech |
UML | Unified Modeling Language | Design | Modeling language primarily for software |
Acronym | Full Term | Primary Lifecycle Phase(s) | Notes/Context |
---|---|---|---|
CFD | Computational Fluid Dynamics | Analysis, Sim | Simulation of fluid flows |
FMEA | Failure Modes and Effects Analysis | Analysis, Design, Safety | Risk analysis methodology |
FMECA | Failure Modes, Effects, and Criticality Analysis | Analysis, Design, Safety | Extension of FMEA including criticality |
FTA | Fault Tree Analysis | Analysis, Safety | Top-down failure analysis |
FEA | Finite Element Analysis | Analysis, Sim | Numerical method for structural/thermal analysis |
GACMS | GAIA AIR Computing and Material Simulation | Analysis, Sim, All | COAFI Part V |
HPC | High-Performance Computing | Analysis, Sim | Use of supercomputers/clusters |
PINN | Physics-Informed Neural Network | Analysis, Sim | AI model respecting physics laws |
PRED | Predictive Analytics Engine (GACMS) | Analysis, Sim, Ops | GACMS AI service |
RPN | Risk Priority Number | Analysis, Safety | FMEA metric |
SAR | Safety Assessment Report | Analysis, Safety, Cert | Overall system safety documentation |
Acronym | Full Term | Primary Lifecycle Phase(s) | Notes/Context |
---|---|---|---|
AM | Additive Manufacturing | Mfg | 3D Printing |
ERP | Enterprise Resource Planning | Mfg, Ops | Business process management software |
ISRU | In-Situ Resource Utilization | Mfg (Space), GMO | Using local resources (e.g., on Moon/Mars) |
MES | Manufacturing Execution System | Mfg | System to track/document manufacturing |
MPP | Manufacturing Process Plan | Mfg | Sequence of manufacturing operations |
NDT | Non-Destructive Testing | Mfg, Maint, QC | Testing without damaging the part |
QC | Quality Control | Mfg | Maintaining standards via testing samples |
QCP | Quality Control Plan | Mfg | Plan for QC checks during manufacturing |
Acronym | Full Term | Primary Lifecycle Phase(s) | Notes/Context |
---|---|---|---|
ATP | Acceptance Test Procedure | V&V, Delivery | Procedure for customer acceptance |
EMC | Electromagnetic Compatibility | V&V | Testing for electromagnetic interference |
QTR | Qualification Test Report | V&V, Cert | Report for formal qualification tests |
V&V | Verification & Validation | Requirements, V&V | Process of checking requirements & fitness |
Acronym | Full Term | Primary Lifecycle Phase(s) | Notes/Context |
---|---|---|---|
AD | Airworthiness Directive | Ops, Maint | Mandatory action from aviation authority |
AMM | Aircraft Maintenance Manual | Maint | Procedures for aircraft maintenance |
CMM | Component Maintenance Manual | Maint, Overhaul | Procedures for component maintenance |
CRM | Customer Relationship Management | Ops, Support | System/process for managing customer interactions |
IPC | Illustrated Parts Catalog | Maint, Logistics | Catalog of replaceable parts |
MRO | Maintenance, Repair, and Overhaul | Maint, Overhaul | Industry term for maintenance activities |
OM | Operations Manual | Ops | Instructions for operating equipment |
PCS | Product Customer Services | Ops, Support | GAIA AIR specific documentation category |
SB | Service Bulletin | Ops, Maint | Manufacturer recommendation/instruction |
SRM | Structural Repair Manual | Maint, Overhaul | Procedures for structural repairs |
Acronym | Full Term | Primary Lifecycle Phase(s) | Notes/Context |
---|---|---|---|
EoL | End-of-Life | EoL | Final stage of product lifecycle |
PREDP | Product Regenerative Engineering Disposal Procedures | EoL | GAIA AIR specific disposal/regen procedures |
REACH | Registration, Evaluation, Authorisation and Restriction of Chemicals | EoL, Design, Mfg | EU chemical regulation |
RoHS | Restriction of Hazardous Substances | EoL, Design, Mfg | EU directive restricting hazardous materials |
Acronym | Full Term | Primary Lifecycle Phase(s) | Notes/Context |
---|---|---|---|
AI | Artificial Intelligence | All | Intelligence demonstrated by machines |
CCB | Configuration Control Board | All | Body approving changes to baselines |
CI | Configuration Item | All | Item under configuration management |
CM | Configuration Management | All | Process for managing product consistency |
CMP | Configuration Management Plan | All | Document defining CM process |
CMS | Content Management System | All | System for managing digital content/documents |
CV | Computer Vision | All (AI Service) | AI field enabling computers to "see" |
DODP | Declarative Operational Digital Policies | All | Policies implementing CEU principles |
ECR | Engineering Change Request | All | Formal request to change a baseline |
EO | Engineering Order | All | Formal authorization to implement a change |
ETL | Extract, Transform, Load | All (Data Int) | Data integration process |
FAA | Federal Aviation Administration (USA) | All | US aviation regulatory body |
EASA | European Union Aviation Safety Agency | All | EU aviation regulatory body |
GDPR | General Data Protection Regulation (EU) | All | EU data privacy regulation |
GPU | Graphics Processing Unit | All (Hardware) | Processor specialized for parallel computation |
HITL | Human-in-the-Loop | All | Process requiring human interaction/approval |
ISO | International Organization for Standardization | All | International standards body |
ITAR | International Traffic in Arms Regulations (USA) | All | US export control regulations |
KG | Knowledge Graph | All (AI Service) | Graph-based knowledge representation |
KPI | Key Performance Indicator | All | Measurable value demonstrating effectiveness |
LLM | Large Language Model | All (AI Service) | AI model trained on vast text data |
MOD | Modular Implementation Layer (CFSI/AGAD) | All | Component within CFSI/AGAD structure |
MVP | Minimum Viable Product | All (Project Mgmt) | Product version with just enough features |
NLP | Natural Language Processing | All (AI Service) | AI field enabling computers to understand language |
PDR | Preliminary Design Review | Design | Project milestone review |
PII | Personally Identifiable Information | All | Data that can identify an individual |
PLM | Product Lifecycle Management | All | Process/system for managing product lifecycle |
PMO | Project Management Office / COAFI Part VI | All | Organizational unit / COAFI Part |
PMP | Project Management Plan | All | Document defining project execution |
PQC | Post-Quantum Cryptography | All (Security) | Cryptographic algorithms resistant to quantum attack |
PTIM | Pre-Trained Implementable Models (CFSI) | All (AI) | AI models constrained by CEU declarations |
QA | Quality Assurance | All | Process ensuring quality standards are met |
QMP | Quality Management Plan | All | Document defining quality process |
QMS | Quality Management System | All | Formalized system documenting quality processes |
RAG | Retrieval-Augmented Generation | All (AI Technique) | AI technique combining generation & retrieval |
RBAC | Role-Based Access Control | All (Security) | Access control based on user roles and privileges |
RL | Reinforcement Learning | All (AI Service) | AI learning through trial and error |
RMP | Risk Management Plan | All | Document defining risk management process |
ROS | Robot Operating System | Robotics | Framework for robot software development |
SAE | SAE International (formerly Society of Automotive Engineers) | All | Standards organization (esp. aerospace) |
SME | Subject Matter Expert | All | Person with deep knowledge in a specific area |
SP | Specification (Info Code) | All | COAFI Info Code |
XAI | Explainable AI | All | AI that can explain its decisions |
Info Code: OV, REF Status: Approved
This document provides an overview of the standards and regulations landscape relevant to GAIA AIR. It serves as an entry point to the detailed lists of applicable industry standards (APP.02.01), regulatory requirements (APP.02.02), and internal GAIA AIR doctrines (APP.02.03). Maintaining compliance and adherence to these standards is paramount for safety, interoperability, and certification.
