Skip to content

ShellingFord221/awesome-active-learning

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

47 Commits
 
 
 
 
 
 

Repository files navigation

Awesome Active Learning Awesome

🤩 A curated list of awesome Active Learning ! 🤩

Background

(image source: Settles, Burr)

What is Active Learning?

Active learning is a special case of machine learning in which a learning algorithm can interactively query a oracle (or some other information source) to label new data points with the desired outputs.

(image source: Settles, Burr)

There are situations in which unlabeled data is abundant but manual labeling is expensive. In such a scenario, learning algorithms can actively query the oracle for labels. This type of iterative supervised learning is called active learning. Since the learner chooses the examples, the number of examples to learn a concept can often be much lower than the number required in normal supervised learning. With this approach, there is a risk that the algorithm is overwhelmed by uninformative examples. Recent developments are dedicated to multi-label active learning, hybrid active learning and active learning in a single-pass (on-line) context, combining concepts from the field of machine learning (e.g. conflict and ignorance) with adaptive, incremental learning policies in the field of online machine learning.

(source: Wikipedia)

Contributing

If you find the awesome paper/code/book/tutorial or have some suggestions, please feel free to pull requests or contact [email protected] to add papers using the following Markdown format:

Year | Paper Name | Conference | [Paper](link) | [Code](link) | Tags | Notes |

Thanks for your valuable contribution to the research community. 😃

Table of Contents

Books

Surveys

Papers

Tags

Sur.: survey | Cri.: critics | Pool.: pool-based sampling | Str.: stream-based sampling | Syn.: membership query synthesize | Meta.: meta learning | SSL.: semi-supervised learning | RL.: reinforcement learning | FS.: few-shot learning |

Before 2017

Year Title Conf Paper Code Tags Notes
1994 Improving Generalization with Active Learning Machine Learning paper
2007 Discriminative Batch Mode Active Learning NIPS paper
2008 Active Learning with Direct Query Construction KDD paper
2008 An Analysis of Active Learning Strategies for Sequence Labeling Tasks EMNLP paper
2008 Hierarchical Sampling for Active Learning ICML paper
2010 Active Instance Sampling via Matrix Partition NIPS paper
2011 Ask Me Better Questions: Active Learning Queries Based on Rule Induction KDD paper
2011 Active Learning from Crowds ICML paper
2011 Bayesian Active Learning for Classification and Preference Learning CoRR paper
2011 Active Learning Using On-line Algorithms KDD paper
2012 Bayesian Optimal Active Search and Surveying ICML paper
2012 Batch Active Learning via Coordinated Matching ICML paper
2013 Active Learning for Multi-Objective Optimization ICML paper
2013 Active Learning for Probabilistic Hypotheses Usingthe Maximum Gibbs Error Criterion NIPS paper
2014 Active Semi-Supervised Learning Using Sampling Theory for Graph Signals KDD paper
2014 Beyond Disagreement-based Agnostic Active Learning NIPS paper
2016 Cost-Effective Active Learning for Deep Image Classification TCSVT paper
2016 Active Image Segmentation Propagation CVPR paper

2017

Title Conf Paper Code Tags Notes
Active Decision Boundary Annotation with Deep Generative Models ICCV paper
Active One-shot Learning CoRR paper code Str. RL. FS.
A Meta-Learning Approach to One-Step Active-Learning AutoML@PKDD/ECML paper Pool. Meta.
Generative Adversarial Active Learning arXiv paper Pool. Syn.
Active Learning from Peers NIPS paper
Learning Active Learning from Data NIPS paper code Pool.
Learning Algorithms for Active Learning ICML paper
Deep Bayesian Active Learning with Image Data ICML paper code Pool.

2018

Title Conf Paper Code Tags Notes
The Power of Ensembles for Active Learning in Image Classification CVPR paper
Adversarial Learning for Semi-Supervised Semantic Segmentation BMVC paper code Pool. SSL.
A Variance Maximization Criterion for Active Learning Pattern Recognition paper
Meta-Learning Transferable Active Learning Policies by Deep Reinforcement Learning ICLR-WS paper Pool. Meta. RL.
Active Learning for Convolutional Neural Networks: A Core-Set Approach ICLR paper
Adversarial Active Learning for Sequence Labeling and Generation IJCAI paper
Meta-Learning for Batch Mode Active Learning ICLR-WS paper

2019

Title Conf Paper Code Tags Notes
ViewAL: Active Learning with Viewpoint Entropy for Semantic Segmentation CVPR paper Pool.
Bayesian Generative Active Deep Learning ICML paper code Pool. Semi.
Variational Adversarial Active Learning ICCV paper code Pool. SSL.
Integrating Bayesian and Discriminative Sparse Kernel Machines for Multi-class Active Learning NeurIPS paper
Active Learning via Membership Query Synthesisfor Semi-supervised Sentence Classification CoNLL paper
Discriminative Active Learning arXiv paper
Semantic Redundancies in Image-Classification Datasets: The 10% You Don’t Need arXiv paper
Bayesian Batch Active Learning as Sparse Subset Approximation NIPS paper
Learning Loss for Active Learning CVPR paper code Pool.
Rapid Performance Gain through Active Model Reuse IJCAI paper
Parting with Illusions about Deep Active Learning arXiv paper Cri.
BatchBALD: Efficient and Diverse Batch Acquisition for Deep Bayesian Active Learning NIPS paper

2020

Title Conf Paper Code Tags Notes
Reinforced active learning for image segmentation ICLR paper code Pool. RL.
[BADGE] Batch Active learning by Diverse Gradient Embeddings ICLR paper code Pool.
Adversarial Sampling for Active Learning WACV paper Pool.
Online Active Learning of Reject Option Classifiers AAAI paper
Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision CVPR paper
Deep Reinforcement Active Learning for Medical Image Classification MICCAI paper Pool. RL.
State-Relabeling Adversarial Active Learning CVPR paper code Pool.
Towards Robust and Reproducible Active Learning Using Neural Networks arXiv paper Cri.
Consistency-Based Semi-supervised Active Learning: Towards Minimizing Labeling Cost ECCV paper Pool. SSL.

2021

Title Conf Paper Code Tags Notes
MedSelect: Selective Labeling for Medical Image Classification Combining Meta-Learning with Deep Reinforcement Learning arXiv paper Pool. Meta. RL.
Can Active Learning Preemptively Mitigate Fairness Issues ICLR-RAI paper code Pool. Thinking fairness issues
Sequential Graph Convolutional Network for Active Learning CVPR paper code Pool.
Task-Aware Variational Adversarial Active Learning CVPR paper code Pool.

Turtorials

Tools

About

A curated list of awesome Active Learning

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published