-
Notifications
You must be signed in to change notification settings - Fork 7
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
17 changed files
with
1,166 additions
and
0 deletions.
There are no files selected for viewing
Binary file not shown.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,79 @@ | ||
import scipy.io as sio | ||
import scipy.io | ||
import numpy as np | ||
from sklearn.model_selection import train_test_split | ||
|
||
''' | ||
cross-subject data splitting | ||
''' | ||
|
||
mat = scipy.io.loadmat('ucieeg.mat') | ||
|
||
|
||
data = mat['X'].astype('float32') | ||
|
||
#data = np.transpose (data, (0, 3 ,2, 1)) | ||
|
||
print (np.shape (data)) | ||
|
||
label_alcoholism = mat['y_alcoholic'].astype('int') | ||
label_alcoholism = label_alcoholism.reshape(np.shape(data)[0]) | ||
|
||
label_stimulus = mat['y_stimulus'].astype('int')- 1 | ||
label_stimulus = label_stimulus.reshape(np.shape(data)[0]) | ||
|
||
label_id = mat['subjectid'].astype('int') - 1 | ||
label_id = label_id.reshape(np.shape (data)[0]) | ||
|
||
|
||
#train_data, test_data, val_data = [], [], [] | ||
#train_label, test_label, val_label = [], [], [] | ||
|
||
num_subject = 122 | ||
num_datapoint = data.shape[0] | ||
|
||
mask = np.zeros(num_subject) | ||
|
||
# 7-2-1 for tarin-test-validation cross-subject data splitting | ||
for i in range(num_subject): | ||
r = np.random.rand() | ||
if r < 0.7: | ||
mask[i] = 0 | ||
elif r >= 0.7 and r < 0.9: | ||
mask[i] = 1 | ||
else: | ||
mask[i] = 2 | ||
|
||
#split according to subject id | ||
#70% of subjects will be in training set | ||
train_data = [data[i] for i in range(num_datapoint) if mask[label_id[i]] == 0] | ||
train_label_alcoholism = [label_alcoholism[i] for i in range(num_datapoint) if mask[label_id[i]] == 0] | ||
train_label_stimulus = [label_stimulus[i] for i in range(num_datapoint) if mask[label_id[i]] == 0] | ||
train_label_id = [label_id[i] for i in range(num_datapoint) if mask[label_id[i]] == 0] | ||
|
||
#20% subjects in testing set | ||
test_data = [data[i] for i in range(num_datapoint) if mask[label_id[i]] == 1] | ||
test_label_alcoholism = [label_alcoholism[i] for i in range(num_datapoint) if mask[label_id[i]] == 1] | ||
test_label_stimulus = [label_stimulus[i] for i in range(num_datapoint) if mask[label_id[i]] == 1] | ||
test_label_id = [label_id[i] for i in range(num_datapoint) if mask[label_id[i]] == 1] | ||
|
||
# 10% subjects for validation set | ||
val_data = [data[i] for i in range(num_datapoint) if mask[label_id[i]] == 2] | ||
val_label_alcoholism = [label_alcoholism[i] for i in range(num_datapoint) if mask[label_id[i]] == 2] | ||
val_label_stimulus = [label_stimulus[i] for i in range(num_datapoint) if mask[label_id[i]] == 2] | ||
val_label_id = [label_id[i] for i in range(num_datapoint) if mask[label_id[i]] == 2] | ||
|
||
#save data | ||
sio.savemat( 'uci_eeg_train_cross.mat', | ||
{'data': train_data, 'label_alcoholism':np.reshape(train_label_alcoholism,(-1,1)), | ||
'label_stimulus': np.reshape(train_label_stimulus,(-1,1)), 'label_id':np.reshape(train_label_id,(-1,1))}) | ||
|
||
sio.savemat( 'uci_eeg_test_cross.mat', | ||
{'data': test_data, 'label_alcoholism':np.reshape(test_label_alcoholism,(-1,1)), | ||
'label_stimulus':np.reshape(test_label_stimulus,(-1,1)), 'label_id':np.reshape(test_label_id,(-1,1))}) | ||
|
||
sio.savemat( 'uci_eeg_validation_cross.mat', | ||
{'data': val_data, 'label_alcoholism':np.reshape(val_label_alcoholism,(-1,1)), | ||
'label_stimulus': np.reshape(val_label_stimulus,(-1,1)), 'label_id':np.reshape(val_label_id,(-1,1))}) | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,113 @@ | ||
import scipy.io as sio | ||
import scipy.io | ||
import numpy as np | ||
from sklearn.model_selection import train_test_split | ||