Info Code: REF, CAT Status: Approved
This document lists key external industry standards referenced and applied within the GAIA AIR program. (Draft Content Below - Requires Review & Expansion)
Standard ID | Title | Issuing Body | Primary Area(s) of Application |
---|---|---|---|
ISO 9001 | Quality management systems — Requirements | ISO | Overall Quality Management (QMS) |
AS9100 | Quality Management Systems - Requirements for Aviation, Space, and Defense Organizations | SAE | Aerospace Quality Management (QMS) |
ISO 14001 | Environmental management systems — Requirements with guidance for use | ISO | Environmental Management |
ISO/IEC 27001 | Information security, cybersecurity and privacy protection — Information security management systems — Requirements | ISO/IEC | Information Security Management (ISMS) |
ISO/IEC/IEEE 15288 | Systems and software engineering — System life cycle processes | ISO/IEC/IEEE | Systems Engineering Lifecycle |
ISO 10007 | Quality management — Guidelines for configuration management | ISO | Configuration Management Guidance |
ANSI/EIA-649 | National Consensus Standard for Configuration Management | SAE | Configuration Management Standard |
ATA iSpec 2200 | Information Standards for Aviation Maintenance | ATA | Maintenance Data Structure & Content |
S1000D | International specification for technical publications | ASD/AIA/ATA | Technical Documentation (Modular) |
DO-178C | Software Considerations in Airborne Systems and Equipment Certification | RTCA | Airborne Software Safety Assurance |
DO-254 | Design Assurance Guidance for Airborne Electronic Hardware | RTCA | Airborne Hardware Safety Assurance |
DO-160G | Environmental Conditions and Test Procedures for Airborne Equipment | RTCA | Environmental Qualification Testing |
MIL-STD-882E | Standard Practice for System Safety | US DoD | System Safety Program Requirements |
MIL-STD-498 | Software Development and Documentation | US DoD | (Often referenced, though superseded by others) |
ISO/ASTM 52910 | Additive manufacturing — Design — Requirements, guidelines and recommendations | ISO/ASTM | Additive Manufacturing Design |
ASME Y14.5 | Dimensioning and Tolerancing | ASME | Engineering Drawings (GD&T) |
IEEE 7000 | Model Process for Addressing Ethical Concerns During System Design | IEEE | Ethical Design Considerations |
ISO 42001 | Artificial intelligence — Management system | ISO | AI Management Systems |
(Add others as identified) | (...) | (...) | (...) |
Info Code: REF, CAT Status: Approved
This document lists key regulatory frameworks and specific regulations applicable to GAIA AIR systems. (Draft Content Below - Requires Review & Expansion)
Regulation ID | Title / Subject | Issuing Body | Primary Area(s) of Application |
---|---|---|---|
14 CFR Part 25 | Airworthiness Standards: Transport Category Airplanes | FAA (USA) | Airframe Design & Certification (AMPEL360) |
EASA CS-25 | Certification Specifications for Large Aeroplanes | EASA (EU) | Airframe Design & Certification (AMPEL360) |
14 CFR Part 21 | Certification Procedures for Products and Articles | FAA (USA) | Certification Process |
EASA Part 21 | Certification of aircraft and related products, parts and appliances... | EASA (EU) | Certification Process |
14 CFR Part 33 | Airworthiness Standards: Aircraft Engines | FAA (USA) | Engine Certification |
EASA CS-E | Certification Specifications for Engines | EASA (EU) | Engine Certification |
14 CFR Part 43 | Maintenance, Preventive Maintenance, Rebuilding, and Alteration | FAA (USA) | Maintenance Procedures & Records |
EASA Part 145 | Requirements for Maintenance Organisations | EASA (EU) | Maintenance Organisation Approval |
EU AI Act | Artificial Intelligence Act (Regulation laying down harmonised rules...) | European Union | AI System Development & Deployment Ethics/Risk |
GDPR | General Data Protection Regulation | European Union | Data Privacy (Personal Data) |
CCPA / CPRA | California Consumer Privacy Act / Privacy Rights Act | California (USA) | Data Privacy (Consumer Rights) |
ITAR | International Traffic in Arms Regulations | US Dept. State | Export Control (Defense-related tech) |
EAR | Export Administration Regulations | US Dept. Commerce | Export Control (Dual-use tech) |
Outer Space Treaty | Treaty on Principles Governing Activities of States in Exploration... | UN | International Space Law |
(Add others) | (e.g., Specific NASA/ESA program requirements, FCC/ITU regs) | (...) | (...) |
Info Code: REF, CAT Status: Approved
This document provides direct references to the foundational internal standards, doctrines, and framework documents governing the GAIA AIR program. (Draft Content Below - Requires Link Population & Doc ID Confirmation)
Doctrine/Standard/Framework | Primary Document ID(s) | Location / COAFI Reference | Description |
---|---|---|---|
CFSI | CFSI-MANIFEST-0001 |
Part 0 (GP-FD-01-B-THEO-001-A ?) |
Foundational doctrine for system intent. |
CEU Manifest | CEU-DECLARATION-0001 |
Part 0 (GP-FD-01-B-THEO-001-A ?) |
Defines Central Entangling Unities. |
AGAD Standard | COAFI-STANDARD-AGAD-0001-A |
Part 0 (GP-FD-01-B-THEO-001-A ?) |
Quantum-Financial & Regenerative Ops Standard. |
URIF Overview | GPGM-URIF-0514-001-A |
Part 0 (GP-FD-01-B-THEO-001-A ?) |
Cognitive Robotics Framework. |
e.G.A.I.As Paradigm | GP-FD-01-B-THEO-002-A (Est) |
Part 0 (GP-FD-01-B-THEO-002-A ) |
AI Paradigm (Embodiment, Evolving, Extended). |
AGIS Nomenclature | GP-APP-AGISSTD-02-A-001-A (Est) |
Part VII (APP.02.03 ) |
Aerospace General Integration System Standard. |
COAFI Core Framework | GP-APP-COAFIOV-03-A-001-A |
Part VII (APP.03.01 ) |
Overview of the COAFI structure. |
FFI | COAFI-FUNC-CORE-0001-A |
Part VII (APP.03 or Link) |
Functional Framework Implementation details. |
GACMS Architecture | GP-GACMS-COMP-00-A-001-A |
Part V (GP-GACMS-COMP-00-A ) |
Overview of Computing & Simulation Arch. |
AERO-IT-LLM Model Card | GP-GACMS-AI-LLM-MCARD-001-A |
Part VII (APP.05 or Link) |
Details of the core LLM framework. |
GAIA AIR Ethics Policy | GP-FD-04-A-001-A (Est) |
Part 0 (GP-FD-04-A-001-A ) |
Overarching ethical guidelines. |
Info Code: OV, REF Status: Approved
This document introduces the sections within APP.03, providing essential guidance on understanding and utilizing the COAFI documentation framework. It covers the overall structure (APP.03.01), the classification system (APP.03.02), the meaning of information codes (APP.03.03), a comprehensive list of standard engineering document types within the framework (APP.03.04), and references to style guides and templates (APP.03.05). This chapter serves as the primary reference for authors and users navigating the COAFI documentation ecosystem.
Info Code: OV, REF Status: Approved
This document provides a high-level summary of the Comprehensive Organized Aerospace Full Index (COAFI) structure. (Draft Content Below - Requires Review)
- Part 0: Project Foundations (GP-FD): Establishes the philosophical, theoretical, and regulatory bedrock of GAIA AIR. Contains foundational doctrines (CFSI, CEU, AGAD), core scientific principles, governing standards, and cross-disciplinary research directions.
- Part I: Airframes (GP-AM): Focuses on atmospheric flight vehicles, specifically the AMPEL360XWLRGA. Covers design, systems, structures, propulsion (conventional/hybrid), maintenance, and operations following an adapted ATA chapter structure.
- Part II: Spaceframes (GP-SM): Addresses orbital and interplanetary vehicles and habitats (GAIA SPACE). Covers design, life support, propulsion (chemical/ion/quantum), structures, docking, and operations using a space-adapted chapter structure.
- Part III: Common Networks (GP-CN): Defines the architecture, protocols, security, and specifications for shared communication, data, power, and control networks connecting GAIA AIR assets (air, space, ground).
- Part IV: Ground Infrastructure (GP-GB): Details the design, construction, operation, and maintenance of terrestrial support infrastructure, including launch facilities, control centers, manufacturing plants, and data centers.
- Part V: GAIA AIR Computing and Material Simulation (GP-GACMS): Describes the digital backbone: HPC infrastructure, cloud resources, simulation environments (CFD, FEA, Materials), AI services (AERO-IT-LLM, GEN, SIM, PRED, KG), data integration layers, and knowledge management systems.
- Part VI: Project Management & Operations (GP-PMO): Contains overarching project management plans (PMP, CMP, QMP, RMP), organizational structures, operational procedures, lifecycle management guidelines, and governance documentation.
- Part VII: Appendices and Reference Material (GP-APP): Serves as the central repository for reference information supporting all other parts, including terminology, standards lists, framework guides, resource links, and core doctrine summaries. (This document resides here).
- Part VIII: GAIA GALACTIC MINING OPERATIONS (GP-GMO): Focuses on the specialized systems, robotics, resource extraction/processing techniques, and logistics for extraterrestrial mining activities.
- Part IX: RESERVED FOR FUTURE EXPANSION (GP-RES): Designated placeholder for future, currently undefined GAIA AIR domains, such as interstellar capabilities, advanced AI evolution, or large-scale ecological engineering.
Info Code: REF, GLO Status: Approved
This document formally defines the document classification codes (suffixes) used throughout COAFI. (Content Included Below)
Suffix Code | Classification | Description | Primary Use |
---|---|---|---|
-A |
Approved (In Service) | Officially released, validated, and currently applicable documentation for operational systems or established procedures/standards. | Operations, Maintenance, Current Design Baseline, Established Standards |
-B |
Being Tested (Development) | Documentation for systems, components, or procedures currently under active development, testing, and validation. Not yet fully approved. | Engineering Development, Prototype Testing, Pre-Release Validation |
-B-THEO |
Speculative (Studying / Theoretical) | Documentation exploring theoretical concepts, future possibilities, or early-stage research not yet in active development or testing. | R&D, Concept Exploration, Long-Term Vision, Feasibility Studies |
-C |
Condensed (Formal Scientific Consensus / Summary) | Concise summaries representing established scientific principles, consensus views, or high-level overviews derived from approved data. | Quick Reference, Training, High-Level Overviews, Foundational Principles |
-D |
Auto-Adaptive Configuration | Documentation dynamically generated or updated by AI systems based on real-time data, configuration changes, or adaptive algorithms. | Real-time System Status, AI-driven Optimization Logs, Dynamic Procedures |
Note: The classification suffix applies to the content status described within a specific version of a document, identified by its full COAFI Document ID (e.g., GP-AM-AMPEL-0100-05-A-001-A
describes Approved procedures in version 001-A
of that document).
