mvsec-nightl21-video_new.mp4
When use this dataset, please cite:
@InProceedings{Hu_2021_CVPR,
author = {Hu, Yuhuang and Liu, Shih-Chii and Delbruck, Tobi},
title = {v2e: From Video Frames to Realistic DVS Events},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
month = {June},
year = {2021},
pages = {1312-1321}
}
MVSEC-NIGHTL21 is derived dataset of "The Multi Vehicle Stereo Event Camera Dataset" which is available here: https://daniilidis-group.github.io/mvsec/
Please also cite the original MVSEC paper:
- Zhu, A. Z., Thakur, D., Ozaslan, T., Pfrommer, B., Kumar, V., & Daniilidis, K. (2018). The Multi Vehicle Stereo Event Camera Dataset: An Event Camera Dataset for 3D Perception. IEEE Robotics and Automation Letters, 3(3), 2032-2039.
We used outdoor_night1_data.hdf5
of the MVSEC dataset.
The dataset is recorded with dual camera, we use the left
camera.
In the HDF5 archive, the relevant dataset can be accessed as following:
mvsec_data = h5py.File(mvsec_data_path, "r")
# raw frame
frame_data = mvsec_data["davis"]["left"]["image_raw"]
# frame timestamps
frame_ts = mvsec_data["davis"]["left"]["image_raw_ts"]
# raw events
events_data = mvsec_data["davis"]["left"]["events"]
# event indices that corresponds to the frame
frame_event_inds = mvsec_data["davis"]["left"]["image_raw_event_inds"]
For visualization in this repository, we only used the raw frames.
In the validation set, there are 400 frames. The list of the frame indices is in frame_list.txt
.
Among these 400 frames, 368 frames are labeled. The frames that don't have labels are listed in frames_that_dont_have_labels.txt
.
We labelled car
in these frames.
The labelled groundtruths are stored in .txt
files and can be found in mvsec_nightl21_labels
.
Each labeled car is in the format car x_min y_min x_max y_max
. For example:
car 48 112 143 170
means x_min=48, y_min=112
, and x_max=143, y_max=170
.
-
Install dependency
pip install h5py pip install matplotlib pip install opencv-python
-
Clone this repository
git clone https://github.com/SensorsINI/MVSEC-NIGHTL21 cd MVSEC-NIGHTL21
-
Download the
outdoor_night1_data.hdf5
from MVSEC dataset, available here -
Run The Visualization
python visualize_mvsec_nightl21.py --mvsec_data /path/to/outdoor_night1_data.hdf5 --gt_root ./mvsec_nightl21_labels
If everything works, you should see a video that annotates the cars.
Yuhuang Hu
[email protected]