Skip to content

Commit

Permalink
Merge remote-tracking branch 'origin/main' into polish-readme
Browse files Browse the repository at this point in the history
  • Loading branch information
hodlen committed Dec 15, 2023
2 parents 9f9d6e7 + 66a1bb4 commit 8af8c74
Show file tree
Hide file tree
Showing 7 changed files with 42 additions and 40 deletions.
53 changes: 28 additions & 25 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,6 @@ The SparseLLM Team is currently converting the Mistral-7B model to a sparser ver

- [Installation](##setup--installation)
- [Model Weights](##model-weights)
- [Supported Models](https://vllm.readthedocs.io/en/latest/models/supported_models.html)

## Setup & Installation
### Get the Code
Expand All @@ -60,28 +59,24 @@ git clone https://github.com/hodlen/PowerInfer
cd PowerInfer
```
### Build
In order to build PowerInfer you have two different options.

- Using `make`:
- On Linux or MacOS:
```bash
make
```
- Using `CMake`:
- If you have one GPU:
```bash
mkdir build
cd build
cmake .. -DLLAMA_CUBLAS=ON
cmake --build . --config Release
```
- If you just CPU:
```bash
mkdir build
cd build
cmake ..
cmake --build . --config Release
```
In order to build PowerInfer you have two different options. These commands are supposed to be run from the root directory of the project.

Using `make` on Linux or MacOS:
```bash
make
```

Using `CMake`:
* If you have one GPU:
```bash
cmake -S . -B build -DLLAMA_CUBLAS=ON
cmake --build build --config Release
```
* If you just CPU:
```bash
cmake -S . -B build
cmake --build build --config Release
```

## Model Weights

Expand All @@ -96,11 +91,19 @@ In order to build PowerInfer you have two different options.
```bash
./build/bin/main -m /PATH/TO/MODEL -n $(output_token_count) -t $(thread_num) -p $(prompt)
```
- If you have CPU with one consumer grade GPU:
- If you have CPU with one GPU:
```bash
./build/bin/main -m /PATH/TO/MODEL -n $(output_token_count) -t $(thread_num) -p $(prompt)
./build/bin/main -m /PATH/TO/MODEL -n $(output_token_count) -t $(thread_num) -p $(prompt)
```

As for now, it requires a offline-generated "GPU index" file to split FFNs on GPU. If you want to try it, please use the following instruction to generate the GPU index file:
```bash
python scripts/export-gpu-split.py $(activation_count_path) $(output_idx_path) solver
```
Then, you can use the following instruction to run PowerInfer with GPU index:
```bash
./build/bin/main -m /PATH/TO/MODEL -n $(output_token_count) -t $(thread_num) -p $(prompt) --gpu-index $(split_path)
```

## Evaluation

Expand Down
11 changes: 5 additions & 6 deletions common/common.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -471,12 +471,12 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
break;
}
params.lora_base = argv[i];
} else if (arg == "--mlp-adapter") {
} else if (arg == "--gpu-index") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.mlp_adapter = argv[i];
params.gpu_index = argv[i];
} else if (arg == "--mmproj") {
if (++i >= argc) {
invalid_param = true;
Expand Down Expand Up @@ -970,9 +970,8 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par

if (llama_use_sparse_inference(model)) {
fprintf(stderr, "%s: postprocessing PowerInfer model '%s'\n", __func__, params.model.c_str());
if (!params.mlp_adapter.empty()) {
fprintf(stderr, "%s: warning: --mlp-adapter is deprecated and has no effect\n", __func__);
int err = llama_model_apply_mlp_from_file(model, params.mlp_adapter.c_str(), true);
if (!params.gpu_index.empty()) {
int err = llama_model_apply_gpu_idx_from_file(model, params.gpu_index.c_str(), true);
if (err != 0) {
fprintf(stderr, "%s: error: failed to apply mlp adapter\n", __func__);
llama_free_model(model);
Expand Down Expand Up @@ -1358,7 +1357,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
