Skip to content

Commit

Permalink
Added CRAFT folder
Browse files Browse the repository at this point in the history
Used for making bounding boxes around text
  • Loading branch information
Shreyasvaidya authored Jun 30, 2023
1 parent 329e219 commit 1db8484
Show file tree
Hide file tree
Showing 21 changed files with 911 additions and 0 deletions.
19 changes: 19 additions & 0 deletions CRAFTpytorchmaster/LICENSE
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
Copyright (c) 2019-present NAVER Corp.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
103 changes: 103 additions & 0 deletions CRAFTpytorchmaster/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,103 @@
## CRAFT: Character-Region Awareness For Text detection
Official Pytorch implementation of CRAFT text detector | [Paper](https://arxiv.org/abs/1904.01941) | [Pretrained Model](https://drive.google.com/open?id=1Jk4eGD7crsqCCg9C9VjCLkMN3ze8kutZ) | [Supplementary](https://youtu.be/HI8MzpY8KMI)

**[Youngmin Baek](mailto:[email protected]), Bado Lee, Dongyoon Han, Sangdoo Yun, Hwalsuk Lee.**

Clova AI Research, NAVER Corp.

### Sample Results

### Overview
PyTorch implementation for CRAFT text detector that effectively detect text area by exploring each character region and affinity between characters. The bounding box of texts are obtained by simply finding minimum bounding rectangles on binary map after thresholding character region and affinity scores.

<img width="1000" alt="teaser" src="./figures/craft_example.gif">

## Updates
**13 Jun, 2019**: Initial update
**20 Jul, 2019**: Added post-processing for polygon result
**28 Sep, 2019**: Added the trained model on IC15 and the link refiner


## Getting started
### Install dependencies
#### Requirements
- PyTorch>=0.4.1
- torchvision>=0.2.1
- opencv-python>=3.4.2
- check requiremtns.txt
```
pip install -r requirements.txt
```

### Training
The code for training is not included in this repository, and we cannot release the full training code for IP reason.


### Test instruction using pretrained model
- Download the trained models

*Model name* | *Used datasets* | *Languages* | *Purpose* | *Model Link* |
| :--- | :--- | :--- | :--- | :--- |
General | SynthText, IC13, IC17 | Eng + MLT | For general purpose | [Click](https://drive.google.com/open?id=1Jk4eGD7crsqCCg9C9VjCLkMN3ze8kutZ)
IC15 | SynthText, IC15 | Eng | For IC15 only | [Click](https://drive.google.com/open?id=1i2R7UIUqmkUtF0jv_3MXTqmQ_9wuAnLf)
LinkRefiner | CTW1500 | - | Used with the General Model | [Click](https://drive.google.com/open?id=1XSaFwBkOaFOdtk4Ane3DFyJGPRw6v5bO)

* Run with pretrained model
``` (with python 3.7)
python test.py --trained_model=[weightfile] --test_folder=[folder path to test images]
```

The result image and socre maps will be saved to `./result` by default.

### Arguments
* `--trained_model`: pretrained model
* `--text_threshold`: text confidence threshold
* `--low_text`: text low-bound score
* `--link_threshold`: link confidence threshold
* `--cuda`: use cuda for inference (default:True)
* `--canvas_size`: max image size for inference
* `--mag_ratio`: image magnification ratio
* `--poly`: enable polygon type result
* `--show_time`: show processing time
* `--test_folder`: folder path to input images
* `--refine`: use link refiner for sentense-level dataset
* `--refiner_model`: pretrained refiner model


## Links
- WebDemo : https://demo.ocr.clova.ai/
- Repo of recognition : https://github.com/clovaai/deep-text-recognition-benchmark

## Citation
```
@inproceedings{baek2019character,
title={Character Region Awareness for Text Detection},
author={Baek, Youngmin and Lee, Bado and Han, Dongyoon and Yun, Sangdoo and Lee, Hwalsuk},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={9365--9374},
year={2019}
}
```

## License
```
Copyright (c) 2019-present NAVER Corp.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
```
Empty file added CRAFTpytorchmaster/__init__.py
Empty file.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Empty file.
Binary file not shown.
Binary file not shown.
73 changes: 73 additions & 0 deletions CRAFTpytorchmaster/basenet/vgg16_bn.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
from collections import namedtuple

import torch
import torch.nn as nn
import torch.nn.init as init
from torchvision import models


def init_weights(modules):
for m in modules:
if isinstance(m, nn.Conv2d):
init.xavier_uniform_(m.weight.data)
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.weight.data.normal_(0, 0.01)
m.bias.data.zero_()