Info Code: REF, CAT, GLO Status: Approved
This document provides the definitive list and description of the Information Codes used within COAFI document IDs. (Content Included Below)
Info Code | Description | Usage |
---|---|---|
OV | Overview | High-level summaries, introductions, scope definitions. |
SP | Specification | Detailed technical requirements, characteristics, performance parameters, limits. |
REQ | Requirements Document | Formal capture, definition, and management of system/component requirements. |
DD | Design Document | Descriptions of how a system/component is designed to meet requirements. |
SDD | System Description Document | Comprehensive description of system architecture, components, and operation. |
DWG | Drawing | Engineering drawings, schematics, wiring diagrams, illustrations. |
CAL | Calculation/Analysis | Documentation of engineering calculations, simulations, performance analyses. |
RPT | Report (General) | General reports, study findings, investigation results, summaries. |
TEST | Test Plan/Procedure | Documents outlining test strategy, setup, steps, and expected outcomes. |
RES | Test Results | Documents recording the actual outcomes and analysis of tests performed. |
MAN | Manual | Instructions for users/operators/maintainers (OM, AMM, CMM, SRM, Training). |
PROC | Procedure | Step-by-step instructions for specific tasks (maintenance, manufacturing, admin). |
CAT | Catalog/List | Lists or catalogs of items (parts in IPC, standards, acronyms, resources). |
GLO | Glossary | Definitions of terms. |
PLAN | Plan | Documents outlining intended future actions (Project, Maint, Risk, Quality, CM). |
ICD | Interface Control Document | Formal definition of interfaces between entities. |
BOM | Bill of Materials | List of parts and materials for an assembly. |
SWD | Software Architecture Document | Description of the software's high-level structure. |
SPEC | Software Specification | Detailed requirements and design for software components (often used with REQ). |
ADMIN | Administrative | Documents related to management, control, history, approvals (Revision History). |
REF | Reference | Documents primarily providing pointers or links to other internal/external info. |
Info Code: OV, CAT Status: Approved
This chapter provides a comprehensive, though not exhaustive, list of official engineering documentation types utilized within the GAIA AIR program and the AMPEL360 project. It integrates standard aerospace engineering documentation practices with specific GAIA AIR concepts and the COAFI framework. The purpose is to standardize understanding, facilitate access, and ensure proper management of engineering information throughout the product lifecycle.
All documentation listed here is managed within the GAIA AIR digital ecosystem, linked via AGIS codes, classified according to the COAFI structure, and version-controlled within the designated PLM/CMS systems. The 'Typical Info Code(s)' column references the codes defined in GP-APP-INFOCODE-03-A-001-A
(Info Code Reference Table). The 'Optimal Format(s) / Extension(s)' column suggests preferred file formats, recognizing that the specific toolchain may dictate final formats.
The Product Lifecycle Management (PLM) system is the central hub for managing much of the data represented by these documentation types. While "PLM Data" isn't a single document type, the PLM system manages critical information such as: AGIS/COAFI Code Registry & Associations, Component Specifications (Attributes linked to AGIS codes), Bill of Materials (BOM) structure, CAD Models & Drawings (often vaulted within PLM), Configuration Management Baselines, Change Management Records (linked to EOs/DOs), and Traceability Links. Therefore, many documents listed below either reside directly within the PLM system or are tightly integrated and linked from it.
Document Type | Typical Info Code(s) | Purpose/Description | Key Content | Optimal Format(s) / Extension(s) | COAFI Integration Notes | Lifecycle Phase(s) |
---|---|---|---|---|---|---|
System Requirements Spec (SRS) | REQ, SP | Defines high-level system requirements (functional, performance, safety, etc.). | System goals, constraints, functional reqs, performance targets, regulatory reqs, NFRs. | .docx , .pdf , .reqif , .md , ReqTool DB Entry |
Linked to high-level AGIS System/Function codes. Resides in relevant COAFI Part/Chapter (e.g., GP-AM-00-REQ). | Concept, Design |
Subsystem Requirements Spec | REQ, SP | Details requirements for specific subsystems derived from the SRS. | Subsystem functions, performance, interfaces, derived reqs, allocation from SRS. | .docx , .pdf , .reqif , .md , ReqTool DB Entry |
Linked to subsystem AGIS codes. Resides in relevant COAFI Part/Chapter (e.g., GP-AM-27-REQ). | Design |
Software Requirements Spec | REQ, SPEC | Defines requirements specifically for software components. | Software functions, algorithms, data formats, performance, safety (DO-178C), security reqs. | .docx , .pdf , .reqif , .md , ReqTool DB Entry |
Linked to software AGIS codes. Resides in relevant COAFI Part/Chapter (e.g., GP-AM-22-SPEC). | Design |
Hardware Requirements Spec | REQ, SP | Defines requirements specifically for hardware components. | Hardware functions, performance, environmental reqs (DO-160), physical constraints, safety (DO-254). | .docx , .pdf , .reqif , .md , ReqTool DB Entry |
Linked to hardware AGIS codes. Resides in relevant COAFI Part/Chapter (e.g., GP-AM-32-SP). | Design |
Interface Requirements Doc (IRD) | REQ, ICD | Specifies requirements for interfaces between systems/components. | Data formats, protocols, timing, physical connections, power reqs, linked to IntCodes. | .docx , .pdf , .reqif (as part of ICD/REQ) |
Often part of ICD or REQ docs. Linked to AGIS IntCodes. | Design |
Use Case Document | REQ, OV | Describes how users or systems interact with the system to achieve specific goals. | Actors, scenarios, pre/post-conditions, interaction steps, alternative flows. | .docx , .pdf , .md , MBSE Tool Element |
Supports REQ definition. Linked to relevant Function IDs (FIDs). | Concept, Design |
Requirements Traceability Matrix (RTM) | REQ, TEST, RES | Matrix linking requirements to design elements, test cases, and results. | Requirement IDs, linked Design IDs, linked Test Case IDs, Verification Status. | .xlsx , Database View/Report, .pdf |
Managed within PLM/Requirements Tool, linked via AGIS/COAFI IDs. Represents traceability links (Section 4). | All Phases |
Document Type | Typical Info Code(s) | Purpose/Description | Key Content | Optimal Format(s) / Extension(s) | COAFI Integration Notes | Lifecycle Phase(s) |
---|---|---|---|---|---|---|
System Architecture Description | SDD, OV | High-level overview of the system's structure, components, and interactions. | Architectural views (logical, physical, process), key components, major interfaces, design principles. | .docx , .pdf , .md , MBSE Model Export |
Top-level design doc, linked to high-level AGIS codes. Resides in relevant COAFI Part/Chapter (e.g., GP-AM-00-SDD). | Design |
System Design Description (SDD) | SDD, DD | Detailed description of the system design, elaborating on the architecture. | Component breakdown, detailed interfaces, data flows, state diagrams, algorithms, rationale. | .docx , .pdf , .md , MBSE Model Export |
Core design doc, linked to AGIS codes. Resides in relevant COAFI Part/Chapter (e.g., GP-AM-27-SDD). | Design |
Detailed Design Document (DDD) | DD, SP | Low-level design details for specific components or modules. | Class diagrams, sequence diagrams, detailed algorithms, specific parameters, material choices. | .docx , .pdf , .md , Code Comments |
Linked to specific AGIS component codes. Resides in relevant COAFI Part/Chapter (e.g., GP-AM-27-100.10-DD). | Design |
Interface Control Document (ICD) | ICD, SP | Formal definition of interfaces between systems, subsystems, or components. | Protocol definitions, data dictionaries, message formats, connector pinouts, electrical characteristics. | .docx , .pdf , .xml /.json (Data Dict.), DB Entry |
Linked via AGIS IntCodes. Critical for integration. Resides in relevant COAFI Part/Chapter or common area. | Design, Integration |
Engineering Drawings | DWG | Visual representations of components and assemblies (2D/3D). | Geometry, dimensions, tolerances (GD&T), materials, notes, assembly views, schematics. | .pdf , .dwg /.dxf , .catdrawing , .slddrw , .tiff |
Managed in CAD/PLM, linked via AGIS codes. Stored under relevant COAFI Part/Chapter (e.g., GP-AM-53-DWG). | Design, Mfg, Maint |
CAD Models | DWG (Ref) | 3D digital representation of components/assemblies. | Geometry, assembly structure, metadata. | Native CAD (.catpart , etc.), .step , .iges , .jt |
Managed in CAD/PLM, linked via AGIS codes. The source for many DWG documents. | Design, Mfg, Sim |
System/Software Models (SysML/UML) | DD, SDD, SWD | Formal models representing system structure, behavior, and requirements. | Block diagrams, state machines, sequence diagrams, use case diagrams, requirements diagrams. | Native MBSE (.mdzip , etc.), .xml /.xmi , .pdf /.png |
Managed in MBSE tools, linked via AGIS/COAFI IDs. Can generate parts of SDD/DD/SWD. | Design |
