Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Keep Last N Checkpoints #718

Merged
merged 6 commits into from
Jan 15, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions src/f5_tts/configs/E2TTS_Base_train.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -41,4 +41,5 @@ ckpts:
logger: wandb # wandb | tensorboard | None
save_per_updates: 50000 # save checkpoint per updates
last_per_updates: 5000 # save last checkpoint per updates
keep_last_n_checkpoints: -1 # -1 (default) to keep all checkpoints, 0 to not save intermediate checkpoints, positive N to keep last N checkpoints
save_dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}
1 change: 1 addition & 0 deletions src/f5_tts/configs/E2TTS_Small_train.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -41,4 +41,5 @@ ckpts:
logger: wandb # wandb | tensorboard | None
save_per_updates: 50000 # save checkpoint per updates
last_per_updates: 5000 # save last checkpoint per updates
keep_last_n_checkpoints: -1 # -1 (default) to keep all checkpoints, 0 to not save intermediate checkpoints, positive N to keep last N checkpoints
save_dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}
1 change: 1 addition & 0 deletions src/f5_tts/configs/F5TTS_Base_train.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -44,4 +44,5 @@ ckpts:
logger: wandb # wandb | tensorboard | None
save_per_updates: 50000 # save checkpoint per updates
last_per_updates: 5000 # save last checkpoint per updates
keep_last_n_checkpoints: -1 # -1 (default) to keep all checkpoints, 0 to not save intermediate checkpoints, positive N to keep last N checkpoints
save_dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}
1 change: 1 addition & 0 deletions src/f5_tts/configs/F5TTS_Small_train.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -44,4 +44,5 @@ ckpts:
logger: wandb # wandb | tensorboard | None
save_per_updates: 50000 # save checkpoint per updates
last_per_updates: 5000 # save last checkpoint per updates
keep_last_n_checkpoints: -1 # -1 (default) to keep all checkpoints, 0 to not save intermediate checkpoints, positive N to keep last N checkpoints
save_dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}
31 changes: 31 additions & 0 deletions src/f5_tts/model/trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,17 @@ def __init__(
mel_spec_type: str = "vocos", # "vocos" | "bigvgan"
is_local_vocoder: bool = False, # use local path vocoder
local_vocoder_path: str = "", # local vocoder path
keep_last_n_checkpoints: int
| None = -1, # -1 (default) to keep all, 0 to not save intermediate ckpts, positive N to keep last N checkpoints
):
# Validate keep_last_n_checkpoints
if not isinstance(keep_last_n_checkpoints, int):
raise ValueError("keep_last_n_checkpoints must be an integer")
if keep_last_n_checkpoints < -1:
raise ValueError(
"keep_last_n_checkpoints must be -1 (keep all), 0 (no intermediate checkpoints), or positive integer"
)

ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)

if logger == "wandb" and not wandb.api.api_key:
Expand Down Expand Up @@ -134,6 +144,8 @@ def __init__(
self.optimizer = AdamW(model.parameters(), lr=learning_rate)
self.model, self.optimizer = self.accelerator.prepare(self.model, self.optimizer)

self.keep_last_n_checkpoints = keep_last_n_checkpoints if keep_last_n_checkpoints is not None else None

@property
def is_main(self):
return self.accelerator.is_main_process
Expand All @@ -154,7 +166,26 @@ def save_checkpoint(self, update, last=False):
self.accelerator.save(checkpoint, f"{self.checkpoint_path}/model_last.pt")
print(f"Saved last checkpoint at update {update}")
else:
# Skip saving intermediate checkpoints if keep_last_n_checkpoints is 0
if self.keep_last_n_checkpoints == 0:
return

self.accelerator.save(checkpoint, f"{self.checkpoint_path}/model_{update}.pt")
# Implement rolling checkpoint system - only if keep_last_n_checkpoints is positive
if self.keep_last_n_checkpoints > 0:
# Get all checkpoint files except model_last.pt
checkpoints = [
f
for f in os.listdir(self.checkpoint_path)
if f.startswith("model_") and f.endswith(".pt") and f != "model_last.pt"
]
# Sort by step number
checkpoints.sort(key=lambda x: int(x.split("_")[1].split(".")[0]))
# Remove old checkpoints if we have more than keep_last_n_checkpoints
while len(checkpoints) > self.keep_last_n_checkpoints:
oldest_checkpoint = checkpoints.pop(0)
os.remove(os.path.join(self.checkpoint_path, oldest_checkpoint))
print(f"Removed old checkpoint: {oldest_checkpoint}")

def load_checkpoint(self):
if (
Expand Down
7 changes: 7 additions & 0 deletions src/f5_tts/train/finetune_cli.py
Original file line number Diff line number Diff line change
Expand Up @@ -69,6 +69,12 @@ def parse_args():
action="store_true",
help="Use 8-bit Adam optimizer from bitsandbytes",
)
parser.add_argument(
"--keep_last_n_checkpoints",
type=int,
default=-1,
help="-1 (default) to keep all checkpoints, 0 to not save intermediate checkpoints, positive N to keep last N checkpoints",
)

return parser.parse_args()

