-
Notifications
You must be signed in to change notification settings - Fork 9
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #516 from Sage-Bionetworks/GEN-636-allow-na-blank
[GEN-636] Allow NAs/blanks for unrequired columns in SV
- Loading branch information
Showing
6 changed files
with
155 additions
and
11 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,75 @@ | ||
"""Test genie.transform module""" | ||
from unittest.mock import patch | ||
|
||
import pandas as pd | ||
import pytest | ||
|
||
from genie import transform | ||
|
||
|
||
class TestConvertCols: | ||
@pytest.mark.parametrize( | ||
"test_input, expected", | ||
[ | ||
(pd.DataFrame({"some_col": [10.0, float("nan")]}), ["10.0", float("nan")]), | ||
(pd.DataFrame({"some_col": [1, None]}), ["1.0", None]), | ||
( | ||
pd.DataFrame({"some_col": ["Val1", float("nan")]}), | ||
["Val1", float("nan")], | ||
), | ||
], | ||
ids=["float_w_na", "int_w_na", "string_w_na"], | ||
) | ||
def test_that__convert_col_with_nas_to_str_keep_na_for_any_data_type( | ||
self, test_input, expected | ||
): | ||
result = transform._convert_col_with_nas_to_str(test_input, "some_col") | ||
assert result[0] == expected[0] | ||
assert pd.isna(result[1]) | ||
|
||
@pytest.mark.parametrize( | ||
"test_input, expected", | ||
[ | ||
(pd.DataFrame({"some_col": [10.0, 11.2]}), ["10.0", "11.2"]), | ||
( | ||
pd.DataFrame({"some_col": ["Val1", "Val2"]}), | ||
["Val1", "Val2"], | ||
), | ||
], | ||
ids=["float_no_na", "string_no_na"], | ||
) | ||
def test_that__convert_col_with_nas_to_str_returns_correct_vals_with_no_na_data( | ||
self, test_input, expected | ||
): | ||
result = transform._convert_col_with_nas_to_str(test_input, "some_col") | ||
assert result == expected | ||
|
||
def test_that__convert_float_col_with_nas_to_int(self): | ||
test_input = pd.DataFrame({"some_col": [10.0, float("nan")]}) | ||
result = transform._convert_float_col_with_nas_to_int(test_input, "some_col") | ||
assert result[0] == 10 | ||
assert pd.isna(result[1]) | ||
|
||
@pytest.mark.parametrize( | ||
"test_input, expected", | ||
[ | ||
(pd.DataFrame({"some_col": [10.0, 11.2]}), [10.0, 11.2]), | ||
( | ||
pd.DataFrame({"some_col": ["Val1", "Val2"]}), | ||
["Val1", "Val2"], | ||
), | ||
(pd.DataFrame({"some_col": [10, 11]}), [10, 11]), | ||
], | ||
ids=["float_no_na", "string_no_na", "int_no_na"], | ||
) | ||
def test_that__convert_float_col_with_nas_to_int_does_nothing_with_no_na_data( | ||
self, test_input, expected | ||
): | ||
result = transform._convert_float_col_with_nas_to_int(test_input, "some_col") | ||
assert result == expected | ||
|
||
def test_that__convert_float_col_with_nas_to_int_does_nothing_with_str_data(self): | ||
test_input = pd.DataFrame({"some_col": ["Val1", float("nan")]}) | ||
result = transform._convert_float_col_with_nas_to_int(test_input, "some_col") | ||
assert result[0] == "Val1" | ||
assert pd.isna(result[1]) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters