-
Notifications
You must be signed in to change notification settings - Fork 157
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
This commit add chekr for average pooling ONE-DCO-1.0-Signed-off-by: JuYoung Lee [email protected]
- Loading branch information
Showing
2 changed files
with
436 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,150 @@ | ||
/* | ||
* Copyright (c) 2024 Samsung Electronics Co., Ltd. All Rights Reserved | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
#ifndef __NNFW_CKER_TRAIN_OPERATION_AVGPOOL_H__ | ||
#define __NNFW_CKER_TRAIN_OPERATION_AVGPOOL_H__ | ||
|
||
#include "cker/Shape.h" | ||
#include "cker/Utils.h" | ||
#include "cker/eigen/Utils.h" | ||
|
||
#include <Eigen/Core> | ||
|
||
namespace nnfw | ||
{ | ||
namespace cker | ||
{ | ||
namespace train | ||
{ | ||
inline void AvgPool2D(const PoolParams ¶ms, const Shape &input_shape, const float *input_data, | ||
const Shape &output_shape, float *output_data) | ||
{ | ||
assert(input_shape.DimensionsCount() == 4); | ||
assert(output_shape.DimensionsCount() == 4); | ||
const int batches = MatchingDim(input_shape, 0, output_shape, 0); | ||
const int input_height = input_shape.Dims(1); | ||
const int input_width = input_shape.Dims(2); | ||
const int output_height = output_shape.Dims(1); | ||
const int output_width = output_shape.Dims(2); | ||
const int stride_height = params.stride_height; | ||
const int stride_width = params.stride_width; | ||
|
||
// TODO(benoitjacob) make this a proper reference impl without Eigen! | ||
const auto in_mat = MapAsMatrixWithLastDimAsRows(input_data, input_shape); | ||
auto out_mat = MapAsMatrixWithLastDimAsRows(output_data, output_shape); | ||
|
||
// Prefill the output to 0. | ||
out_mat.setZero(); | ||
|
||
for (int b = 0; b < batches; ++b) | ||
{ | ||
for (int h = 0; h < output_height; ++h) | ||
{ | ||
for (int w = 0; w < output_width; ++w) | ||
{ | ||
// (h_start, h_end) * (w_start, w_end) is input range | ||
// that output is projected from. | ||
int h_start = h * stride_height - params.padding_values.height; | ||
int h_end = std::min(h_start + params.filter_height, input_height); | ||
h_start = h_start < 0 ? 0 : h_start; | ||
|
||
int w_start = w * stride_width - params.padding_values.width; | ||
int w_end = std::min(w_start + params.filter_width, input_width); | ||
w_start = w_start < 0 ? 0 : w_start; | ||
|
||
int count = (h_end - h_start) * (w_end - w_start); | ||
if (h_end <= 0 || w_end <= 0 || count <= 0 || h_start >= input_height || | ||
w_start >= input_width) | ||
continue; | ||
|
||
int out_offset = NodeOffset(b, h, w, output_height, output_width); | ||
for (int ph = h_start; ph < h_end; ++ph) | ||
{ | ||
for (int pw = w_start; pw < w_end; ++pw) | ||
{ | ||
int in_offset = NodeOffset(b, ph, pw, input_height, input_width); | ||
out_mat.col(out_offset) += in_mat.col(in_offset); | ||
} | ||
} | ||
out_mat.col(out_offset) /= count; | ||
} | ||
} | ||
} | ||
|
||
out_mat.cwiseMin(params.float_activation_min).cwiseMax(params.float_activation_max); | ||
} | ||
|
||
inline void AvgPool2DGrad(const PoolParams ¶ms, const Shape &incoming_shape, | ||
const float *incoming_data, const Shape &grad_shape, float *grad_data) | ||
{ | ||
assert(grad_shape.DimensionsCount() == 4); | ||
assert(incoming_shape.DimensionsCount() == 4); | ||
|
||
const int batches = MatchingDim(incoming_shape, 0, grad_shape, 0); | ||
const int grad_height = grad_shape.Dims(1); | ||
const int grad_width = grad_shape.Dims(2); | ||
const int incoming_height = incoming_shape.Dims(1); | ||
const int incoming_width = incoming_shape.Dims(2); | ||
const int stride_height = params.stride_height; | ||
const int stride_width = params.stride_width; | ||
|
||
// initialize grad_data | ||
std::fill(grad_data, grad_data + grad_shape.FlatSize(), 0.0); | ||
|
||
const auto incoming_mat = MapAsMatrixWithLastDimAsRows(incoming_data, incoming_shape); | ||
auto grad_mat = MapAsMatrixWithLastDimAsRows(grad_data, grad_shape); | ||
|
||
for (int b = 0; b < batches; ++b) | ||
{ | ||
for (int h = 0; h < incoming_height; ++h) | ||
{ | ||
for (int w = 0; w < incoming_width; ++w) | ||
{ | ||
// (h_start, h_end) * (w_start, w_end) is input range | ||
// that output is projected from. | ||
int h_start = h * stride_height - params.padding_values.height; | ||
int h_end = std::min(h_start + params.filter_height, grad_height); | ||
h_start = h_start < 0 ? 0 : h_start; | ||
|
||
int w_start = w * stride_width - params.padding_values.width; | ||
int w_end = std::min(w_start + params.filter_width, grad_width); | ||
w_start = w_start < 0 ? 0 : w_start; | ||
|
||
int count = (h_end - h_start) * (w_end - w_start); | ||
|
||
if (h_end <= 0 || w_end <= 0 || count <= 0 || h_start >= grad_height || | ||
w_start >= grad_width) | ||
continue; | ||
|
||
int incoming_offset = NodeOffset(b, h, w, incoming_height, incoming_width); | ||
for (int ph = h_start; ph < h_end; ++ph) | ||
{ | ||
for (int pw = w_start; pw < w_end; ++pw) | ||
{ | ||
int grad_offset = NodeOffset(b, ph, pw, grad_height, grad_width); | ||
grad_mat.col(grad_offset) += incoming_mat.col(incoming_offset) / count; | ||
} | ||
} | ||
} | ||
} | ||
} | ||
} | ||
|
||
} // namespace train | ||
} // namespace cker | ||
} // namespace nnfw | ||
|
||
#endif // __NNFW_CKER_TRAIN_OPERATION_AVGPOOL_H__ |
Oops, something went wrong.