-
Notifications
You must be signed in to change notification settings - Fork 132
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Implement Active-CMA-ES #235
base: master
Are you sure you want to change the base?
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -79,6 +79,15 @@ class Individual { | |
} | ||
}; | ||
|
||
///\brief Reverse ordering relation by the fitness of the individuals(only single objective) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. you could use a lambda function for that, we are trying to replace all those small functors with them. |
||
struct ReverseFitnessOrdering | ||
{ | ||
bool operator()(Individual const& individual1, Individual const& individual2) | ||
{ | ||
return individual1.unpenalizedFitness() < individual2.unpenalizedFitness(); | ||
} | ||
}; | ||
|
||
/// \brief Default constructor that initializes the individual's attributes to default values. | ||
Individual() | ||
: m_rank(0) | ||
|
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -237,22 +237,31 @@ void CMA::doInit( | |
|
||
|
||
//weighting of the k-best individuals | ||
m_weights.resize(m_mu); | ||
m_weights.resize(m_mu * 2); | ||
RealVector negativeWeights(m_mu, 0.); | ||
switch (m_recombinationType) { | ||
case EQUAL: | ||
for (std::size_t i = 0; i < m_mu; i++) | ||
for (std::size_t i = 0; i < m_mu; i++) { | ||
m_weights(i) = 1; | ||
negativeWeights(i) = -1.; | ||
} | ||
break; | ||
case LINEAR: | ||
for (std::size_t i = 0; i < m_mu; i++) | ||
for (std::size_t i = 0; i < m_mu; i++) { | ||
m_weights(i) = (double)(mu-i); | ||
negativeWeights(i) = static_cast<double>(mu - (m_lambda - i - 1.)); | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. you should not need the static_cast because subtracting a double from mu leads to a double, unlike the line before where an unsigned integral type is assigned to double. |
||
} | ||
break; | ||
case SUPERLINEAR: | ||
for (std::size_t i = 0; i < m_mu; i++) | ||
for (std::size_t i = 0; i < m_mu; i++) { | ||
m_weights(i) = ::log(mu + 0.5) - ::log(1. + i); // eq. (45) | ||
negativeWeights(i) = ::log(mu + 0.5) - ::log(1. + (m_lambda - i - 1.)); | ||
} | ||
break; | ||
} | ||
m_weights /= sum(m_weights); // eq. (45) | ||
const double weightSum = sum(m_weights); | ||
m_weights /= weightSum; // eq. (45) | ||
negativeWeights /= weightSum; // Normalize the negative weights. | ||
m_muEff = 1. / sum(sqr(m_weights)); // equal to sum(m_weights)^2 / sum(sqr(m_weights)) | ||
|
||
// Step size control | ||
|
@@ -261,9 +270,17 @@ void CMA::doInit( | |
|
||
m_cC = (4. + m_muEff / m_numberOfVariables) / (m_numberOfVariables + 4. + 2 * m_muEff / m_numberOfVariables); // eq. (47) | ||
m_c1 = 2 / (sqr(m_numberOfVariables + 1.3) + m_muEff); // eq. (48) | ||
double alphaMu = 2.; | ||
double rankMuAlpha = 0.3;//but is it really? | ||
m_cMu = std::min(1. - m_c1, alphaMu * ( rankMuAlpha + m_muEff - 2. + 1./m_muEff) / (sqr(m_numberOfVariables + 2) + alphaMu * m_muEff / 2)); // eq. (49) | ||
m_cMu = std::min(1. - m_c1, 2. * (.25 + m_muEff + 1. / m_muEff - 2.) / (std::pow(m_numberOfVariables + 2., 2.) + 2. * m_muEff / 2.)); // eq. (49) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. replace std::pow(a,2.0) by sqr(a) also this line should be the exact same as before when substitution alphaMu by 2 and changing rankMuAlpha to 0.25 |
||
|
||
// Normalize the negative weights | ||
const double negativeWeightSum = sum(negativeWeights); | ||
const double negativeMultiplier = 1. + m_c1 / m_cMu; | ||
negativeWeights /= -negativeWeightSum; | ||
negativeWeights *= negativeMultiplier; | ||
|
||
for (std::size_t i = 0; i < negativeWeights.size(); ++i) { | ||
m_weights(2 * m_mu - i - 1) = negativeWeights[i]; | ||
} | ||
|
||
std::size_t pos = std::min_element(initialValues.begin(),initialValues.end())-initialValues.begin(); | ||
m_mean = initialSearchPoints[pos]; | ||
|
@@ -299,13 +316,7 @@ void CMA::updatePopulation( std::vector<IndividualType> const& offspring ) { | |
|
||
// Covariance matrix update | ||
RealMatrix& C = m_mutationDistribution.covarianceMatrix(); | ||
RealMatrix Z( m_numberOfVariables, m_numberOfVariables, 0.0); // matric for rank-mu update | ||
for( std::size_t i = 0; i < m_mu; i++ ) { | ||
noalias(Z) += m_weights( i ) * blas::outer_prod( | ||
selectedOffspring[i].searchPoint() - m_mean, | ||
selectedOffspring[i].searchPoint() - m_mean | ||
); | ||
} | ||
|
||
double n = static_cast<double>(m_numberOfVariables); | ||