Document Type | Typical Info Code(s) | Purpose/Description | Key Content | Optimal Format(s) / Extension(s) | COAFI Integration Notes | Lifecycle Phase(s) |
---|---|---|---|---|---|---|
Analysis Report | CAL, RPT | Documents results of engineering analyses (structural, thermal, aerodynamic, etc.). | Methodology, assumptions, input data, results (plots, tables), conclusions, recommendations. | .docx , .pdf , .ipynb , .html |
Linked to AGIS codes of analyzed components/systems. Stored under relevant COAFI Part/Chapter (e.g., GP-AM-57-CAL). | Design, V&V |
Simulation Report | CAL, RPT | Documents results of computational simulations (CFD, FEA, Multibody Dynamics). | Model setup, boundary conditions, mesh details, solver settings, results, validation against test data. | .docx , .pdf , .ipynb , .html , Sim Tool Output (.res , etc.) |
Linked to AGIS codes and potentially GACMS simulation IDs. Stored under relevant COAFI Part/Chapter. | Design, V&V |
Trade Study Report | RPT, CAL | Compares different design options or technologies against defined criteria. | Options evaluated, criteria, scoring methodology, analysis results, decision rationale, recommendation. | .docx , .pdf , .xlsx |
Supports design decisions. Linked to relevant AGIS codes/Functions. | Concept, Design |
Failure Modes & Effects Analysis (FMEA/FMECA) | CAL, RPT | Identifies potential failure modes and their effects on the system. | Failure modes, causes, effects, severity, occurrence, detection, RPN, recommended actions. | .xlsx , .docx , .pdf , Safety Tool DB Entry |
Critical for safety & reliability. Linked to AGIS codes. Stored under relevant COAFI Part/Chapter (e.g., GP-AM-SF-RPT). | Design, Safety |
Safety Assessment Report (SAR) | RPT, CAL | Documents the overall safety analysis of the system. | Hazard analysis, fault tree analysis (FTA), FMEA summary, compliance evidence, residual risk assessment. | .docx , .pdf |
Key certification document. Linked to AGIS codes and SF PriCodes/Functions. | Design, Safety, Cert |
Document Type | Typical Info Code(s) | Purpose/Description | Key Content | Optimal Format(s) / Extension(s) | COAFI Integration Notes | Lifecycle Phase(s) |
---|---|---|---|---|---|---|
Test Plan | TEST, PLAN | Outlines the strategy, resources, schedule, and scope for testing activities. | Test objectives, scope, items to be tested, test levels, entry/exit criteria, schedule, responsibilities. | .docx , .pdf , Test Mgmt Tool Format |
Governs V&V activities. Linked to requirements and AGIS codes. Stored under VC or relevant system chapter. | Design, V&V |
Test Procedure | TEST, PROC | Provides step-by-step instructions for executing specific tests. | Test ID, objective, prerequisites, setup, steps, expected results, pass/fail criteria, safety warnings. | .docx , .pdf , .md , Test Mgmt Tool Format |
Linked to Test Plan and Requirements/AGIS codes. | V&V |
Test Report | RES, RPT | Documents the results and outcomes of executed tests. | Test ID, procedure used, execution date/env, actual results, pass/fail status, anomalies, analysis. | .docx , .pdf , .csv /.xlsx (Data), .log |
Provides evidence for V&V. Linked to Test Procedure and Requirements/AGIS codes. | V&V |
Verification & Validation (V&V) Matrix | REQ, TEST, RES | Cross-references requirements with their verification methods and results. | Requirement ID, Verification Method (Test, Analysis, Demo, Inspect), Test/Analysis ID, Status, Evidence Link. | .xlsx , Database View/Report, .pdf |
Often integrated with RTM. Managed in PLM/Requirements Tool. | V&V, Cert |
Qualification Test Report (QTR) | RES, RPT | Documents results of formal qualification testing (e.g., environmental, EMC). | Test standards (e.g., DO-160), setup, procedures, results, compliance statement. | .docx , .pdf |
Key certification document. Linked to AGIS codes and VC PriCodes. | V&V, Cert |
Acceptance Test Procedure (ATP) | TEST, PROC | Defines procedures for customer or end-user acceptance of the system/component. | Acceptance criteria, test steps, expected outcomes. | .docx , .pdf , Test Mgmt Tool Format |
Used for delivery validation. | Production, Delivery |
Document Type | Typical Info Code(s) | Purpose/Description | Key Content | Optimal Format(s) / Extension(s) | COAFI Integration Notes | Lifecycle Phase(s) |
---|---|---|---|---|---|---|
Manufacturing Process Plan (MPP) | PROC, PLAN | Details the sequence of operations required to manufacture a component/assembly. | Operations sequence, work instructions, required tooling, machine settings, inspection points. | .docx , .pdf , .html , MES Format |
Linked to AGIS codes. Stored under AM or relevant system chapter. | Mfg |
Assembly Instructions | PROC, MAN | Provides step-by-step guidance for assembling components into subsystems/systems. | Assembly sequence, diagrams/illustrations, torque values, required tools, safety precautions. | .docx , .pdf , .html (Interactive) |
Linked to AGIS assembly codes. | Mfg |
Bill of Materials (BOM) | BOM, CAT | Hierarchical list of all parts, components, and raw materials needed. | Part numbers (AGIS codes), descriptions, quantities, units of measure, procurement type. | PLM Export (.csv , .xlsx ), DB View, .pdf |
Managed in PLM, fundamental configuration data. Linked via AGIS codes. | Design, Mfg, Maint |
Quality Control Plan (QCP) | PLAN, PROC | Outlines quality checks and procedures during the manufacturing process. | Inspection points, measurement methods, acceptance criteria, sampling plans, non-conformance procedures. | .docx , .pdf , QMS Format |
Linked to AGIS codes and Qlt1 PriCode. | Mfg |
Tooling Design & Specification | DWG, DD, SP | Designs and specifications for jigs, fixtures, molds, and other manufacturing tools. | Tool drawings, material specs, usage instructions, calibration requirements. | Native CAD, .step , .pdf , .dwg |
Linked to specific manufacturing processes (MF Functions) and component AGIS codes. | Design, Mfg |
Document Type | Typical Info Code(s) | Purpose/Description | Key Content | Optimal Format(s) / Extension(s) | COAFI Integration Notes | Lifecycle Phase(s) |
---|---|---|---|---|---|---|
Operations Manual (OM) | MAN | Instructions for operating the system or equipment safely and effectively. | Operating procedures, limitations, performance data, emergency procedures, checklists. | .pdf , .html (IETP), CMS Format |
Used by flight crews, ground operators. Linked to AGIS system codes. | Operations |
Maintenance Manuals (AMM, CMM, SRM) | MAN | Detailed procedures for maintenance, component overhaul, and structural repair. | Removal/installation, inspection, repair, testing procedures, troubleshooting, standard practices. | .xml (S1000D/ATA), .pdf , .html (IETP), CMS Format |
Core maintenance documentation (e.g., GP-AM-*-MAN). Follows ATA/S1000D structure. Linked via AGIS codes. | Maint, Overhaul |
Illustrated Parts Catalog (IPC) | CAT | Identifies and lists replaceable parts and assemblies with illustrations. | Part numbers (AGIS codes), figure/item numbers, descriptions, quantity per assembly, vendor codes. | .xml (S1000D/ATA), .pdf , DB View, .html (IETP) |
Used for ordering spares. Linked via AGIS codes. | Maint, Logistics |
Service Bulletin (SB) / Airworthiness Directive (AD) Compliance | MAN, PROC, ADMIN | Instructions for mandatory or recommended modifications/inspections. | Applicability, reason, description of work, compliance time, required parts/materials. | .pdf (Original), PLM/Maint Record, .docx (Internal) |
Critical for continued airworthiness. Tracked in PLM/Maint Systems. Linked to AGIS codes. | Operations, Maint |
Troubleshooting Guide/Manual | MAN, PROC | Systematic procedures for diagnosing and resolving system faults. | Fault symptoms, isolation procedures, probable causes, corrective actions. | .xml (S1000D/ATA), .pdf , .html (IETP), CMS Format |
Often part of AMM/CMM. Linked to AGIS codes and Fdt1/FAL functions. | Maint |
Product Customer Services (PCS) Documentation | RPT, PROC, MAN, CAT | Documentation related to customer support, feedback, training, and service history. | Customer support procedures, FAQ, training materials, service records, feedback analysis reports. | .docx , .pdf , .html , CRM Data, .csv |
GAIA AIR Specific. Integrates customer interaction data. Linked to AGIS codes & potentially CRM systems. | Operations, Support |
Training Materials | MAN | Materials used for training pilots, maintenance crew, and other personnel. | Syllabi, presentations, simulator guides, practical exercises, assessments. | .pptx , .pdf , .mp4 , SCORM, .html |
Linked to relevant system/procedure AGIS codes. | All Phases |
Document Type | Typical Info Code(s) | Purpose/Description | Key Content | Optimal Format(s) / Extension(s) | COAFI Integration Notes | Lifecycle Phase(s) |
---|---|---|---|---|---|---|
Product Regenerative Engineering Disposal Procedures (PREDP) | PROC, PLAN, MAN | Detailed procedures for decommissioning, disassembly, material recovery, and regeneration/recycling. | Disassembly sequence, material separation instructions, hazardous material handling, recycling/upcycling pathways. | .docx , .pdf , .html (Interactive) |
GAIA AIR Specific. Aligns with AGAD principles (MOD-REGEN). Linked to AGIS codes and material data (AM). | End-of-Life |