class vgg16_bn(torch.nn.Module):
def __init__(self, pretrained=True, freeze=True):
super(vgg16_bn, self).__init__()
model = models.vgg16_bn(weights = 'DEFAULT')
vgg_pretrained_features = model.features
self.slice1 = torch.nn.Sequential()
self.slice2 = torch.nn.Sequential()
self.slice3 = torch.nn.Sequential()
self.slice4 = torch.nn.Sequential()
self.slice5 = torch.nn.Sequential()
for x in range(12): # conv2_2
self.slice1.add_module(str(x), vgg_pretrained_features[x])
for x in range(12, 19): # conv3_3
self.slice2.add_module(str(x), vgg_pretrained_features[x])
for x in range(19, 29): # conv4_3
self.slice3.add_module(str(x), vgg_pretrained_features[x])
for x in range(29, 39): # conv5_3
self.slice4.add_module(str(x), vgg_pretrained_features[x])

# fc6, fc7 without atrous conv
self.slice5 = torch.nn.Sequential(
nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6),
nn.Conv2d(1024, 1024, kernel_size=1)
)

if not pretrained:
init_weights(self.slice1.modules())
init_weights(self.slice2.modules())
init_weights(self.slice3.modules())
init_weights(self.slice4.modules())

init_weights(self.slice5.modules()) # no pretrained model for fc6 and fc7

if freeze:
for param in self.slice1.parameters(): # only first conv
param.requires_grad= False

def forward(self, X):
h = self.slice1(X)
h_relu2_2 = h
h = self.slice2(h)
h_relu3_2 = h
h = self.slice3(h)
h_relu4_3 = h
h = self.slice4(h)
h_relu5_3 = h
h = self.slice5(h)
h_fc7 = h
vgg_outputs = namedtuple("VggOutputs", ['fc7', 'relu5_3', 'relu4_3', 'relu3_2', 'relu2_2'])
out = vgg_outputs(h_fc7, h_relu5_3, h_relu4_3, h_relu3_2, h_relu2_2)
return out
85 changes: 85 additions & 0 deletions CRAFTpytorchmaster/craft.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,85 @@
"""
Copyright (c) 2019-present NAVER Corp.
MIT License
"""

# -*- coding: utf-8 -*-
import torch
import torch.nn as nn
import torch.nn.functional as F

from CRAFTpytorchmaster.basenet.vgg16_bn import vgg16_bn, init_weights

class double_conv(nn.Module):
def __init__(self, in_ch, mid_ch, out_ch):
super(double_conv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_ch + mid_ch, mid_ch, kernel_size=1),
nn.BatchNorm2d(mid_ch),
nn.ReLU(inplace=True),
nn.Conv2d(mid_ch, out_ch, kernel_size=3, padding=1),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True)
)

def forward(self, x):
x = self.conv(x)
return x


class CRAFT(nn.Module):
def __init__(self, pretrained=False, freeze=False):
super(CRAFT, self).__init__()

""" Base network """
self.basenet = vgg16_bn(pretrained, freeze)

""" U network """
self.upconv1 = double_conv(1024, 512, 256)
self.upconv2 = double_conv(512, 256, 128)
self.upconv3 = double_conv(256, 128, 64)
self.upconv4 = double_conv(128, 64, 32)

num_class = 2
self.conv_cls = nn.Sequential(
nn.Conv2d(32, 32, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.Conv2d(32, 32, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.Conv2d(32, 16, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.Conv2d(16, 16, kernel_size=1), nn.ReLU(inplace=True),
nn.Conv2d(16, num_class, kernel_size=1),
)

init_weights(self.upconv1.modules())
init_weights(self.upconv2.modules())
init_weights(self.upconv3.modules())
init_weights(self.upconv4.modules())
init_weights(self.conv_cls.modules())

def forward(self, x):
""" Base network """
sources = self.basenet(x)

""" U network """
y = torch.cat([sources[0], sources[1]], dim=1)
y = self.upconv1(y)

y = F.interpolate(y, size=sources[2].size()[2:], mode='bilinear', align_corners=False)
y = torch.cat([y, sources[2]], dim=1)
y = self.upconv2(y)

y = F.interpolate(y, size=sources[3].size()[2:], mode='bilinear', align_corners=False)
y = torch.cat([y, sources[3]], dim=1)
y = self.upconv3(y)

y = F.interpolate(y, size=sources[4].size()[2:], mode='bilinear', align_corners=False)
y = torch.cat([y, sources[4]], dim=1)
feature = self.upconv4(y)

y = self.conv_cls(feature)

return y.permute(0,2,3,1), feature

if __name__ == '__main__':
model = CRAFT(pretrained=True).cuda()
output, _ = model(torch.randn(1, 3, 768, 768).cuda())
print(output.shape)
Loading

0 comments on commit 1db8484

Please sign in to comment.