Skip to content

ScXfjiang/watermarking_summarization

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Apply watermarking algorithm to LLM-based text summarization model

This repository demonstrates the application of the watermarking algorithm to T5-based text summarization models. We present a complete guide to fine-tuning and testing the T5 summarization model using two different datasets: News Summarization Dataset and CNN-DailyMails News Dataset.

Steps to reproduce the work

  1. Download the dataset and divide the dataset into train set and test set if necessary.
  2. Fine-tune T5 summarization model:
python train.py \
    --model_type=${T5_model_type} \
    --dataset_type=${dataset_type} \
    --dataset_path="/path/to/train_set" \
    --batch_size=16 \
    --num_epoch=2 \
    --lr=1e-4 \
    --doc_max_len=512 \
    --summary_max_len=150 \
    --log_dir=${log_dir}
  1. Test T5 summarization model:
python test.py \
    --model_type=${T5_model_type} \
    --dataset_type=${dataset_type} \
    --dataset_path="/path/to/test_set" \
    --state_dict_path="/path/to/checkpoint" \
    --batch_size=16 \
    --doc_max_len=512 \
    --summary_max_len=150 \
    --log_dir="." \
    --watermark=${enable_watermark} \
    --log_dir=${log_dir}

Experiment Results

News Summary Dataset

ROUGE-1 ROUGE-2 ROUGE-L
T5-base without watermarking 0.4832 0.2642 0.3631
T5-base with watermarking 0.4616 0.2321 0.3345
T5-large without watermarking 0.4901 0.2697 0.3632
T5-large with watermarking 0.4780 0.2401 0.3413

CNN-DailyMail Newspaper Text Summarization Dataset

ROUGE-1 ROUGE-2 ROUGE-L
T5-base without watermarking 0.4174 0.1957 0.2961
T5-base with watermarking 0.4031 0.1758 0.2781
T5-large without watermarking 0.4218 0.1991 0.2996
T5-large with watermarking 0.4057 0.1756 0.2800

Watermark Detection

z-scores of non-watermarked/watermarked summaries in the test dataset.

News Summary Dataset

model watermark_false watermark_true
T5-base 0.2505 2.3785
T5_large 0.1919 2.6262

CNN-DailyMail Newspaper Text Summarization Dataset

model watermark_false watermark_true
T5-base 0.0807 2.2043
T5_large 0.0179 2.4674

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published