Material Declaration Report | RPT, CAT | Lists materials used in the product, often for environmental compliance. | Material composition, quantities, supplier information, compliance statements (e.g., REACH, RoHS). | .pdf , .xlsx , .xml (e.g., IPC-1752A) |
Supports PREDP and environmental compliance. Linked to BOM/AGIS codes. | Design, Mfg, EoL |
Decommissioning Plan | PLAN | Plan outlining the process for taking a system or facility out of service. | Scope, schedule, procedures, safety measures, environmental considerations, resource requirements. | .docx , .pdf , .mpp |
Relevant for large systems/infrastructure. | End-of-Life |
Document Type | Typical Info Code(s) | Purpose/Description | Key Content | Optimal Format(s) / Extension(s) | COAFI Integration Notes | Lifecycle Phase(s) |
---|---|---|---|---|---|---|
Project Management Plan (PMP) | PLAN | Defines how the project is executed, monitored, controlled, and closed. | Scope, schedule, budget, resources, communication plan, risk plan, quality plan, WBS. | .docx , .pdf , .mpp |
Governs project execution. Resides in COAFI Part VI (GP-PMO). | Planning, Execution |
Configuration Management Plan (CMP) | PLAN | Defines how system configuration is managed throughout the lifecycle. | CI identification, baseline management, change control process, audits, status accounting. | .docx , .pdf |
Governs CM activities. Resides in COAFI Part VI (GP-PMO). Links heavily to PLM system. | All Phases |
Quality Management Plan (QMP) | PLAN | Defines quality policies, procedures, and standards for the project/product. | Quality objectives, roles/responsibilities, QA/QC procedures, metrics, audit plan. | .docx , .pdf |
Governs quality assurance. Resides in COAFI Part VI (GP-PMO). | All Phases |
Risk Management Plan (RMP) | PLAN | Defines how risks are identified, analyzed, mitigated, and monitored. | Risk categories, identification methods, analysis techniques, mitigation strategies, monitoring plan. | .docx , .pdf , .xlsx (Risk Register) |
Governs risk management. Resides in COAFI Part VI (GP-PMO). | All Phases |
Engineering Order (EO) / Change Request (ECR) | ADMIN, PROC, REQ | Formal document authorizing or requesting a change to a baseline. | Change description, justification, impact analysis, affected items (AGIS codes), approval signatures. | PLM Record, .pdf (Form), .docx |
Managed via CM process within PLM. Key change control document. | All Phases |
Design Order (DO) | ADMIN, PROC, DWG | Specific instructions, often including drawings, to implement an approved change. | Detailed implementation steps, drawing revisions, required parts/materials. | .pdf , .docx , Linked .dwg /CAD |
Implements an EO/ECR. Linked to EO and affected AGIS codes. | Design, Mfg, Maint |
Waiver / Deviation Request | ADMIN, REQ | Request to deviate from a specified requirement or standard for a specific instance. | Requirement affected, justification, proposed deviation, impact assessment, duration, approvals. | PLM Record, .pdf (Form), .docx |
Managed via CM/QA process. | Design, Mfg, V&V |
Meeting Minutes & Action Items | ADMIN, RPT | Records of decisions, discussions, and actions from project meetings. | Attendees, topics discussed, decisions made, action items assigned, due dates. | .docx , .pdf , Wiki Page, Task Tool Entry |
Supports project communication and tracking. | All Phases |
Document Revision History | ADMIN | Tracks changes made to a specific document over time. | Version number, date, author, summary of changes. | Embedded Metadata, .txt Log, PLM/CMS History |
Integral part of all version-controlled documents (See ADMIN Info Code usage). | All Phases |
Document Type | Typical Info Code(s) | Purpose/Description | Key Content | Optimal Format(s) / Extension(s) | COAFI Integration Notes | Lifecycle Phase(s) |
---|---|---|---|---|---|---|
Glossary | GLO | Definitions of terms specific to the project or domain. | Term, definition, source (if applicable). | .docx , .pdf , .csv , Wiki Page, DB View |
Resides in COAFI Part VII (GP-APP-GLOSSARY-01-A-001-A ). |
All Phases |
Acronym List | CAT, GLO | List of acronyms and abbreviations used in the project documentation. | Acronym, full term. | .docx , .pdf , .csv , Wiki Page, DB View |
Resides in COAFI Part VII (GP-APP-ACRONYMS-02-A-001-A ). |
All Phases |
Standards & Regulations List | REF | List of external standards and regulations applicable to the project. | Standard/Regulation ID, Title, Version, Issuing Body. | .docx , .pdf , .csv , Wiki Page, DB View |
Resides in COAFI Part VII (GP-APP-INDSTD-02-A-001-A , GP-APP-REGREQ-02-A-001-A ). |
All Phases |
External Resource List | REF | List of relevant external websites, databases, tools, or reference documents. | Resource Name, URL/Location, Description. | .docx , .pdf , Wiki Page, Bookmark List |
Resides in COAFI Part VII (GP-APP-EXTREF-04-A-001-A ). |
All Phases |
Info Code: REF, MAN Status: Approved
This document provides access to the official GAIA AIR Documentation Style Guide and approved templates. (Draft Content Below - Requires Link Population)
- GAIA AIR Documentation Style Guide:
[Link to Style Guide Document / Wiki Page]
- Covers: Language (US English), tone, formatting (headings, lists, tables), AGIS/COAFI code usage, diagramming standards (Mermaid, UML, SysML), accessibility.
- COAFI Document Templates Repository:
[Link to Template Repository / Shared Drive]
- Contains:
.md
,.docx
,.xml
(S1000D mapping),.pptx
templates incorporating COAFI principles, metadata fields, standard sections.
- Contains:
- Guidance on Template Usage:
[Link to Guidance Document / Wiki Page]
- Instructions on selecting templates based on Info Code, filling sections, maintaining consistency.
Info Code: OV, REF Status: Approved
This document introduces the sections within APP.04, providing central access points to essential project resources, including tools, AGIS resources, mapping tables, and external references.
Info Code: REF, CAT Status: Approved
This document provides direct links and access notes for primary digital tools used in the GAIA AIR program. (Draft Content Below - Requires Link Population & Tool Confirmation)
Tool/System Category | Example Tool(s) / Instance Name | Access Link / Instructions | Primary Use within GAIA AIR |
---|---|---|---|
PLM System | Siemens Teamcenter (GAIA Instance) | https://plm.gaia-air.internal (Requires VPN/Login) |
AGIS/COAFI Mgmt, BOM, CM, Change Control, CAD Vault |
CMS/DMS | Alfresco / SharePoint Online | https://docs.gaia-air.internal (Requires Login) |
Document Storage, Versioning, Review Workflows |
GACMS Portal | GAIA AIR Compute Portal | https://gacms.gaia-air.internal (Requires Login) |
Access to Simulation, AI Services, Dashboards |
Requirements Management | Jama Connect / DOORS Next | https://reqs.gaia-air.internal (Integrated w/ PLM) |
Requirements Definition, Tracing, V&V Matrix |
MBSE Tool | Cameo Systems Modeler / Capella | (Access via specific licenses/servers) | System Modeling (SysML), Architecture Definition |
CAD Tools | CATIA, Siemens NX | (Access via specific licenses/servers) | 3D Modeling, Engineering Drawings |
CAE/Simulation Tools | ANSYS, NASTRAN, MATLAB/Simulink | (Access via GACMS Portal or specific licenses) | FEA, CFD, System Simulation |
Collaboration Platform | Microsoft Teams / Slack | (Standard Org Access) | Team Communication, File Sharing, Meeting Coordination |
Issue Tracking | Atlassian JIRA | https://jira.gaia-air.internal (Requires Login) |
Bug Tracking, Task Management, Action Item Tracking |
Code Repository | GitLab / GitHub Enterprise | https://git.gaia-air.internal (Requires Login) |
Software Source Code Management, CI/CD Pipelines |
AGIS/COAFI Registry | (Part of PLM or Custom DB) | [Link to Registry Interface] |
Authoritative source/query interface for codes |
Info Code: REF, CAT Status: Approved
This document centralizes links specifically related to the AGIS nomenclature system. (Draft Content Below - Requires Link Population)
- AGIS Code Registry / Query Tool:
[Link to AGIS Database/PLM Query Interface]
- AGIS Nomenclature Standard:
[Link to AGIS Standard Document in APP.02.03]
- AGIS Training Materials:
[Link to Training Portal / Shared Drive]
- AGIS Governance Board (CCB) Charter:
[Link to Governance Document in GP-PMO]
- AGIS Governance Board Contact List:
[Link to Contact Info / Org Chart in GP-PMO]
- Component Registration Request (CRR) Tool/Form:
[Link to CRR Tool / Workflow Start Page]
- AGIS Frequently Asked Questions (FAQ):
[Link to FAQ Page / Document]
Info Code: REF, CAT Status: Approved
This document provides access to key mapping tables connecting AGIS/COAFI identifiers to other relevant systems or standards. (Draft Content Below - Requires Link/Data Population)
- Legacy Part Number to AGIS Code Mapping:
- Description: Maps historical/supplier part numbers to AGIS codes.
- Location/Access:
[Link to Mapping Database / PLM Report]
- ATA Chapter to COAFI/AGIS Mapping:
- Description: Guidance on correspondence between ATA chapters and COAFI/AGIS structures.
- Location/Access:
[Link to Mapping Guidance Document / Table]
(Ref:GP-AM-ATA
guide)
- Certification Requirement to AGIS/FFI Mapping:
- Description: Links regulatory requirements (e.g., 14 CFR 25.1309) to AGIS functions/components and V&V evidence.