Expand Down Expand Up @@ -158,6 +164,7 @@ def main():
log_samples=args.log_samples,
last_per_updates=args.last_per_updates,
bnb_optimizer=args.bnb_optimizer,
keep_last_n_checkpoints=args.keep_last_n_checkpoints,
)

train_dataset = load_dataset(args.dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs)
Expand Down
22 changes: 21 additions & 1 deletion src/f5_tts/train/finetune_gradio.py
Original file line number Diff line number Diff line change
Expand Up @@ -70,6 +70,7 @@ def save_settings(
mixed_precision,
logger,
ch_8bit_adam,
keep_last_n_checkpoints,
):
path_project = os.path.join(path_project_ckpts, project_name)
os.makedirs(path_project, exist_ok=True)
Expand All @@ -94,6 +95,7 @@ def save_settings(
"mixed_precision": mixed_precision,
"logger": logger,
"bnb_optimizer": ch_8bit_adam,
"keep_last_n_checkpoints": keep_last_n_checkpoints,
}
with open(file_setting, "w") as f:
json.dump(settings, f, indent=4)
Expand Down Expand Up @@ -126,6 +128,7 @@ def load_settings(project_name):
"mixed_precision": "none",
"logger": "wandb",
"bnb_optimizer": False,
"keep_last_n_checkpoints": -1, # Default to keep all checkpoints
}
return (
settings["exp_name"],
Expand All @@ -146,6 +149,7 @@ def load_settings(project_name):
settings["mixed_precision"],
settings["logger"],
settings["bnb_optimizer"],
settings["keep_last_n_checkpoints"],
)

with open(file_setting, "r") as f:
Expand All @@ -154,6 +158,8 @@ def load_settings(project_name):
settings["logger"] = "wandb"
if "bnb_optimizer" not in settings:
settings["bnb_optimizer"] = False
if "keep_last_n_checkpoints" not in settings:
settings["keep_last_n_checkpoints"] = -1 # Default to keep all checkpoints
if "last_per_updates" not in settings: # patch for backward compatibility, with before f992c4e
settings["last_per_updates"] = settings["last_per_steps"] // settings["grad_accumulation_steps"]
return (
Expand All @@ -175,6 +181,7 @@ def load_settings(project_name):
settings["mixed_precision"],
settings["logger"],
settings["bnb_optimizer"],
settings["keep_last_n_checkpoints"],
)


Expand Down Expand Up @@ -390,6 +397,7 @@ def start_training(
stream=False,
logger="wandb",
ch_8bit_adam=False,
keep_last_n_checkpoints=-1,
):
global training_process, tts_api, stop_signal

Expand Down Expand Up @@ -451,7 +459,8 @@ def start_training(
f"--num_warmup_updates {num_warmup_updates} "
f"--save_per_updates {save_per_updates} "
f"--last_per_updates {last_per_updates} "
f"--dataset_name {dataset_name}"
f"--dataset_name {dataset_name} "
f"--keep_last_n_checkpoints {keep_last_n_checkpoints}"
)

if finetune:
Expand Down Expand Up @@ -492,6 +501,7 @@ def start_training(
mixed_precision,
logger,
ch_8bit_adam,
keep_last_n_checkpoints,
)

try:
Expand Down Expand Up @@ -1564,6 +1574,13 @@ def get_audio_select(file_sample):
with gr.Row():
save_per_updates = gr.Number(label="Save per Updates", value=300)
last_per_updates = gr.Number(label="Last per Updates", value=100)
keep_last_n_checkpoints = gr.Number(
label="Keep Last N Checkpoints",
value=-1,
step=1,
precision=0,
info="-1: Keep all checkpoints, 0: Only save final model_last.pt, N>0: Keep last N checkpoints",
)

with gr.Row():
ch_8bit_adam = gr.Checkbox(label="Use 8-bit Adam optimizer")
Expand Down Expand Up @@ -1592,6 +1609,7 @@ def get_audio_select(file_sample):
mixed_precisionv,
cd_loggerv,
ch_8bit_adamv,
keep_last_n_checkpointsv,
) = load_settings(projects_selelect)
exp_name.value = exp_namev
learning_rate.value = learning_ratev
Expand All @@ -1611,6 +1629,7 @@ def get_audio_select(file_sample):
mixed_precision.value = mixed_precisionv
cd_logger.value = cd_loggerv
ch_8bit_adam.value = ch_8bit_adamv
keep_last_n_checkpoints.value = keep_last_n_checkpointsv

ch_stream = gr.Checkbox(label="Stream Output Experiment", value=True)
txt_info_train = gr.Text(label="Info", value="")
Expand Down Expand Up @@ -1670,6 +1689,7 @@ def get_audio_select(file_sample):
ch_stream,
cd_logger,
ch_8bit_adam,
keep_last_n_checkpoints,
],
outputs=[txt_info_train, start_button, stop_button],
)
Expand Down
1 change: 1 addition & 0 deletions src/f5_tts/train/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,6 +61,7 @@ def main(cfg):
mel_spec_type=mel_spec_type,
is_local_vocoder=cfg.model.vocoder.is_local,
local_vocoder_path=cfg.model.vocoder.local_path,
keep_last_n_checkpoints=getattr(cfg.ckpts, "keep_last_n_checkpoints", None),
)

train_dataset = load_dataset(cfg.datasets.name, tokenizer, mel_spec_kwargs=cfg.model.mel_spec)
Expand Down
Loading