fprintf(stream, " - %s: %f\n", std::get<0>(la).c_str(), std::get<1>(la));
}
fprintf(stream, "lora_base: %s\n", params.lora_base.c_str());
fprintf(stream, "mlp_adapter: %s\n", params.mlp_adapter.c_str());
fprintf(stream, "gpu_index: %s\n", params.gpu_index.c_str());
fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu);
fprintf(stream, "memory_f32: %s # default: false\n", !params.memory_f16 ? "true" : "false");
fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat);
Expand Down
2 changes: 1 addition & 1 deletion common/common.h
Original file line number Diff line number Diff line change
Expand Up @@ -91,7 +91,7 @@ struct gpt_params {
std::vector<std::tuple<std::string, float>> lora_adapter; // lora adapter path with user defined scale
std::string lora_base = ""; // base model path for the lora adapter

std::string mlp_adapter = ""; // sparse activation mlp adapter path
std::string gpu_index = ""; // sparse activation mlp adapter path

int ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
int ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
Expand Down
10 changes: 5 additions & 5 deletions examples/batched/batched.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -49,11 +49,11 @@ int main(int argc, char ** argv) {
}

if (argc >= 8) {
params.mlp_adapter = argv[7];
params.gpu_index = argv[7];
}

printf("params: model = %s, prompt = %s, n_parallel = %d, n_len = %d, n_gpu_layers = %d, n_threads = %d, mlp_adapter = %s\n",
params.model.c_str(), params.prompt.c_str(), n_parallel, n_len, n_gpu_layers, params.n_threads, params.mlp_adapter.c_str());
printf("params: model = %s, prompt = %s, n_parallel = %d, n_len = %d, n_gpu_layers = %d, n_threads = %d, gpu_index = %s\n",
params.model.c_str(), params.prompt.c_str(), n_parallel, n_len, n_gpu_layers, params.n_threads, params.gpu_index.c_str());

if (params.prompt.empty()) {
params.prompt = "Hello my name is";
Expand All @@ -76,8 +76,8 @@ int main(int argc, char ** argv) {
return 1;
}

if (!params.mlp_adapter.empty()) {
int err = llama_model_apply_mlp_from_file(model, params.mlp_adapter.c_str(), true);
if (!params.gpu_index.empty()) {
int err = llama_model_apply_gpu_idx_from_file(model, params.gpu_index.c_str(), true);
if (err != 0) {
fprintf(stderr, "%s: error: failed to apply mlp adapter\n", __func__);
llama_free_model(model);
Expand Down
2 changes: 1 addition & 1 deletion llama.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -9660,7 +9660,7 @@ int llama_model_apply_lora_from_file(const struct llama_model * model, const cha
}
}

int llama_model_apply_mlp_from_file(struct llama_model * model, const char * path_mlp, bool use_mmap) {
int llama_model_apply_gpu_idx_from_file(struct llama_model * model, const char * path_mlp, bool use_mmap) {
llama_mlp_model_loader * mlp_ml = new llama_mlp_model_loader(path_mlp, use_mmap);
if (mlp_ml -> apply_tensors_to_base_model(model) > 0) {
LLAMA_LOG_ERROR("%s: failed to apply mlp adapter\n", __func__);
Expand Down
2 changes: 1 addition & 1 deletion llama.h
Original file line number Diff line number Diff line change
Expand Up @@ -342,7 +342,7 @@ extern "C" {
const char * path_base_model,
int n_threads);

LLAMA_API int llama_model_apply_mlp_from_file(
LLAMA_API int llama_model_apply_gpu_idx_from_file(
struct llama_model * model,
const char * path_mlp,
bool use_mmap);
Expand Down
2 changes: 1 addition & 1 deletion scripts/export-gpu-split.py
Original file line number Diff line number Diff line change
Expand Up @@ -134,7 +134,7 @@ def main(predictors_path: str, output_path: str, solver_path: str):
parser.add_argument(
"output_path",
help="path to the output GGML adapter",
default="./ggml-mlp-adapters.bin",
default="./gpu-index.bin",
)
parser.add_argument("solver", help="path to the solver")

Expand Down

0 comments on commit 8af8c74

Please sign in to comment.