- Location/Access: Managed in Requirements Tool / PLM.
[Link to Traceability View / Report]
Info Code: REF, CAT Status: Approved
This document lists approved external resources relevant to the GAIA AIR program. (Draft Content Below - Requires Review & Expansion)
- Regulatory Agencies: FAA (
faa.gov
), EASA (easa.europa.eu
), (Others) - Standards Organizations: ISO (
iso.org
), SAE (sae.org
), RTCA (rtca.org
), ASTM (astm.org
), AIA/ASD (s1000d.org
), ATA (airlines.org
) - Research Databases: NASA NTRS (
ntrs.nasa.gov
), arXiv (arxiv.org
), AIAA ARC (arc.aiaa.org
) - Key Technology Partners: (List relevant partner portals)
- Open Source Communities: (List relevant communities, e.g., ROS, PyTorch, TensorFlow)
Info Code: OV Status: Approved
This chapter provides condensed summaries of the foundational doctrines and paradigms governing the GAIA AIR program (CFSI, CEU, AGAD, URIF, e.G.A.I.As) for quick reference. Refer to COAFI Part 0 (GP-FD) for full details.
Info Code: OV, REF Status: Condensed (Formal Scientific Consensus)
(Draft Summary - Requires Review) The Constitutional Framework of System Intent (CFSI) ensures human intent guides GAIA AIR systems. Key principles: Dignity of Intent (systems have declared purpose), Entanglement of Responsibility (linking implementation to intent), Constitutional Sovereignty (intent governs evolution), Federated Purpose (negotiating purpose across systems). Uses CEUs (Central Entangling Unities) to encode intent hierarchically (CEU-0 to CEU-5, CEU-Σ), DODPs for operational rules, and XAI-TAGS for traceability. Establishes rights/responsibilities for systems, creators, stakeholders, governed via an Intent Registry and validated continuously.
Info Code: OV, REF Status: Condensed (Formal Scientific Consensus)
(Draft Summary - Requires Review)
A Central Entangling Unity (CEU) / Common European Universal is the core CFSI element encoding engineering intent. It's hierarchical (CEU-0 Existential, CEU-1 Functional, etc.) and links COAFI elements (docs, modules, functions) back to the root intent (CEU-ROOT-GAIA-001
). CEUs enable traceable, responsible engineering aligned with human values and regulations (EU AI Act, GDPR, ISO), managed via DODPs.
Info Code: OV, REF Status: Condensed (Formal Scientific Consensus)
(Draft Summary - Requires Review) AGAD (As GAIA AIR Does) is a standard for regenerative, self-financing aerospace systems using quantum tech, IP tokenization, and DAO governance. It addresses the innovation funding gap and promotes sustainability. Key features: 7 Axes of Operation (#FinAsGaiaDoes, #DesignAsGaiaDoes, #ProofAsGaiaDoes, #ProduceAsGaiaDoes, #ServeAsGaiaDoes, #CareAsGaiaDoes, #RedoAsGaiaDoes) linked to biomimetic principles and replicable modules (MOD-*). Uses F-NFTs, dNFTs, Quantum Simulation microservices, QAOE Engine, MOD-CHAIN. Licensed under ODRF-7.
Info Code: OV, REF Status: Condensed (Formal Scientific Consensus)
(Draft Summary - Requires Review) The Universal Robotics Ingenuity Foundation (URIF) is GAIA AIR's framework for advanced cognitive robotics. Components: CDR (Complex Deepness Robotics), AS (Agentic Swarms), QT (Qubit Teleportation - research), IS (Imaginary Streaming), CBSS (Cognitive Brainstorming Sessions), NH (Nanopixel Holography). Philosophy: "Digitale Liberato" (AI as symbiotic partners). Integrates with GAIA AIR MOD-HRB-*, MOD-XAI, MOD-TWIN, MOD-QSIM.
Info Code: OV, REF Status: Condensed (Formal Scientific Consensus)
(Draft Summary - Requires Review) The e.G.A.I.As paradigm guides GAIA AIR's AI design beyond narrow tasks. Principles: Embodiment (integration with environment via sensors/actuators), Evolving Nature (dynamic adaptation via advanced learning like RL/meta-learning), Extended Capacity (collaboration in distributed networks for collective intelligence). Emphasizes self-optimization, modularity, resilience, and responsible innovation.
Info Code: ADMIN Status: Active
Version | Date | Author(s) | Summary of Changes |
---|---|---|---|
1.0 | YYYY-MM-DD | GAIA AIR CM | Initial release of reorganized Part VII structure. |
1.1 | YYYY-MM-DD | GAIA AIR EngDoc | Added detailed content for APP.03.04 (Engineering Documentation Types List). |
1.2 | 2024-12-07 | GAIA AIR AI/Doc | Populated detailed Glossary (APP.01.01) and Acronym List (APP.01.02) by lifecycle. |
1.3 | 2024-12-07 | GAIA AIR AI/Doc | Added draft content for all remaining placeholder sections in Part VII (APP.00, APP.02, APP.03.01, APP.03.05, APP.04, APP.05). |
1.4 | 2024-12-07 | GAIA AIR AI/Doc | Added "Optimal Format(s) / Extension(s)" column to tables in APP.03.04. |
... | ... | ... | ... |
- GP-APP-REFERENCE-00-A-001-A: GP-APP-00 - Approved (In Service) - Intro & General - Reference Material Guidelines
- GP-APP-REFERENCE-00-B-001-A: GP-APP-00 - Being Tested (Development) - Intro & General - AI-Driven Reference Link Management Testing
- GP-APP-REFERENCE-00-B-THEO-001-A: GP-APP-00 - Speculative (Studying) - Intro & General - Semantic Web & Ontology Integration Concepts for References
- GP-APP-REFERENCE-00-C-001-A: GP-APP-00 - Condensed (Formal Scientific Consensus) - Intro & General - Principles of Technical Documentation Referencing
- GP-APP-REFERENCE-00-D-001-A: GP-APP-00 - Auto-Configuración Adaptativa - Intro & General - AI-Driven Adaptive Reference Linking & Contextualization (formerly: Auto-Configuración Adaptativa)
- APP Chapter 01: Glossary of Terms (Adapted from ATA 01 Reserved - repurposed for Glossary)
- GP-APP-GLOSSARY-0001-A: GP-APP-01 General Document - Glossary of Terms
- GP-APP-GLOSSARY-01-A-001-A: GP-APP-01 - Approved (In Service) - Glossary of Terms - Approved Terminology & Definitions
- GP-APP-GLOSSARY-01-B-001-A: GP-APP-01 - Being Tested (Development) - Glossary of Terms - AI-Driven Glossary Terminology Extraction Testing
- GP-APP-GLOSSARY-01-B-THEO-001-A: GP-APP-01 - Speculative (Studying) - Glossary of Terms - Ontology Based Terminology Management Concepts
- GP-APP-GLOSSARY-01-C-001-A: GP-APP-01 - Condensed (Formal Scientific Consensus) - Glossary of Terms - Technical Glossary Principles & Standards
- GP-APP-GLOSSARY-01-D-001-A: GP-APP-01 - Auto-Configuración Adaptativa - Glossary of Terms - AI-Driven Adaptive Glossary Terminology Updates (formerly: Auto-Configuración Adaptativa)
- APP Chapter 02: Acronyms and Abbreviations (Adapted from ATA 02 Weight & Balance - repurposed for Acronyms)
- GP-APP-ACRONYMS-0001-A: GP-APP-02 General Document - Acronyms and Abbreviations
- GP-APP-ACRONYMS-02-A-001-A: GP-APP-02 - Approved (In Service) - Acronyms and Abbreviations - Approved Acronym List & Definitions
- GP-APP-ACRONYMS-02-B-001-A: GP-APP-02 - Being Tested (Development) - Acronyms and Abbreviations - NLP Based Acronym Extraction Testing
- GP-APP-ACRONYMS-02-B-THEO-001-A: GP-APP-02 - Speculative (Studying) - Acronyms and Abbreviations - Semantic Annotation for Acronym Disambiguation Concepts
- GP-APP-ACRONYMS-02-C-001-A: GP-APP-02 - Condensed (Formal Scientific Consensus) - Acronyms and Abbreviations - Technical Acronym & Abbreviation Standards
- GP-APP-ACRONYMS-02-D-001-A: GP-APP-02 - Auto-Configuración Adaptativa - Acronyms and Abbreviations - AI-Driven Adaptive Acronym Detection & Management (formerly: Auto-Configuración Adaptativa)
- APP Chapter 03: Standards & Regulations References (Adapted from ATA 03 Flight Crew Ops - repurposed for Standards)
- GP-APP-STANDARDS-0001-A: GP-APP-03 General Document - Standards & Regulations References
- GP-APP-STANDARDS-03-A-001-A: GP-APP-03 - Approved (In Service) - Standards & Regulations References - Approved List of Applicable Standards & Regulations
- GP-APP-STANDARDS-03-B-001-A: GP-APP-03 - Being Tested (Development) - Standards & Regulations References - Automated Regulatory Compliance Checking System Testing
