-
-
Notifications
You must be signed in to change notification settings - Fork 85
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #726 from SciML/lbfgsb
Use lbfgsb as the default solver
- Loading branch information
Showing
4 changed files
with
112 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,90 @@ | ||
using Optimization.SciMLBase, LBFGSB | ||
|
||
""" | ||
$(TYPEDEF) | ||
[L-BFGS-B](https://en.wikipedia.org/wiki/Limited-memory_BFGS#L-BFGS-B) Nonlinear Optimization Code from [LBFGSB](https://github.com/Gnimuc/LBFGSB.jl/tree/master). | ||
It is a quasi-Newton optimization algorithm that supports bounds. | ||
References | ||
- R. H. Byrd, P. Lu and J. Nocedal. A Limited Memory Algorithm for Bound Constrained Optimization, (1995), SIAM Journal on Scientific and Statistical Computing , 16, 5, pp. 1190-1208. | ||
- C. Zhu, R. H. Byrd and J. Nocedal. L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization (1997), ACM Transactions on Mathematical Software, Vol 23, Num. 4, pp. 550 - 560. | ||
- J.L. Morales and J. Nocedal. L-BFGS-B: Remark on Algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization (2011), to appear in ACM Transactions on Mathematical Software. | ||
""" | ||
@kwdef struct LBFGS | ||
m::Int = 10 | ||
end | ||
|
||
SciMLBase.supports_opt_cache_interface(::LBFGS) = true | ||
SciMLBase.allowsbounds(::LBFGS) = true | ||
# SciMLBase.requiresgradient(::LBFGS) = true | ||
|
||
function SciMLBase.__init(prob::SciMLBase.OptimizationProblem, | ||
opt::LBFGS, | ||
data = Optimization.DEFAULT_DATA; save_best = true, | ||
callback = (args...) -> (false), | ||
progress = false, kwargs...) | ||
return OptimizationCache(prob, opt, data; save_best, callback, progress, | ||
kwargs...) | ||
end | ||
|
||
function SciMLBase.__solve(cache::OptimizationCache{ | ||
F, | ||
RC, | ||
LB, | ||
UB, | ||
LC, | ||
UC, | ||
S, | ||
O, | ||
D, | ||
P, | ||
C | ||
}) where { | ||
F, | ||
RC, | ||
LB, | ||
UB, | ||
LC, | ||
UC, | ||
S, | ||
O <: | ||
LBFGS, | ||
D, | ||
P, | ||
C | ||
} | ||
if cache.data != Optimization.DEFAULT_DATA | ||
maxiters = length(cache.data) | ||
data = cache.data | ||
else | ||
maxiters = Optimization._check_and_convert_maxiters(cache.solver_args.maxiters) | ||
data = Optimization.take(cache.data, maxiters) | ||
end | ||
|
||
local x | ||
|
||
_loss = function (θ) | ||
x = cache.f(θ, cache.p) | ||
opt_state = Optimization.OptimizationState(u = θ, objective = x[1]) | ||
if cache.callback(opt_state, x...) | ||
error("Optimization halted by callback.") | ||
end | ||
return x[1] | ||
end | ||
|
||
t0 = time() | ||
if cache.lb !== nothing && cache.ub !== nothing | ||
res = lbfgsb(_loss, cache.f.grad, cache.u0; m = cache.opt.m, maxiter = maxiters, | ||
lb = cache.lb, ub = cache.ub) | ||
else | ||
res = lbfgsb(_loss, cache.f.grad, cache.u0; m = cache.opt.m, maxiter = maxiters) | ||
end | ||
|
||
t1 = time() | ||
stats = Optimization.OptimizationStats(; iterations = maxiters, | ||
time = t1 - t0, fevals = maxiters, gevals = maxiters) | ||
|
||
return SciMLBase.build_solution(cache, cache.opt, res[2], res[1], stats = stats) | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,19 @@ | ||
using Optimization | ||
using ForwardDiff, Zygote, ReverseDiff, FiniteDiff, Tracker | ||
using ModelingToolkit, Enzyme, Random | ||
|
||
x0 = zeros(2) | ||
rosenbrock(x, p = nothing) = (1 - x[1])^2 + 100 * (x[2] - x[1]^2)^2 | ||
l1 = rosenbrock(x0) | ||
|
||
optf = OptimizationFunction(rosenbrock, AutoForwardDiff()) | ||
prob = OptimizationProblem(optf, x0) | ||
res = solve(prob, Optimization.LBFGS(), maxiters = 100) | ||
|
||
@test res.u≈[1.0, 1.0] atol=1e-3 | ||
|
||
optf = OptimizationFunction(rosenbrock, AutoZygote()) | ||
prob = OptimizationProblem(optf, x0, lb = [0.0, 0.0], ub = [0.3, 0.3]) | ||
res = solve(prob, Optimization.LBFGS(), maxiters = 100) | ||
|
||
@test res.u≈[0.3, 0.09] atol=1e-3 |