double expectedChi = std::sqrt( n )*(1. - 1./(4.*n) + 1./(21.*n*n)); | ||
double hSigLHS = norm_2( m_evolutionPathSigma ) / std::sqrt(1. - pow((1 - m_cSigma), 2.*(m_counter+1))); | ||
|
@@ -314,8 +325,63 @@ void CMA::updatePopulation( std::vector<IndividualType> const& offspring ) { | |
if(hSigLHS < hSigRHS) hSig = 1.; | ||
double deltaHSig = (1.-hSig*hSig) * m_cC * (2. - m_cC); | ||
|
||
m_evolutionPathC = (1. - m_cC ) * m_evolutionPathC + hSig * std::sqrt( m_cC * (2. - m_cC) * m_muEff ) * y; // eq. (42) | ||
noalias(C) = (1.-m_c1 - m_cMu) * C + m_c1 * ( blas::outer_prod( m_evolutionPathC, m_evolutionPathC ) + deltaHSig * C) + m_cMu * 1./sqr( m_sigma ) * Z; // eq. (43) | ||
const double c1a = m_c1 * (1. - (1. - (hSig * hSig)) * m_cC * (2. - m_cC)); | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. please move inside the if, if you don't use it in both branches (or later) |
||
|
||
if (m_useActiveUpdates) { | ||
// Copy the weights from as they are altered based on the length of the | ||
// the rejected solutions. | ||
RealVector tempWeights(m_numberOfVariables + 1, 0.); | ||
tempWeights(0) = c1a; | ||
for (std::size_t i = 0; i < m_weights.size(); ++i) | ||
{ | ||
tempWeights(i + 1) = m_weights(i) * m_cMu; | ||
} | ||
|
||
// Add rejected samples to the selected offspring | ||
std::vector< IndividualType > rejectedOffspring(m_mu); | ||
ElitistSelection<IndividualType::ReverseFitnessOrdering > rejectedSelection; | ||
rejectedSelection(offspring.begin(), offspring.end(), rejectedOffspring.begin(), rejectedOffspring.end()); | ||
std::reverse(rejectedOffspring.begin(), rejectedOffspring.end()); | ||
|
||
selectedOffspring.insert(selectedOffspring.end(), rejectedOffspring.begin(), rejectedOffspring.end()); | ||
|
||
const double weightSum = sum(tempWeights); | ||
|
||
const RealMatrix &B = m_mutationDistribution.eigenVectors(); | ||
const RealVector &D = sqrt(max(m_mutationDistribution.eigenValues(), 0)); | ||
|
||
RealMatrix vectors(m_numberOfVariables + 1, m_numberOfVariables); | ||
|
||
// Build the matrix for combined rank-1 and rank-mu updates | ||
row(vectors, 0) = m_evolutionPathC * sqrt(m_c1 / (c1a + 1e-23)); | ||
for (int k = 0; k < selectedOffspring.size(); ++k) | ||
{ | ||
const unsigned int weightIndex = k + 1; | ||
RealVector normalized = (selectedOffspring[k].searchPoint() - m_mean) / m_sigma; | ||
|
||
if (tempWeights[weightIndex] < 0.) | ||
{ | ||
const double mahalanobisNorm = sqrt(sum(sqr((trans(B) % normalized) / D))); | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. const double mahalanobisNorm = norm_2((trans(B) % normalized) / D) or even simpler const double mahalanobisNorm = norm_2(selectedOffspring[j].chromosome()) |
||
tempWeights[weightIndex] *= static_cast<double>(m_numberOfVariables) / sqr(mahalanobisNorm + 1e-9); | ||
} | ||
|
||
row(vectors, weightIndex) = normalized; | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. noalias(row(vectors,weightIndex)) = normalized; we don't want to copy! |
||
} | ||
|
||
m_evolutionPathC = (1. - m_cC) * m_evolutionPathC + hSig * (std::sqrt(m_cC * (2. - m_cC) * m_muEff) / m_sigma) * (m - m_mean); | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. this is the same as linke 382. (m-mean)/sigma is y. Please try to unify! There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Indeed it should, I did have some weird error when I did it with y instead, but that might origin from somewhere else. I will try to update it! |
||
noalias(C) = C * (1. - weightSum) + trans(to_diagonal(tempWeights) % vectors) % vectors; | ||
} else { | ||
RealMatrix Z(m_numberOfVariables, m_numberOfVariables, 0.0); // matric for rank-mu update | ||
for (std::size_t i = 0; i < m_mu; i++) { | ||
noalias(Z) += m_weights(i) * blas::outer_prod( | ||
selectedOffspring[i].searchPoint() - m_mean, | ||
selectedOffspring[i].searchPoint() - m_mean | ||
); | ||
} | ||
|
||
m_evolutionPathC = (1. - m_cC) * m_evolutionPathC + hSig * std::sqrt(m_cC * (2. - m_cC) * m_muEff) * y; // eq. (42) | ||
noalias(C) = (1. - m_c1 - m_cMu) * C + m_c1 * (blas::outer_prod(m_evolutionPathC, m_evolutionPathC) + deltaHSig * C) + m_cMu * 1. / sqr(m_sigma) * Z; // eq. (43) | ||
} | ||
|
||
// Step size update | ||
RealVector CInvY = blas::prod( m_mutationDistribution.eigenVectors(), z ); // C^(-1/2)y = Bz | ||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
please put that in the constructor, everything should be at one place.