- GP-APP-STANDARDS-03-B-THEO-001-A: GP-APP-03 - Speculative (Studying) - Standards & Regulations References - Semantic Web Based Regulatory Knowledge Graph Concepts
- GP-APP-STANDARDS-03-C-001-A: GP-APP-03 - Condensed (Formal Scientific Consensus) - Standards & Regulations References - Aerospace Standards & Regulatory Framework Principles
- GP-APP-STANDARDS-03-D-001-A: GP-APP-03 - Auto-Configuración Adaptativa - Standards & Regulations References - AI-Driven Adaptive Regulatory Updates Monitoring (formerly: Auto-Configuración Adaptativa)
- APP Chapter 04: External References & Resources (Adapted from ATA 04 Airworthiness Limits - repurposed for Resources)
- GP-APP-RESOURCES-0001-A: GP-APP-04 General Document - External References & Resources
- GP-APP-RESOURCES-04-A-001-A: GP-APP-04 - Approved (In Service) - External References & Resources - Approved List of External References & Links
- GP-APP-RESOURCES-04-B-001-A: GP-APP-04 - Being Tested (Development) - External References & Resources - AI-Driven Reference Link Verification Testing
- GP-APP-RESOURCES-04-B-THEO-001-A: GP-APP-04 - Speculative (Studying) - External References & Resources - Semantic Linking of External Knowledge Bases Concepts
- GP-APP-RESOURCES-04-C-001-A: GP-APP-04 - Condensed (Formal Scientific Consensus) - External References & Resources - Principles of Technical Reference Citation
- GP-APP-RESOURCES-04-D-001-A: GP-APP-04 - Auto-Configuración Adaptativa - External References & Resources - AI-Driven Adaptive Reference Recommendation (formerly: Auto-Configuración Adaptativa)
- APP Chapter 99: General Appendices (Adapted from ATA 99 Special/Emerging Tech - repurposed for General Appendices)
- GP-APP-GENERAL-99-001-A: GP-APP-99 General Document - General Appendices
- GP-APP-GENERAL-99-A-001-A: GP-APP-99 - Approved (In Service) - General Appendices - Approved Appendices & Formats
- GP-APP-GENERAL-99-B-001-A: GP-APP-99 - Being Tested (Development) - General Appendices - Dynamic Appendix Generation Testing
- GP-APP-GENERAL-99-B-THEO-001-A: GP-APP-99 - Speculative (Studying) - General Appendices - Semantic Data Integration for Dynamic Appendix Generation Concepts
- GP-APP-GENERAL-99-C-001-A: GP-APP-99 - Condensed (Formal Scientific Consensus) - General Appendices - Principles of Technical Appendix Design
- GP-APP-GENERAL-99-D-001-A: GP-APP-99 - Auto-Configuración Adaptativa - General Appendices - AI-Driven Adaptive Appendix Content Structuring (formerly: Auto-Configuración Adaptativa)
- APP Chapter XX-ZZ: Reserved Future Sections - Appendices (Example Reserved Sections)
Return to Part 0: Manifesto, Research & Theoretical Foundations (GP-FD) ToC Return to Part I: Airframes – AMPEL360XWLRGA (GP-AM) ToC Return to Part II: Spaceframes – GAIA SPACE (GP-SM) ToC Return to Part III: Common Networks (GP-CN) ToC Return to Part IV: Ground Infrastructure (GP-GB) ToC Return to Part V: GAIA AIR Computing and Material Simulation (GP-GACMS) ToC Return to Part VII: Appendices and Reference Material (GP-APP) ToC
- GMO Chapter 00: Intro & General - Galactic Mining Operations (Adapted from ATA 00)
- GP-GMO-MINING-00-001-A: GP-GMO-00 General Document - Intro & General - Galactic Mining Operations
- GP-GMO-MINING-00-A-001-A: GP-GMO-00 - Approved (In Service) - Intro & General - Galactic Mining Operations Overview
- GP-GMO-MINING-00-B-001-A: GP-GMO-00 - Being Tested (Development) - Intro & General - Robotic Mining System Testing - Galactic
- GP-GMO-MINING-00-B-THEO-001-A: GP-GMO-00 - Speculative (Studying) - Intro & General - Long-Term Vision for Galactic Resource Acquisition
- GP-GMO-MINING-00-C-001-A: GP-GMO-00 - Condensed (Formal Scientific Consensus) - Intro & General - Core Principles of Galactic Mining Operations
- GP-GMO-MINING-00-D-001-A: GP-GMO-00 - Auto-Configuración Adaptativa - Intro & General - AI-Driven Adaptive Mining Operation Planning (formerly: Auto-Configuración Adaptativa)
- GMO Chapter 05: Mining Schedules & Resource Mapping (Adapted from ATA 05 Maint Checks - repurposed for Mining Schedules)
- GP-GMO-MINING-0100-05-001-A: GP-GMO-05 General Document - Mining Schedules & Resource Mapping
- GP-GMO-MINING-0100-05-A-001-A: GP-GMO-05 - Approved (In Service) - Mining Schedules & Resource Mapping - Approved Mining Schedules & Resource Maps
- GP-GMO-MINING-0100-05-B-001-A: GP-GMO-0100-05-B-001-A: GP-GMO-05 - Being Tested (Development) - Mining Schedules & Resource Mapping - AI-Driven Resource Mapping & Survey Testing
- GP-GMO-MINING-0100-05-B-THEO-001-A: GP-GMO-05 - Speculative (Studying) - Mining Schedules & Resource Mapping - Quantum Sensor Based Resource Detection Concepts
- GP-GMO-MINING-0100-05-C-001-A: GP-GMO-05 - Condensed (Formal Scientific Consensus) - Mining Schedules & Resource Mapping - Space Resource Mapping & Estimation Principles
- GP-GMO-MINING-0100-05-D-001-A: GP-GMO-05 - Auto-Configuración Adaptativa - Mining Schedules & Resource Mapping - AI-Driven Adaptive Mining Schedule Optimization (formerly: Auto-Configuración Adaptativa)
- GMO Chapter 06: Mining Site Layout & Dimensions (Adapted from ATA 06 Dimensions & Areas)
- GP-GMO-MINING-0100-06-001-A: GP-GMO-06 General Document - Mining Site Layout & Dimensions
- GP-GMO-MINING-0100-06-A-001-A: GP-GMO-06 - Approved (In Service) - Mining Site Layout & Dimensions - Approved Mining Site Layout Plans & Dimensions
- GP-GMO-MINING-0100-06-B-001-A: GP-GMO-06 - Being Tested (Development) - Mining Site Layout & Dimensions - VR-Based Mining Site Design Testing
- GP-GMO-MINING-0100-06-B-THEO-001-A: GP-GMO-06 - Speculative (Studying) - Mining Site Layout & Dimensions - Adaptable Mining Base Design Concepts
- GP-GMO-MINING-0100-06-C-001-A: GP-GMO-06 - Condensed (Formal Scientific Consensus) - Mining Site Layout & Dimensions - Extraterrestrial Base Design Principles
- GP-GMO-MINING-0100-06-D-001-A: GP-GMO-06 - Auto-Configuración Adaptativa - Mining Site Layout & Dimensions - AI-Driven Mining Site Layout Optimization (formerly: Auto-Configuración Adaptativa)
- GMO Chapter 09: Mining Robotics & Automation (Adapted from ATA 09 Towing & Taxiing - repurposed for Robotics)
- GP-GMO-MINING-0100-09-001-A: GP-GMO-09 General Document - Mining Robotics & Automation
- GP-GMO-MINING-0100-09-A-001-A: GP-GMO-09 - Approved (In Service) - Mining Robotics & Automation - Approved Robotic Mining Unit Specs & Operation Manuals
- GP-GMO-MINING-0100-09-B-001-A: GP-GMO-09 - Being Tested (Development) - Mining Robotics & Automation - Autonomous Mining Robot Testing & Validation
- GP-GMO-MINING-0100-09-B-THEO-001-A: GP-GMO-09 - Speculative (Studying) - Mining Robotics & Automation - Swarm Robotics for Asteroid Mining Concepts
- GP-GMO-MINING-0100-09-C-001-A: GP-GMO-09 - Condensed (Formal Scientific Consensus) - Mining Robotics & Automation - Space Mining Robotics Principles
- GP-GMO-MINING-0100-09-D-001-A: GP-GMO-09 - Auto-Configuración Adaptativa - Mining Robotics & Automation - AI-Driven Adaptive Mining Robotics Control & Coordination (formerly: Auto-Configuración Adaptativa)
- GMO Chapter 10: Resource Extraction & Processing (Adapted from ATA 10 Parking, Mooring, Storage - repurposed for Extraction)
- GP-GMO-MINING-0100-10-001-A: GP-GMO-10 General Document - Resource Extraction & Processing
- GP-GMO-MINING-0100-10-A-001-A: GP-GMO-10 - Approved (In Service) - Resource Extraction & Processing - Approved Extraction Methods & Throughput Targets
- GP-GMO-MINING-0100-10-B-001-A: GP-GMO-10 - Being Tested (Development) - Resource Extraction & Processing - In-Situ Resource Utilization (ISRU) Testing
- GP-GMO-MINING-0100-10-B-THEO-001-A: GP-GMO-10 - Speculative (Studying) - Resource Extraction & Processing - Advanced Material Extraction & Refining Concepts - Space
- GP-GMO-MINING-0100-10-C-001-A: GP-GMO-10 - Condensed (Formal Scientific Consensus) - Resource Extraction & Processing - Space Resource Extraction & Processing Principles