|
||
''' | ||
within-subject data spliting | ||
''' | ||
|
||
mat = sio.loadmat('ucieeg.mat') | ||
|
||
|
||
data = mat['X'].astype('float32') | ||
|
||
#data = np.transpose (data, (0, 3 ,2, 1)) | ||
|
||
print (np.shape (data)) | ||
|
||
label_alcoholism = mat['y_alcoholic'].astype('int') | ||
label_alcoholism = label_alcoholism.reshape(np.shape(data)[0]) | ||
|
||
label_stimulus = mat['y_stimulus'].astype('int')- 1 #label start from 0 | ||
label_stimulus = label_stimulus.reshape(np.shape(data)[0]) #label start from 0 | ||
|
||
label_id = mat['subjectid'].astype('int') - 1 | ||
label_id = label_id.reshape(np.shape (data)[0]) | ||
|
||
|
||
train_data = [] | ||
train_label = [] | ||
|
||
train_cyc_data = [] | ||
train_cyc_label = [] | ||
|
||
val_data = [] | ||
val_label = [] | ||
|
||
test_data = [] | ||
test_label = [] | ||
|
||
num_subject = 122 | ||
|
||
#loop through each subject to split data within subject | ||
for i in range(num_subject): | ||
index_i = np.where(label_id == i) | ||
data_i = data[index_i] | ||
#print (np.shape (data_i)) | ||
|
||
label_alcoholism_i = label_alcoholism[index_i] | ||
label_stimulus_i = label_stimulus[index_i] | ||
label_id_i = label_id[index_i] | ||
|
||
#print (np.shape(data_i)) | ||
|
||
# try 8-1-1 train-test-validation splitting | ||
label_stack_i = np.stack((label_alcoholism_i, label_stimulus_i, label_id_i), axis=1) | ||
X_train_i, X_test_i, y_train_i, y_test_i = train_test_split(data_i, label_stack_i, test_size=0.2,random_state = 1) | ||
X_test_i, X_val_i, y_test_i, y_val_i = train_test_split(X_test_i, y_test_i, test_size=0.5,random_state = 1) | ||
|
||
# if alcoholic, sample 70% data for the cyclegan-based model training => balanced data | ||
if label_alcoholism_i[0] == 0 or (label_alcoholism_i[0] == 1 and np.random.rand()<=0.7): | ||
train_cyc_data.append(X_train_i) | ||
|
||
# X_train_i, X_test_i, y_train_i, y_test_i = train_test_split(data_i, label_stack_i, test_size=0.45,random_state = 1) | ||
# X_test_i, X_val_i, y_test_i, y_val_i = train_test_split(X_test_i, y_test_i, test_size=0.33,random_state = 1) | ||
|
||
#else: | ||
# X_train_i, X_test_i, y_train_i, y_test_i = train_test_split(data_i, label_stack_i, test_size=0.1,random_state = 1) | ||
# X_test_i, X_val_i, y_test_i, y_val_i = train_test_split(X_test_i, y_test_i, test_size=0.5,random_state = 1) | ||
|
||
train_data.append (X_train_i) | ||
|
||
val_data.append (X_val_i) | ||
|
||
test_data.append (X_test_i) | ||
|
||
train_label.append (y_train_i) | ||
|
||
test_label.append (y_test_i) | ||
|
||
val_label.append (y_val_i) | ||
|
||
|
||
train_data = np.concatenate(train_data) | ||
train_label = np.concatenate(train_label) | ||
|
||
val_data = np.concatenate(val_data) | ||
val_label = np.concatenate(val_label) | ||
|
||
test_data = np.concatenate(test_data) | ||
test_label = np.concatenate(test_label) | ||
|
||
|
||
|
||
print (np.shape (train_label)) | ||
print (np.shape (val_label)) | ||
print (np.shape (test_label)) | ||
|
||
|
||
|
||
sio.savemat( 'uci_eeg_train_within_8.mat', | ||
{'data': train_data, 'label_alcoholism':np.reshape(train_label[:,0],(-1,1)), | ||
'label_stimulus': np.reshape(train_label[:,1],(-1,1)), 'label_id':np.reshape(train_label[:,2],(-1,1))}) | ||
|
||
sio.savemat( 'uci_eeg_test_within_1.mat', | ||
{'data': test_data, 'label_alcoholism':np.reshape(test_label[:,0],(-1,1)), | ||
'label_stimulus':np.reshape(test_label[:,1],(-1,1)), 'label_id':np.reshape(test_label[:,2],(-1,1))}) | ||
|
||
sio.savemat( 'uci_eeg_validation_within_1.mat', | ||
{'data': val_data, 'label_alcoholism':np.reshape(val_label[:,0],(-1,1)), | ||
'label_stimulus': np.reshape(val_label[:,1],(-1,1)), 'label_id':np.reshape(val_label[:,2],(-1,1))}) | ||
|
||
|
Oops, something went wrong.