Skip to content

Gemma-2b-it LLM has been finetuned on a dataset of Python codes, enabling it to proficiently learn Python syntax and assist in debugging tasks, offering valuable guidance to programmers.

Notifications You must be signed in to change notification settings

ShahDishank/gemma-finetuned

Repository files navigation

Finetuned Gemma LLM

A Finetuned Large Language Model specifically trained on datasets of python codes to teach python and help developers in debugging.

Model Link

Run Model on Google Colab CPU

  • Create read access token on Hugging Face [Here]

Install transformers library

pip install transformers

Use LLM on Google Colab to Generate Code

from transformers import AutoTokenizer, AutoModelForCausalLM

model_name = "shahdishank/gemma-2b-it-finetune-python-codes"
HUGGING_FACE_TOKEN = "YOUR_TOKEN"
tokenizer = AutoTokenizer.from_pretrained(model_name, token="HUGGING_FACE_TOKEN")
model = AutoModelForCausalLM.from_pretrained(model_name, token="HUGGING_FACE_TOKEN")

prompt_template = """\
  user:\n{query} \n\n assistant:\n
  """
prompt = prompt_template.format(query="write a simple python function") # write your query here

input_ids = tokenizer(prompt, return_tensors="pt", add_special_tokens=True)
outputs = model.generate(**input_ids, max_new_tokens=2000, do_sample=True, pad_token_id=tokenizer.eos_token_id)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)

Output on Google Colab Screenshot

llm_output

Features

  • Code generation
  • Debugging
  • Learn and understand various python coding styles

Tech Stack

Language: Python

Library: transformers, PEFT

LLM: Gemma-2b-it

IDE: Google Colab

Resources Used

Feedback

If you have any feedback, please reach out to me at [email protected]

Author

About

Gemma-2b-it LLM has been finetuned on a dataset of Python codes, enabling it to proficiently learn Python syntax and assist in debugging tasks, offering valuable guidance to programmers.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published