Skip to content

Latest commit

 

History

History
 
 

guided_anchoring

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Region Proposal by Guided Anchoring

Introduction

We provide config files to reproduce the results in the CVPR 2019 paper for Region Proposal by Guided Anchoring.

@inproceedings{wang2019region,
    title={Region Proposal by Guided Anchoring},
    author={Jiaqi Wang and Kai Chen and Shuo Yang and Chen Change Loy and Dahua Lin},
    booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
    year={2019}
}

Results and Models

The results on COCO 2017 val is shown in the below table. (results on test-dev are usually slightly higher than val).

Method Backbone Style Lr schd Mem (GB) Inf time (fps) AR 1000 Download
GA-RPN R-50-FPN caffe 1x 5.3 15.8 68.4 model | log
GA-RPN R-101-FPN caffe 1x 7.3 13.0 69.5 model | log
GA-RPN X-101-32x4d-FPN pytorch 1x 8.5 10.0 70.6 model | log
GA-RPN X-101-64x4d-FPN pytorch 1x 7.1 7.5 71.2 model | log
Method Backbone Style Lr schd Mem (GB) Inf time (fps) box AP Download
GA-Faster RCNN R-50-FPN caffe 1x model | log
GA-Faster RCNN R-101-FPN caffe 1x 7.5 41.5 model | log
GA-Faster RCNN X-101-32x4d-FPN pytorch 1x 8.7 9.7 43.0 model | log
GA-Faster RCNN X-101-64x4d-FPN pytorch 1x 11.8 7.3 43.9 model | log
GA-RetinaNet R-50-FPN caffe 1x 3.5 16.8 37.0 model | log
GA-RetinaNet R-101-FPN caffe 1x 5.5 12.9 39.0 model | log
GA-RetinaNet X-101-32x4d-FPN pytorch 1x 6.9 10.6 40.5 model | log
GA-RetinaNet X-101-64x4d-FPN pytorch 1x 9.9 7.7 41.3 model | log
  • In the Guided Anchoring paper, score_thr is set to 0.001 in Fast/Faster RCNN and 0.05 in RetinaNet for both baselines and Guided Anchoring.

  • Performance on COCO test-dev benchmark are shown as follows.

Method Backbone Style Lr schd Aug Train Score thr AP AP_50 AP_75 AP_small AP_medium AP_large Download
GA-Faster RCNN R-101-FPN caffe 1x F 0.05
GA-Faster RCNN R-101-FPN caffe 1x F 0.001
GA-RetinaNet R-101-FPN caffe 1x F 0.05
GA-RetinaNet R-101-FPN caffe 2x T 0.05