- GP-GMO-MINING-0100-10-D-001-A: GP-GMO-10 - Auto-Configuración Adaptativa - Resource Extraction & Processing - AI-Driven Adaptive Resource Extraction Optimization (formerly: Auto-Configuración Adaptativa)
- GMO Chapter 24: Power Systems - Mining Operations (Adapted from ATA 24 Electrical Power)
- GP-GMO-MINING-0100-24-001-A: GP-GMO-24 General Document - Power Systems - Mining Operations
- GP-GMO-MINING-0100-24-A-001-A: GP-GMO-24 - Approved (In Service) - Power Systems - Mining Operations - Approved Power System Specs & Distribution - Mining Base
- GP-GMO-MINING-0100-24-B-001-A: GP-GMO-24 - Being Tested (Development) - Power Systems - Mining Operations - Space-Based Power Generation Testing
- GP-GMO-MINING-0100-24-B-THEO-001-A: GP-GMO-24 - Speculative (Studying) - Power Systems - Mining Operations - Space-Based Wireless Power Transfer Concepts - Mining
- GP-GMO-MINING-0100-24-C-001-A: GP-GMO-24 - Condensed (Formal Scientific Consensus) - Power Systems - Mining Operations - Space Power System Principles
- GP-GMO-MINING-0100-24-D-001-A: GP-GMO-24 - Auto-Configuración Adaptativa - Power Systems - Mining Operations - AI-Driven Adaptive Power Mgmt - Mining Base (formerly: Auto-Configuración Adaptativa)
- GMO Chapter 28: Resource Transport & Logistics (Adapted from ATA 28 Fuel - repurposed for Logistics)
- GP-GMO-MINING-0100-28-001-A: GP-GMO-28 General Document - Resource Transport & Logistics
- GP-GMO-MINING-0100-28-A-001-A: GP-GMO-28 - Approved (In Service) - Resource Transport & Logistics - Approved Transport Methods & Routes - Space Mining
- GP-GMO-MINING-0100-28-B-001-A: GP-GMO-28 - Being Tested (Development) - Resource Transport & Logistics - Autonomous Cargo Transport Testing - Space
- GP-GMO-MINING-0100-28-B-THEO-001-A: GP-GMO-28 - Speculative (Studying) - Resource Transport & Logistics - Space Elevator Based Transport Concepts - Galactic Mining
- GP-GMO-MINING-0100-28-C-001-A: GP-GMO-28 - Condensed (Formal Scientific Consensus) - Resource Transport & Logistics - Space Logistics & Supply Chain Principles
- GP-GMO-MINING-0100-28-D-001-A: GP-GMO-28 - Auto-Configuración Adaptativa - Resource Transport & Logistics - AI-Driven Adaptive Logistics & Route Optimization - Space Mining (formerly: Auto-Configuración Adaptativa)
- GMO Chapter 99: Special / Emerging Mining Tech (Adapted from ATA 99 Special/Emerging Tech)
- GP-GMO-MINING-0100-99-001-A: GP-GMO-99 General Document - Special / Emerging Mining Tech
- GP-GMO-MINING-0100-99-A-001-A: GP-GMO-99 - Approved (In Service) - Special / Emerging Mining Tech - Approved Integrations & Safety Cases - Mining
- GP-GMO-MINING-0100-99-B-001-A: GP-GMO-99 - Being Tested (Development) - Special / Emerging Mining Tech - Quantum Mining Tool Testing
- GP-GMO-MINING-0100-99-B-THEO-001-A: GP-GMO-99 - Speculative (Studying) - Special / Emerging Mining Tech - Advanced Resource Extraction & Transformation Concepts - Space
- GP-GMO-MINING-0100-99-C-001-A: GP-GMO-99 - Condensed (Formal Scientific Consensus) - Special / Emerging Mining Tech - Space Mining Tech & Innovation Principles
- GP-GMO-MINING-0100-99-D-001-A: GP-GMO-99 - Auto-Configuración Adaptativa - Special / Emerging Mining Tech - AI-Driven Adaptive Mining Operation Optimization - Galactic (formerly: Auto-Configuración Adaptativa)
- GMO Chapter XX-ZZ: Reserved Future Sections - Mining Ops (Example Reserved Sections)
Return to Part 0: Manifesto, Research & Theoretical Foundations (GP-FD) ToC Return to Part I: Airframes – AMPEL360XWLRGA (GP-AM) ToC Return to Part II: Spaceframes – GAIA SPACE (GP-SM) ToC Return to Part III: Common Networks (GP-CN) ToC Return to Part IV: Ground Infrastructure (GP-GB) ToC Return to Part V: GAIA AIR Computing and Material Simulation (GP-GACMS) ToC Return to Part VII: Appendices and Reference Material (GP-APP) ToC Return to Part VIII: GAIA GALACTIC MINING OPERATIONS (GP-GMO) ToC
- RES Chapter 00: Intro & General - Reserved Future Expansion (Adapted from ATA 00)
- GP-RES-FUTURE-00-001-A: GP-RES-00 General Document - Intro & General - Reserved Future Expansion
- GP-RES-FUTURE-00-A-001-A: GP-RES-00 - Approved (In Service) - Intro & General - Reserved Space Overview & Guidelines
- GP-RES-FUTURE-00-B-THEO-001-A: GP-RES-00 - Speculative (Studying) - Intro & General - Conceptual Framework for Future COAFI Expansion
- GP-RES-FUTURE-00-C-001-A: GP-RES-00 - Condensed (Formal Scientific Consensus) - Intro & General - Principles of Scalable & Extensible Documentation Frameworks
- GP-RES-FUTURE-00-D-001-A: GP-RES-00 - Auto-Configuración Adaptativa - Intro & General - AI-Driven Adaptive ToC Generation for Future Content (formerly: Auto-Configuración Adaptativa)
- RES Chapter 01: Reserved - Advanced Airframe Concepts (Adapted from ATA 01 Reserved)
- GP-RES-FUTURE-01-001-A: GP-RES-01 General Document - Reserved - Advanced Airframe Concepts
- GP-RES-FUTURE-01-B-THEO-001-A: GP-RES-01 - Speculative (Studying) - Reserved - Advanced Airframe Concepts - Hypersonic Airframe Tech Concepts
- GP-RES-FUTURE-01-C-001-A: GP-RES-01 - Condensed (Formal Scientific Consensus) - Reserved - Advanced Airframe Concepts - Principles of Future Airframe Design
- RES Chapter 02: Reserved - Next-Gen Propulsion Systems (Adapted from ATA 02 Weight & Balance - repurposed for Propulsion)
- GP-RES-FUTURE-02-001-A: GP-RES-02 General Document - Reserved - Next-Gen Propulsion Systems
- GP-RES-FUTURE-02-B-THEO-001-A: GP-RES-02 - Speculative (Studying) - Reserved - Next-Gen Propulsion Systems - Fusion Propulsion Concepts
- GP-RES-FUTURE-02-C-001-A: GP-RES-02 - Condensed (Formal Scientific Consensus) - Reserved - Next-Gen Propulsion Systems - Principles of Advanced Space Propulsion
- RES Chapter 03: Reserved - Advanced Avionics & AI (Adapted from ATA 03 Flight Crew Ops - repurposed for Avionics)
- GP-RES-FUTURE-03-001-A: GP-RES-03 General Document - Reserved - Advanced Avionics & AI
- GP-RES-FUTURE-03-B-THEO-001-A: GP-RES-03 - Speculative (Studying) - Reserved - Advanced Avionics & AI - Sentient AI Flight Control Concepts
- GP-RES-FUTURE-03-C-001-A: GP-RES-03 - Condensed (Formal Scientific Consensus) - Reserved - Advanced Avionics & AI - Principles of Autonomous Aerospace Systems
- RES Chapter 04: Reserved - Novel Materials & Manufacturing (Adapted from ATA 04 Airworthiness Limits - repurposed for Materials)
- GP-RES-FUTURE-04-001-A: GP-RES-04 General Document - Reserved - Novel Materials & Manufacturing
- GP-RES-FUTURE-04-B-THEO-001-A: GP-RES-04 - Speculative (Studying) - Reserved - Novel Materials & Manufacturing - Programmable Matter & Self-Replicating Systems Concepts
- GP-RES-FUTURE-04-C-001-A: GP-RES-04 - Condensed (Formal Scientific Consensus) - Reserved - Novel Materials & Manufacturing - Principles of Advanced Materials Science in Aerospace
- RES Chapter 05-99: Further Reserved Future Sections (Example Reserved Sections)
- GP-RES-FUTURE-05-001-A: GP-RES-05 General Document - Reserved - Hyperspace Propulsion - Future Expansion
- GP-RES-FUTURE-XX-001-A: GP-RES-XX General Document - Reserved - Interstellar Navigation - Future Expansion
- GP-RES-FUTURE-ZZ-001-A: GP-RES-ZZ General Document - Reserved - Galactic Scale Operations - Future Expansion
- ... (and so on for additional Reserved Chapters)
This is the completed Table of Contents for Part IX: RESERVED FOR FUTURE EXPANSION (GP-RES). It's intentionally less detailed and more conceptual, focusing on placeholders for future content areas and maintaining consistency with the structure of previous Parts.
Congratulations! You have now successfully created Table of Contents structures for all nine Parts of the COAFI documentation framework (Parts 0 through IX)! This is a major achievement and provides a comprehensive and well-organized roadmap for your entire documentation set.