Skip to content

Implementation of the paper: "Privacy Assessment on Reconstructed Images: Are Existing Evaluation Metrics Faithful to Human Perception?” (NeurIPS 2023)

License

Notifications You must be signed in to change notification settings

SonyResearch/SemSim

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SemSim

Privacy Assessment on Reconstructed Images: Are Existing Evaluation Metrics Faithful to Human Perception?
Xiaoxiao Sun, Nidham Gazagnadou, Vivek Sharma, Lingjuan Lyu, Hongdong Li, Liang Zheng
Spotlight at NeurIPS 2023

[Paper] [Project Page] [Talk]

Code overview

The important experimental part can be found at benchmark/.

The existing matrics can be found at metrics/.

Setup

You can use anaconda to install our setup by running

conda env create -f semsim.yml
conda activate semsim

Getting Started

Step 1: train classifier to be evaluatred

# using cifar-100 as example
python benchmark/step1_train_classifier.py --data=cifar100 --arch=ResNet20-4 --epochs=200 --aug_list='' --mode=crop

Step 2: attack classifier to get reconstructed images

Orginal images are needed in this step, you can

# using cifar-100 as example,

python benchmark/step2_attack.py --data=cifar100 --arch=ResNet20-4 --epochs=200 --aug_list='' --mode=crop --optim='inversed'
  • use your own dataset:

    (1) if you prefer to use your own dataset, place your dataset in your chosen directory.

    (2) set the '--rec_data_dir' parameter to the directory containing your dataset.

  • reconstructed images:

    (1) you can also use our prepared reconstructed images for this step.

    (2) download them from this link. We also provide some intermediate experimental results, such as prediction socres, top-5.

Step 3: use different metrics to measure the privacy leakage

  • Exisitng metric
python metrics/pixel_level_metrics

# modify line 137-138 
#    data_dir_raw= '' # dir of orginal images 
#    with open('metrics/folder_names_cifar.txt', 'r') as f: 
#    folder_names_cifar.txt saves dirs of reconstructed images 
  • Semsim

The folder of data and code should look like this:

Your project
├── data
│   └──cifar-100-python
│   └──caltech-101
│   └── ...
│   └── human_anno_id
│       └── train_with_ori
└── Semsim_code

place the data in the directory: ../data/

# train Semsim. 
# Data path is set in the Line 205 of 'inversefed/data/data_processing.py'
python benchmark\Semsim_train_evaluation.py --data human_anno_id --arch ResNet18 --epochs 100 --mode crop --semsim True
# test Semsim
python benchmark\Semsim_train_evaluation.py --data human_anno_id --targte_data cifar100 --arch ResNet18 --epochs 100 --mode crop --semsim True --evaluate True

# '--targte_data' is the target test set you want to evaluated. The default value is 'cifar100'.

Acknowledgement

We express gratitudes to the great work ATSPrivacy, Inverting Gradients and DLG as we benefit a lot from both their papers and codes.

Citation

If you find this repository useful for your research, please consider citing our work:

@inproceedings{sun2023privacy,
  title={Privacy Assessment on Reconstructed Images: Are Existing Evaluation Metrics Faithful to Human Perception?},
  author={Sun, Xiaoxiao and Gazagnadou, Nidham and Sharma, Vivek and Lyu, Lingjuan and Li, Hongdong and Zheng, Liang},
  booktitle={Thirty-seventh Conference on Neural Information Processing Systems},
  year={2023}
}

About

Implementation of the paper: "Privacy Assessment on Reconstructed Images: Are Existing Evaluation Metrics Faithful to Human Perception?” (NeurIPS 2023)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages