Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Minor Update #34

Merged
merged 2 commits into from
Sep 13, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions config/config.yml
Original file line number Diff line number Diff line change
Expand Up @@ -22,3 +22,8 @@ staging:
prod:
inherits: staging
synFolderID: syn51406700

internal:
inherits: staging
parquetDirID: syn63135213
s3basekey: staging/2024-09-10
2 changes: 1 addition & 1 deletion pipeline/run-pipeline.R
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@ tictoc::tic(msg = "INFO: Total execution time")
# Get config variables
list2env(
x = config::get(file = "config/config.yml",
config = "staging"),
config = "internal"),
envir = .GlobalEnv
)

Expand Down
9 changes: 6 additions & 3 deletions scripts/process-data/fitbitactivitylogs.R
Original file line number Diff line number Diff line change
Expand Up @@ -49,6 +49,7 @@ for (col_name in names(df_filtered)) {
}

# Pivot data frame from long to wide
cat("recoverutils::melt_df()....")
df_melted_filtered <-
df_filtered %>%
recoverutils::melt_df(excluded_concepts = excluded_concepts) %>%
Expand All @@ -58,25 +59,27 @@ df_melted_filtered <-
if("value" %in% colnames(.)) "value") %>%
tidyr::drop_na("value") %>%
mutate(value = as.numeric(value))
cat("recoverutils::melt_df() completed.\n")
cat("OK\n")

# Generate i2b2 summaries
cat("recoverutils::stat_summarize()....")
df_summarized <-
df_melted_filtered %>%
select(all_of(c("participantidentifier", "startdate", "enddate", "concept", "value"))) %>%
recoverutils::stat_summarize() %>%
distinct()
cat("recoverutils::stat_summarize() completed.\n")
cat("OK\n")

# Add i2b2 columns from concept map (ontology file) and clean the output
cat("recoverutils::process_df()....")
output_concepts <-
recoverutils::process_df(df_summarized, concept_map, concept_replacements_reversed, concept_map_concepts = "CONCEPT_CD", concept_map_units = "UNITS_CD") %>%
dplyr::mutate(nval_num = signif(nval_num, 9)) %>%
dplyr::arrange(concept) %>%
dplyr::mutate(dplyr::across(.cols = dplyr::everything(), .fns = as.character)) %>%
replace(is.na(.), "<null>") %>%
dplyr::filter(nval_num != "<null>" | tval_char != "<null>")
cat("recoverutils::process_df() completed.\n")
cat("OK\n")

# Identify the participants who have output concepts derived from fitbit variables
fitbit_participants <-
Expand Down
9 changes: 6 additions & 3 deletions scripts/process-data/fitbitdailydata.R
Original file line number Diff line number Diff line change
Expand Up @@ -54,6 +54,7 @@ for (col_name in names(df_filtered)) {
}

# Pivot data frame from long to wide
cat("recoverutils::melt_df()....")
df_melted_filtered <-
df_filtered %>%
recoverutils::melt_df(excluded_concepts = excluded_concepts) %>%
Expand All @@ -63,19 +64,21 @@ df_melted_filtered <-
if("value" %in% colnames(.)) "value") %>%
tidyr::drop_na("value") %>%
mutate(value = as.numeric(value))
cat("recoverutils::melt_df() completed.\n")
cat("OK\n")

# Generate i2b2 summaries
cat("recoverutils::stat_summarize()....")
df_summarized <-
df_melted_filtered %>%
rename(startdate = dplyr::any_of(c("date", "datetime"))) %>%
mutate(enddate = if (!("enddate" %in% names(.))) NA else enddate) %>%
select(all_of(c("participantidentifier", "startdate", "enddate", "concept", "value"))) %>%
recoverutils::stat_summarize() %>%
distinct()
cat("recoverutils::stat_summarize() completed.\n")
cat("OK\n")

# Add i2b2 columns from concept map (ontology file) and clean the output
cat("recoverutils::process_df()....")
output_concepts <-
recoverutils::process_df(df_summarized,
concept_map,
Expand All @@ -87,7 +90,7 @@ output_concepts <-
dplyr::mutate(dplyr::across(.cols = dplyr::everything(), .fns = as.character)) %>%
replace(is.na(.), "<null>") %>%
dplyr::filter(nval_num != "<null>" | tval_char != "<null>")
cat("recoverutils::process_df() completed.\n")
cat("OK\n")

# Identify the participants who have output concepts derived from fitbit variables
curr_fitbit_participants <-
Expand Down
10 changes: 6 additions & 4 deletions scripts/process-data/fitbitecg.R
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,6 @@
#' `participantidentifier` and `concept` for all data, and
#' `participantidentifier`, `concept`, `year`, `week` for weekly summaries).
ecg_stat_summarize <- function(df) {
cat("Running ecg_stat_summarize()...\n")

if (!is.data.frame(df)) stop("df must be a data frame")
if (!all(c("participantidentifier", "concept", "value") %in% colnames(df))) stop("'participantidentifier', 'concept', and 'value' columns must be present in df")
Expand Down Expand Up @@ -131,6 +130,7 @@ approved_concepts_summarized <-
)

# Pivot data frame from long to wide
cat("recoverutils::melt_df()....")
df_melted_filtered <-
df %>%
mutate("SinusRhythm" = if_else(resultclassification == "Normal Sinus Rhythm", 1, NA),
Expand All @@ -143,9 +143,10 @@ df_melted_filtered <-
if("value" %in% colnames(.)) "value") %>%
tidyr::drop_na("value") %>%
mutate(value = as.numeric(value))
cat("recoverutils::melt_df() completed.\n")
cat("OK\n")

# Generate i2b2 summaries
cat("ecg_stat_summarize()....")
df_summarized <-
df_melted_filtered %>%
rename(startdate = dplyr::any_of(c("date", "datetime"))) %>%
Expand All @@ -154,9 +155,10 @@ df_summarized <-
ecg_stat_summarize() %>%
mutate(value = as.numeric(value)) %>%
distinct()
cat("ecg_stat_summarize() completed.\n")
cat("OK\n")

# Add i2b2 columns from concept map (ontology file) and clean the output
cat("recoverutils::process_df()....")
output_concepts <-
recoverutils::process_df(df_summarized,
concept_map,
Expand All @@ -168,7 +170,7 @@ output_concepts <-
dplyr::mutate(dplyr::across(.cols = dplyr::everything(), .fns = as.character)) %>%
replace(is.na(.), "<null>") %>%
dplyr::filter(nval_num != "<null>" | tval_char != "<null>")
cat("recoverutils::process_df() completed.\n")
cat("OK\n")

# Identify the participants who have output concepts derived from fitbit variables
curr_fitbit_participants <-
Expand Down
9 changes: 6 additions & 3 deletions scripts/process-data/fitbitintradaycombined.R
Original file line number Diff line number Diff line change
Expand Up @@ -72,6 +72,7 @@ for (col_name in names(df_filtered)) {
}

# Pivot data frame from long to wide
cat("recoverutils::melt_df()....")
df_melted_filtered <-
df_filtered %>%
recoverutils::melt_df(excluded_concepts = excluded_concepts) %>%
Expand All @@ -81,27 +82,29 @@ df_melted_filtered <-
if("value" %in% colnames(.)) "value") %>%
tidyr::drop_na("value") %>%
mutate(value = as.numeric(value))
cat("recoverutils::melt_df() completed.\n")
cat("OK\n")

# Generate i2b2 summaries
cat("recoverutils::stat_summarize()....")
df_summarized <-
df_melted_filtered %>%
rename(startdate = dplyr::any_of(c("date", "datetime"))) %>%
mutate(enddate = if (!("enddate" %in% names(.))) NA else enddate) %>%
select(all_of(c("participantidentifier", "startdate", "enddate", "concept", "value"))) %>%
recoverutils::stat_summarize() %>%
distinct()
cat("recoverutils::stat_summarize() completed.\n")
cat("OK\n")

# Add i2b2 columns from concept map (ontology file) and clean the output
cat("recoverutils::process_df()....")
output_concepts <-
recoverutils::process_df(df_summarized, concept_map, concept_replacements_reversed, concept_map_concepts = "CONCEPT_CD", concept_map_units = "UNITS_CD") %>%
dplyr::mutate(nval_num = signif(nval_num, 9)) %>%
dplyr::arrange(concept) %>%
dplyr::mutate(dplyr::across(.cols = dplyr::everything(), .fns = as.character)) %>%
replace(is.na(.), "<null>") %>%
dplyr::filter(nval_num != "<null>" | tval_char != "<null>")
cat("recoverutils::process_df() completed.\n")
cat("OK\n")

# Identify the participants who have output concepts derived from fitbit variables
curr_fitbit_participants <-
Expand Down
10 changes: 6 additions & 4 deletions scripts/process-data/fitbitsleeplogs.R
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,6 @@
#' `participantidentifier` and `concept` for all data, and
#' `participantidentifier`, `concept`, `year`, `week` for weekly summaries).
sleeplogs_stat_summarize <- function(df) {
cat("Running sleeplogs_stat_summarize()...\n")

if (!is.data.frame(df)) stop("df must be a data frame")
if (!all(c("participantidentifier", "concept", "value") %in% colnames(df))) stop("'participantidentifier', 'concept', and 'value' columns must be present in df")
Expand Down Expand Up @@ -332,6 +331,7 @@ for (col_name in names(df_filtered)) {
}

# Pivot data frames from long to wide
cat("recoverutils::melt_df()....")
df_melted_filtered <-
df_filtered %>%
recoverutils::melt_df(excluded_concepts = excluded_concepts) %>%
Expand Down Expand Up @@ -366,9 +366,10 @@ numepisodes_df_melted_filtered_weekly <-
tidyr::drop_na("value") %>%
mutate(value = as.numeric(value))

cat("recoverutils::melt_df() completed.\n")
cat("OK\n")

# Generate i2b2 summaries
cat("sleeplogs_stat_summarize()....")
df_summarized <-
df_melted_filtered %>%
select(all_of(c("participantidentifier", "startdate", "enddate", "concept", "value"))) %>%
Expand Down Expand Up @@ -397,17 +398,18 @@ final_df_summarized <-
numepisodes_df_summarized_weekly) %>%
dplyr::distinct()

cat("sleeplogs_stat_summarize() completed.\n")
cat("OK\n")

# Add i2b2 columns from concept map (ontology file) and clean the output
cat("recoverutils::process_df()....")
output_concepts <-
recoverutils::process_df(final_df_summarized, concept_map, concept_replacements_reversed, concept_map_concepts = "CONCEPT_CD", concept_map_units = "UNITS_CD") %>%
dplyr::mutate(nval_num = signif(nval_num, 9)) %>%
dplyr::arrange(concept) %>%
dplyr::mutate(dplyr::across(.cols = dplyr::everything(), .fns = as.character)) %>%
replace(is.na(.), "<null>") %>%
dplyr::filter(nval_num != "<null>" | tval_char != "<null>")
cat("recoverutils::process_df() completed.\n")
cat("OK\n")

# Identify the participants who have output concepts derived from fitbit variables
curr_fitbit_participants <-
Expand Down
10 changes: 6 additions & 4 deletions scripts/process-data/healthkitv2electrocardiogram.R
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,6 @@
#' `participantidentifier` and `concept` for all data, and
#' `participantidentifier`, `concept`, `year`, `week` for weekly summaries).
ecg_stat_summarize <- function(df) {
cat("Running ecg_stat_summarize()...\n")

if (!is.data.frame(df)) stop("df must be a data frame")
if (!all(c("participantidentifier", "concept", "value") %in% colnames(df))) stop("'participantidentifier', 'concept', and 'value' columns must be present in df")
Expand Down Expand Up @@ -136,6 +135,7 @@ approved_concepts_summarized <-
)

# Pivot data frame from long to wide
cat("recoverutils::melt_df()....")
df_melted_filtered <-
df %>%
mutate("SinusRhythm" = if_else(classification == "SinusRhythm", 1, NA),
Expand All @@ -148,18 +148,20 @@ df_melted_filtered <-
if("value" %in% colnames(.)) "value") %>%
tidyr::drop_na("value") %>%
mutate(value = as.numeric(value))
cat("recoverutils::melt_df() completed.\n")
cat("OK\n")

# Generate i2b2 summaries
cat("ecg_stat_summarize()....")
df_summarized <-
df_melted_filtered %>%
select(all_of(c("participantidentifier", "startdate", "enddate", "concept", "value"))) %>%
ecg_stat_summarize() %>%
mutate(value = as.numeric(value)) %>%
distinct()
cat("ecg_stat_summarize() completed.\n")
cat("OK\n")

# Add i2b2 columns from concept map (ontology file) and clean the output
cat("recoverutils::process_df()....")
output_concepts <-
recoverutils::process_df(df_summarized,
concept_map,
Expand All @@ -171,7 +173,7 @@ output_concepts <-
dplyr::mutate(dplyr::across(.cols = dplyr::everything(), .fns = as.character)) %>%
replace(is.na(.), "<null>") %>%
dplyr::filter(nval_num != "<null>" | tval_char != "<null>")
cat("recoverutils::process_df() completed.\n")
cat("OK\n")

# Identify the participants who have output concepts derived from healthkit variables
curr_hk_participants <-
Expand Down
6 changes: 4 additions & 2 deletions scripts/process-data/healthkitv2samples.R
Original file line number Diff line number Diff line change
Expand Up @@ -74,20 +74,22 @@ df_melted_filtered <-
cat("Melt and filtering step completed.\n")

# Generate i2b2 summaries
cat("recoverutils::stat_summarize()....")
df_summarized <-
df_melted_filtered %>%
rename(enddate = "date") %>%
select(all_of(c("participantidentifier", "startdate", "enddate", "concept", "value"))) %>%
recoverutils::stat_summarize() %>%
distinct()
cat("recoverutils::stat_summarize() completed.\n")
cat("OK\n")

tmp_concept_replacements <- c("respiratoryrate" = "breathingrate",
"heartratevariability" = "hrv",
"heartrate" = "avghr",
"oxygensaturation" = "spo2avg")

# Add i2b2 columns from concept map (ontology file) and clean the output
cat("recoverutils::process_df()....")
output_concepts <-
recoverutils::process_df(df_summarized,
concept_map,
Expand All @@ -99,7 +101,7 @@ output_concepts <-
dplyr::mutate(dplyr::across(.cols = dplyr::everything(), .fns = as.character)) %>%
replace(is.na(.), "<null>") %>%
dplyr::filter(nval_num != "<null>" | tval_char != "<null>")
cat("recoverutils::process_df() completed.\n")
cat("OK\n")

# Identify the participants who have output concepts derived from healthkit variables
curr_hk_participants <-
Expand Down
6 changes: 4 additions & 2 deletions scripts/process-data/healthkitv2statistics.R
Original file line number Diff line number Diff line change
Expand Up @@ -49,17 +49,19 @@ df_melted_filtered <-
cat("Melt and filtering step completed.\n")

# Generate i2b2 summaries
cat("recoverutils::stat_summarize()....")
df_summarized <-
df_melted_filtered %>%
rename(enddate = "date") %>%
select(all_of(c("participantidentifier", "startdate", "enddate", "concept", "value"))) %>%
recoverutils::stat_summarize() %>%
distinct()
cat("recoverutils::stat_summarize() completed.\n")
cat("OK\n")

tmp_concept_replacements <- c("dailysteps" = "steps")

# Add i2b2 columns from concept map (ontology file) and clean the output
cat("recoverutils::process_df()....")
output_concepts <-
recoverutils::process_df(df_summarized,
concept_map,
Expand All @@ -71,7 +73,7 @@ output_concepts <-
dplyr::mutate(dplyr::across(.cols = dplyr::everything(), .fns = as.character)) %>%
replace(is.na(.), "<null>") %>%
dplyr::filter(nval_num != "<null>" | tval_char != "<null>")
cat("recoverutils::process_df() completed.\n")
cat("OK\n")

# Identify the participants who have output concepts derived from healthkit variables
curr_hk_participants <-
Expand Down
3 changes: 2 additions & 1 deletion scripts/process-data/participant_devices.R
Original file line number Diff line number Diff line change
Expand Up @@ -66,6 +66,7 @@ df_joined <-
# Add i2b2 columns from concept map (ontology file) and clean the output
concept_map_concepts <- "CONCEPT_CD"
concept_map_units <- "UNITS_CD"
cat("recoverutils::process_df()....")
output_concepts <-
df_joined %>%
dplyr::mutate(valtype_cd = dplyr::case_when(class(value) == "numeric" ~ "N",
Expand All @@ -84,7 +85,7 @@ output_concepts <-
dplyr::select(participantidentifier, startdate, enddate,
concept, valtype_cd, nval_num, tval_char, UNITS_CD) %>%
dplyr::rename(units_cd = UNITS_CD)
cat("recoverutils::process_df() completed.\n")
cat("OK\n")

# Write the output
output_concepts %>%
Expand Down
Loading